1
|
Qiu J, Xi X, Zheng S, Li T, Wang Y, Ren X, Dong A. Pre-carbonization-mediated construction of urchin-like NiFe 2O 4 superparticles with enhanced CNT growth for efficient oxygen evolution. J Colloid Interface Sci 2025; 691:137463. [PMID: 40174358 DOI: 10.1016/j.jcis.2025.137463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 03/09/2025] [Accepted: 03/27/2025] [Indexed: 04/04/2025]
Abstract
In this study, we report the rational design and synthesis of carbonized NiFe2O4 superparticles (CarSPs) hierarchically integrated with densely aligned carbon nanotube (CNT) architectures, hereafter denoted as CarSP-CNTs, which exhibit a biomimetic urchin-like morphology. Through exploitation of the colloidal self-assembly and catalytic functionalities inherent to NiFe2O4 nanoparticles (NPs), we achieve seamless integration of one-dimensional CNT arrays with three-dimensional superstructural frameworks. Systematic investigation reveals that the pre-carbonization of surface-bound organic ligands coupled with subsequent CNT growth induces synergistic interplay between conductive carbon matrices and active spinel oxide phases. This structural optimization confers CarSP-CNTs with enhanced charge transfer kinetics and catalytically robust interfaces, as evidenced by their superior electrocatalytic performance for the oxygen evolution reaction (OER) in alkaline electrolyte (1 M KOH). The optimized CarSP-CNTs exhibit a minimal overpotential of 307 mV to deliver a current density of 10 mA cm-2, alongside remarkable operational stability exceeding 20 h of continuous electrolysis. These findings establish a paradigm for the rational design of hierarchically structured, multi-component electrocatalysts through coordinated nanoscale engineering, offering a versatile platform for advancing energy conversion technologies.
Collapse
Affiliation(s)
- Junjie Qiu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Xiangyun Xi
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Shuoran Zheng
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Tongtao Li
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Yajun Wang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China.
| | - Xiaomeng Ren
- PLA Naval Medical Center, Shanghai 20033, China.
| | - Angang Dong
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Department of Chemistry, Fudan University, Shanghai 200438, China.
| |
Collapse
|
2
|
Yameen Q, Ikram M, Moeen S, Imran M, Ul-Hamid A, Ali G, Goumri-Said S, Kanoun MB. Enhanced electrocatalytic OER performance of Ba/CS-CoFe 2O 4 ternary heterostructure catalyst: Experimental and theoretical insights. CHEMOSPHERE 2025; 382:144490. [PMID: 40398126 DOI: 10.1016/j.chemosphere.2025.144490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/21/2025] [Accepted: 05/11/2025] [Indexed: 05/23/2025]
Abstract
Herein, a ternary heterostructure catalyst Ba/CS-CoFe2O4 (barium/chitosan-doped Cobalt ferrite) was developed by a straightforward co-precipitation technique to investigate oxygen evolution reaction (OER) activity. Varying quantities (2 and 4 wt %) of Ba and a fixed amount (3 wt %) of CS were doped to modify the surface area, porosity, crystallite size, and stability of CoFe2O4. Comprehensive characterizations revealed multiple phases, polycrystalline behavior, enhanced absorption, structural defects, and nanorods overlapping nanoparticles (NPs) like the morphology of Ba/CS-CoFe2O4. Furthermore, the experimental results revealed that 2 wt % of Ba/CS-CoFe2O4 exhibited superior electrocatalytic activity with the highest kinetics and ECSA (electrochemically active surface area) for the OER process in 1 M KOH. To further elucidate the OER performance, density functional theory (DFT) calculations were conducted. The optimized CoFe2O4 structure was confirmed to have a cubic Fd-3m symmetry, with a calculated bandgap energy (Eg) of 1.62 eV, closely matching experimental data. Adsorption energy calculations showed that Ba/CS doping significantly improved the binding strength of OH intermediates on the CoFe2O4 (100) surface, highlighting the role of dopants in enhancing surface reactivity. These findings demonstrate the potential of Ba/CS doping to optimize the electronic, structural, and surface properties of CoFe2O4 for efficient OER electrocatalysis, paving the way for novel electrochemical catalyst design.
Collapse
Affiliation(s)
- Qirat Yameen
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore, 54000, Punjab, Pakistan
| | - Muhammad Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore, 54000, Punjab, Pakistan.
| | - Sawaira Moeen
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore, 54000, Punjab, Pakistan
| | - Muhammad Imran
- Department of Chemistry, Government College University, Faisalabad, Sahiwal Road, Sahiwal, Punjab, 57000, Pakistan
| | - Anwar Ul-Hamid
- Core Research Facilities, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Ghafar Ali
- Nanomaterials Research Group (NRG), Physics Division, PINSTECH, Islamabad, 44000, Pakistan
| | - Souraya Goumri-Said
- College of Science and General Studies, Department of Physics, Alfaisal University, P.O. Box 5092, Riyadh, 11533, Saudi Arabia.
| | - Mohammed Benali Kanoun
- Department of Mathematics and Sciences, College of Humanities and Sciences, Prince Sultan University, P.O. Box 66833, Riyadh, 11586, Saudi Arabia
| |
Collapse
|
3
|
Morankar PJ, Amate RU, Teli AM, Bhosale MK, Beknalkar SA, Jeon CW. Cationic Surfactant-Driven Evolution of NiFe 2O 4 Nanosheets for High-Performance Asymmetric Supercapacitors. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1987. [PMID: 40363491 PMCID: PMC12072712 DOI: 10.3390/ma18091987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 04/22/2025] [Accepted: 04/26/2025] [Indexed: 05/15/2025]
Abstract
This work explores the role of cetyltrimethylammonium bromide (CTAB) as a morphology-directing agent in the hydrothermal synthesis of NiFe2O4 electrodes for high-performance supercapacitor applications. By fine-tuning CTAB concentrations (0.5%, 1%, and 1.5%), a tunable nanosheet morphology was achieved, with the NiFe-1 sample exhibiting uniformly interconnected nanosheets that enhanced ion diffusion, charge transport, and surface redox activity. Structural and surface analyses confirmed the formation of single-phase cubic NiFe2O4 and the presence of Ni2+ and Fe3+ oxidation states. Electrochemical characterization in a 2 M KOH electrolyte revealed that the NiFe-1 electrode achieved an areal capacitance of 8.21 F/cm2 at 20 mA/cm2, with an energy density of 0.34 mWh/cm2 and a power density of 5.5 mW/cm2. The electrode retained 79.61% of its capacitance after 10,000 cycles, demonstrating excellent stability. An asymmetric pouch-type supercapacitor device (APSD), assembled using NiFe-1 and activated carbon, exhibited an areal capacitance of 1.215 F/cm2 and delivered an energy density of 0.285 mWh/cm2 at a power density of 6.5 mW/cm2 across a wide 0-1.8 V voltage window. These results confirm that CTAB-assisted nanostructuring significantly improves the electrochemical performance of NiFe2O4 electrodes, offering a scalable and effective approach for next-generation energy storage applications.
Collapse
Affiliation(s)
- Pritam J. Morankar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 712-749, Republic of Korea; (P.J.M.); (R.U.A.); (M.K.B.)
| | - Rutuja U. Amate
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 712-749, Republic of Korea; (P.J.M.); (R.U.A.); (M.K.B.)
| | - Aviraj M. Teli
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul Campus, Seoul 04620, Republic of Korea; (A.M.T.); (S.A.B.)
| | - Mrunal K. Bhosale
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 712-749, Republic of Korea; (P.J.M.); (R.U.A.); (M.K.B.)
| | - Sonali A. Beknalkar
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul Campus, Seoul 04620, Republic of Korea; (A.M.T.); (S.A.B.)
| | - Chan-Wook Jeon
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 712-749, Republic of Korea; (P.J.M.); (R.U.A.); (M.K.B.)
| |
Collapse
|
4
|
Hyrondelle H, Terry A, Lhoste J, Tencé S, Lemoine K, Olchowka J, Dambournet D, Tassel C, Gamon J, Demourgues A. Fluorine as a Key Element in Solid-State Chemistry of Mixed Anions 3d Transition Metal-Based Materials for Electronic Properties and Energy. Chem Rev 2025; 125:4287-4358. [PMID: 40163862 DOI: 10.1021/acs.chemrev.4c00868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Mixed anion compounds containing fluorine and based on 3d transition elements represent a class of materials with significant interest in solid-state chemistry. Indeed, their highly varied chemical composition, structural diversity, and the resulting electronic properties provide a rich playground for imagining new applications in the field of energy. The anions and the chemical bonds they form with the 3d transition elements are at the heart of this review. Key parameters such as electronegativity, hardness, and polarizability are introduced and discussed to better understand the charge capacity of the anion and the bonds formed in the solid. Oxyfluorides represent the most studied family due to the size similarity of the two anions, and part of the review is dedicated to the specific synthesis of these materials by systematically adjusting the fluorine content within various structures and analyzing the electronic and electrochemical properties of these compositions. The final sections focus on materials with structures often exhibiting a two-dimensional character, where ionic blocks coexist with covalent layers, such as fluorochalcogenides, fluoropnictides, and fluorotetrelides. The compositions and structures are systematically correlated with the electronic properties.
Collapse
Affiliation(s)
- Helies Hyrondelle
- Univ. Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France
| | - Alexandre Terry
- Institut des Molécules et Matériaux du Mans, IMMM, UMR 6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France
| | - Jérôme Lhoste
- Institut des Molécules et Matériaux du Mans, IMMM, UMR 6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France
| | - Sophie Tencé
- Univ. Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France
| | - Kevin Lemoine
- Institut de chimie de Clermont-Ferrand. UMR 6296University of Clermont, Ferrand. 24, avenue Blaise Pascal. TSA 60026 CS 60026, 63178 Aubière Cedex, France
| | - Jacob Olchowka
- Univ. Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France
- Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, 80039 Amiens Cedex, France
| | - Damien Dambournet
- Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, 80039 Amiens Cedex, France
- Sorbonne Université, CNRS, Physicochimie des Electrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
| | - Cédric Tassel
- Univ. Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France
- Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, 80039 Amiens Cedex, France
| | - Jacinthe Gamon
- Univ. Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France
| | - Alain Demourgues
- Univ. Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France
| |
Collapse
|
5
|
Xiang W, Hernandez S, Hosseini P, Bai F, Hagemann U, Heidelmann M, Li T. Unveiling Surface Species Formed on Ni-Fe Spinel Oxides During the Oxygen Evolution Reaction at the Atomic Scale. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2501967. [PMID: 40160187 DOI: 10.1002/advs.202501967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/28/2025] [Indexed: 04/02/2025]
Abstract
Optimizing electrocatalyst performance requires an atomic-scale understanding of surface state changes and how those changes affect activity and stability during the reaction. This is particularly important for the oxygen evolution reaction (OER) since the electrocatalytically active surfaces undergo substantial reconstruction and transformation. Herein, a multimodal method is employed that combines X-ray photoemission spectroscopy, transmission electron microscopy, atom probe tomography, operando surface-enhanced Raman spectroscopy with electrochemical measurements to examine the surface species formed on NiFe2O4, P-doped NiFe2O4 and Ni1.5Fe1.5O4 upon OER cycling. The activated NiFe2O4 and P-doped NiFe2O4 exhibit a significantly lower Tafel slope (≈40 mV dec-1) than Ni1.5Fe1.5O4 (≈90 mV dec-1), although oxyhydroxides are grown on all three Ni-Fe spinels during OER. This is likely attributed to the formation of a ≈1 nm highly defective layer with a higher oxygen concentration on the activated NiFe2O4 and P-doped NiFe2O4 nanoparticle surfaces (than that in bulk), which improves the charge transfer kinetics toward OER. Such surface species are not formed on Ni1.5Fe1.5O4. Overall, this study provides a mechanistic understanding of the role of Fe, P, and Ni in forming active oxygen species in the Ni-based spinels toward OER.
Collapse
Affiliation(s)
- Weikai Xiang
- Faculty of Mechanical Engineering, Atomic-scale Characterisation, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Sheila Hernandez
- Faculty of Chemistry and Biochemistry, Analytical Chemistry II, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Pouya Hosseini
- Max-Planck-Institut für Nachhaltige Materialien GmbH, Max-Planck-Straße 1, 40237, Düsseldorf, Germany
| | - Fan Bai
- Faculty of Mechanical Engineering, Atomic-scale Characterisation, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Ulrich Hagemann
- Interdisciplinary Center for Analytics on the Nanoscale (ICAN) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Carl-Benz-Straße 199, 47057, Duisburg, Germany
| | - Markus Heidelmann
- Interdisciplinary Center for Analytics on the Nanoscale (ICAN) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Carl-Benz-Straße 199, 47057, Duisburg, Germany
| | - Tong Li
- Faculty of Mechanical Engineering, Atomic-scale Characterisation, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| |
Collapse
|
6
|
Liu Z, Xue J, Fan Y, Li Y. Mo Doping Induced Ni Surface Enrichment of Porous Spherical Core-Shell Bifunctional Electrocatalyst for Overall Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407907. [PMID: 39487637 DOI: 10.1002/smll.202407907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/24/2024] [Indexed: 11/04/2024]
Abstract
Rational design of efficient and non-noble metal bifunctional catalysts for alkaline overall water splitting (OWS) electrochemical reactions is of top priority in the development of hydrogen-based energy. Constructing catalysts with unique structures to optimize the intrinsic activity is a promising strategy. In this work, a newly developed Ni3Co3Mo100-BTC-15h catalyst consisting of Ni nanoparticles enriched on the surface along with a core-shell porous structure is prepared via a hydrothermal process. Due to the unique composition and Ni-enriched core-shell structure, the Ni3Co3Mo100-BTC-15h catalyst exhibits enhanced electrocatalytic properties for both the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in alkaline media. Under the dual tuning and intermetallic phase, the Ni3Co3Mo100-BTC-15h catalyst deliver a lower overpotential of 151 mV and ≈ 136 mV exceeding commercial catalysts for OER and HER. When the Ni3Co3Mo100-BTC-15h is used as bifunctional catalyst for OWS in a two-electrode alkaline electrolyzer, a cell voltage of 1.62 V is required to drive 10 mA·cm-2 comparable to that of commercial Pt/C and RuO2 catalysts. This work proposes a potential strategy for optimizing the electrocatalytic performance of non-noble metal catalysts for OWS.
Collapse
Affiliation(s)
- Zhipeng Liu
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Jinling Xue
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Yibin Fan
- School of Future Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Yinshi Li
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| |
Collapse
|
7
|
Sanket K, Kumar U, Sinha I, Behera SK. An oxycarbide-derived-carbon supported nickel ferrite/copper tungstate ternary composite for enhanced electrocatalytic activity towards the oxygen evolution reaction. Dalton Trans 2025; 54:797-810. [PMID: 39576102 DOI: 10.1039/d4dt02688h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
This work integrates a unique porous carbon with a binary heterostructured NiFe2O4/CuWO4 composite to enhance electrocatalytic activity towards the oxygen evolution reaction. The NiFe2O4/CuWO4 binary heterostructure was prepared through the conventional co-precipitation method. The porous carbon with turbostratic order was obtained by the selective etching of SiO2 nanodomains from preceramic polymer-derived SiOC. Finally, an optimum ternary NiFe2O4/CuWO4/C composite was prepared through hydrothermal treatment. Microstructural findings reveal that NiFe2O4/CuWO4 nanocomposite particulates are distributed homogeneously within the porous carbon matrix. Electrochemical findings reveal that the optimum composite with uniform carbon distribution requires an overpotential of 360 mV to attain a current density of 10 mA cm-2 with the lowest Tafel slope of 43 mV dec-1 as opposed to 450 mV and 55 mV dec-1, respectively, for the composites without carbon. The ternary composite demonstrated a stable potential over a prolonged period of 24 hours with enhanced mass activity. The improved electrocatalytic efficiency of the material is attributed to the presence of graphitic carbon and ample porosity within the additive carbon phase, which enhances the catalyst-electrolyte interaction interface area and electronic conductivity.
Collapse
Affiliation(s)
- Kumar Sanket
- Department of Ceramic Engineering, National Institute of Technology, Rourkela, Odisha, 769008, India.
| | - Uttam Kumar
- Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India.
| | - Indrajit Sinha
- Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India.
| | - Shantanu K Behera
- Department of Ceramic Engineering, National Institute of Technology, Rourkela, Odisha, 769008, India.
| |
Collapse
|
8
|
Lyu X, Hu Y, Han Y, Li X, Yu Q, Wen B, Zhao X, Dong Q, Du A. Waxberry-like hydrophilic Co-doped ZnFe 2O 4 as bifunctional electrocatalysts for water splitting. J Colloid Interface Sci 2024; 675:326-335. [PMID: 38972120 DOI: 10.1016/j.jcis.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
Water splitting is a promising technique for clean hydrogen production. To improve the sluggish hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), the development of efficient bifunctional electrocatalysts for both HER and OER is urgent to approach the scale-up applications of water splitting. Nowadays transition metal oxides (TMOs) are considered as the promising electrocatalysts due to their low cost, structural flexibility and stability, however, their electrocatalytic activities are eager to be improved. Here, we synthesized waxberry-like hydrophilic Co-doped ZnFe2O4 electrocatalysts as bifunctional electrocatalysts for water splitting. Due to the enhanced active sites by electronic structure tuning and modified super-hydrophilic characteristics, the spinel ZFO-Co0.5 electrocatalyst exhibits excellent catalytic activities for both OER and HER. It exhibits a remarkable low OER overpotential of 220 mV at a current density of 10 mA cm-2 and a Tafel slope of 28.2 mV dec-1. Meanwhile, it achieves a low overpotential of 73 mV at a current density of 10 mA cm-2 with the Tafel slope of 87 mV dec-1 for HER. In addition, for water electrolysis device, the electrocatalytic performance of ZFO-Co0.5||ZFO-Co0.5 surpasses that of commercial IrO2||Pt/C. Our work reveals that the hydrophilic morphology regulation combined with metallic doping strategy is a facile and effective approach to synthesize spinel TMOs as excellent bifunctional electrocatalyst for water splitting.
Collapse
Affiliation(s)
- Xiao Lyu
- School of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159, China.
| | - Yongbin Hu
- School of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159, China
| | - Yun Han
- Queensland Micro- and Nanotechnology Centre, School of Engineering and Built Environment, Griffith University, Nathan Campus, QLD 4111, Australia
| | - Xuning Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qi Yu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Bo Wen
- School of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159, China
| | - Xin Zhao
- School of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159, China
| | - Qinglong Dong
- School of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159, China
| | - Aijun Du
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology, Gardens Point Campus, Brisbane 4001, Australia
| |
Collapse
|
9
|
Zhang H, Zhao Y, Cheng Z, Jiang J, Fu J, Xu Q. 2D NiFe 2O 4/Ni(OH) 2 Heterostructure-Based Self-Supporting Electrode With Synergistic Surface/Interfacial Engineering for Efficient Water Electrooxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405225. [PMID: 39161189 DOI: 10.1002/smll.202405225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/12/2024] [Indexed: 08/21/2024]
Abstract
To meet the industrial demand for overall water splitting, oxygen evolution reaction (OER) electrocatalysts with low-cost, highly effective, and durable properties are urgently required. Herein, a facile confined strategy is utilized to construct 2D NiFe2O4/Ni(OH)2 heterostructures-based self-supporting electrode with surface-interfacial coengineering, in which abundant and ultrastable interfaces are developed. Under the high molar ratio of Ni/Fe, both spinel oxide and hydroxides phases are formed simultaneously to obtain 2D NiFe2O4/Ni(OH)2 heterostructure. The in-depth analysis indicates that the NiFe2O4/Ni(OH)2 interface displays strong electronic interactions and triggers the formation of crystalline-amorphous coexisting catalytic active NiOOH. Meanwhile, the stable catalyst-collector interface favors the electron transfer and oxygen molecules transport. The resultant 2D NiFe2O4/Ni(OH)2@CP electrode exhibits superior OER performance, including a low overpotential of 389 mV and a long operating time of 12 h at 1 A cm-2. This work paves a novel method for fabricating efficient and low-cost electrocatalysts for electrochemical conversation devices.
Collapse
Affiliation(s)
- Hongbo Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Yiting Zhao
- Henan Institute of advanced technology, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Zhenfeng Cheng
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Jingyun Jiang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Jianwei Fu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Qun Xu
- Henan Institute of advanced technology, Zhengzhou University, Zhengzhou, 450052, P. R. China
| |
Collapse
|
10
|
Hong S, Kim J, Park J, Im S, Hoffmann MR, Cho K. Scalable Ir-Doped NiFe 2O 4/TiO 2 Heterojunction Anode for Decentralized Saline Wastewater Treatment and H 2 Production. NANO-MICRO LETTERS 2024; 17:51. [PMID: 39465463 PMCID: PMC11513779 DOI: 10.1007/s40820-024-01542-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/23/2024] [Indexed: 10/29/2024]
Abstract
Wastewater electrolysis cells (WECs) for decentralized wastewater treatment/reuse coupled with H2 production can reduce the carbon footprint associated with transportation of water, waste, and energy carrier. This study reports Ir-doped NiFe2O4 (NFI, ~ 5 at% Ir) spinel layer with TiO2 overlayer (NFI/TiO2), as a scalable heterojunction anode for direct electrolysis of wastewater with circumneutral pH in a single-compartment cell. In dilute (0.1 M) NaCl solutions, the NFI/TiO2 marks superior activity and selectivity for chlorine evolution reaction, outperforming the benchmark IrO2. Robust operation in near-neutral pH was confirmed. Electroanalyses including operando X-ray absorption spectroscopy unveiled crucial roles of TiO2 which serves both as the primary site for Cl- chemisorption and a protective layer for NFI as an ohmic contact. Galvanostatic electrolysis of NH4+-laden synthetic wastewater demonstrated that NFI/TiO2 not only achieves quasi-stoichiometric NH4+-to-N2 conversion, but also enhances H2 generation efficiency with minimal competing reactions such as reduction of dissolved oxygen and reactive chlorine. The scaled-up WEC with NFI/TiO2 was demonstrated for electrolysis of toilet wastewater.
Collapse
Affiliation(s)
- Sukhwa Hong
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Korea
| | - Jiseon Kim
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Korea
| | - Jaebeom Park
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Korea
| | - Sunmi Im
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Korea
| | - Michael R Hoffmann
- Linde Laboratory, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Kangwoo Cho
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Korea.
- Linde Laboratory, California Institute of Technology, Pasadena, CA, 91125, USA.
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University International Campus, Incheon, 21983, Republic of Korea.
| |
Collapse
|
11
|
Maurya PK, Mishra AK. Ni-Fe/Co-Fe Oxide-MoSe 2 Hybrid Nanostructures as Novel Electrocatalysts for High-Performance Rechargeable Zinc-Air Batteries. J Phys Chem Lett 2024; 15:1246-1253. [PMID: 38277511 DOI: 10.1021/acs.jpclett.3c03186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Metal-air batteries can play a crucial role in curbing air pollution due to carbon emission. Here, we report the hydrothermally synthesized bimetal oxides (NiFe2O4 and CoFe2O4) and their hybrid nanostructures with MoSe2 as potential electrocatalysts for electrically rechargeable Zn-air batteries. The NiFe2O4-MoSe2 hybrid nanostructure exhibits the best electrocatalytic activity (overpotential η10 ≈ 218 mV and Tafel slope ≈ 37 mV dec-1) for the OER study among prepared electrocatalysts in 1 M KOH electrolyte. Among the designed rechargeable Zn-air batteries, hybrid nanostructure-based batteries show superior performance, with the NiFe2O4-MoSe2 based device showing the best performance, having a high open-circuit voltage of ∼1.43 V, a peak power density of ∼176 mW cm-2, a specific capacity of ∼1025 mAh gZn-1, and an energy density of ∼1205 Wh kgZn-1. The superior performance of the hybrid nanostructures is due to the synergistic effect between MoSe2 and bimetal oxides, which enhances the conductivity, oxygen mobility, and active sites of the catalysts.
Collapse
Affiliation(s)
- Prince Kumar Maurya
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Ashish Kumar Mishra
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| |
Collapse
|
12
|
Yang W, Bai Y, Peng L, Qu M, Wang Z, Sun K. Iron substitution enabled lattice oxygen oxidation and cation leaching for promoting surface reconstruction in electrocatalytic oxygen evolution. J Colloid Interface Sci 2023; 656:15-23. [PMID: 37980720 DOI: 10.1016/j.jcis.2023.11.080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/04/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
The low-cost transition metal oxides have drawn widespread interest as alternatives to noble metal-based electrocatalysts for oxygen evolution reaction (OER). Transition metal oxides usually undergo surface reconstruction during electrochemical reaction to form the actual active species. However, in-depth understanding and regulating of the surface reconstruction of active phases for oxides in OER remains an onerous challenge. Herein, we report a simple Fe element substitution strategy to facilitate the surface reconstruction of spinel oxide NiCr2O4 to generate active (oxy)hydroxides. The activated Fe-doped NiCr2O4 (Act-Fe-NCO) exhibits a lower OER overpotential of 259 mV at 10 mA cm-2 than activated NiCr2O4 (Act-NCO, 428 mV), and shows excellent stability for 120 h. The electrochemically activated CV measurement and nanostructure characterizations reveal that Fe substitution could promote the consumption of lattice oxygen during electrochemical activation to induce the leaching of soluble Cr cations, thereby facilitating the reconstruction of remaining Ni cations on the surface into (oxy)hydroxide active species. Moreover, theoretical calculations further demonstrate that the O 2p band center of NiCr2O4 moves towards the Fermi level due to Fe substitution, thus promoting lattice oxygen oxidation and providing greater structural flexibility for surface reconstruction. This work shows a promising way to regulate the surface reconstruction kinetics and OER electrocatalytic activity of transition metal oxides.
Collapse
Affiliation(s)
- Weiwei Yang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, PR China; Beijing Key Laboratory of Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Yu Bai
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, PR China; Beijing Key Laboratory of Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China.
| | - Lin Peng
- Beijing Key Laboratory of Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Meixiu Qu
- Beijing Key Laboratory of Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Zhenhua Wang
- Beijing Key Laboratory of Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Kening Sun
- Beijing Key Laboratory of Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| |
Collapse
|
13
|
Kadam SA, Sandoval S, Bastl Z, Simkovičová K, Kvítek L, Jašík J, Olszówka JE, Valtera S, Vaidulych M, Morávková J, Sazama P, Kubička D, Travert A, van Bokhoven JA, Fortunelli A, Kleibert A, Kalbáč M, Vajda Š. Cyclohexane Oxidative Dehydrogenation on Graphene-Oxide-Supported Cobalt Ferrite Nanohybrids: Effect of Dynamic Nature of Active Sites on Reaction Selectivity. ACS Catal 2023; 13:13484-13505. [PMID: 37881789 PMCID: PMC10594591 DOI: 10.1021/acscatal.3c02592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/25/2023] [Indexed: 10/27/2023]
Abstract
In this work, we investigated cyclohexane oxidative dehydrogenation (ODH) catalyzed by cobalt ferrite nanoparticles supported on reduced graphene oxide (RGO). We aim to identify the active sites that are specifically responsible for full and partial dehydrogenation using advanced spectroscopic techniques such as X-ray photoelectron emission microscopy (XPEEM) and X-ray photoelectron spectroscopy (XPS) along with kinetic analysis. Spectroscopically, we propose that Fe3+/Td sites could exclusively produce benzene through full cyclohexane dehydrogenation, while kinetic analysis shows that oxygen-derived species (O*) are responsible for partial dehydrogenation to form cyclohexene in a single catalytic sojourn. We unravel the dynamic cooperativity between octahedral and tetrahedral sites and the unique role of the support in masking undesired active (Fe3+/Td) sites. This phenomenon was strategically used to control the abundance of these species on the catalyst surface by varying the particle size and the wt % content of the nanoparticles on the RGO support in order to control the reaction selectivity without compromising reaction rates which are otherwise extremely challenging due to the much favorable thermodynamics for complete dehydrogenation and complete combustion under oxidative conditions.
Collapse
Affiliation(s)
- Shashikant A. Kadam
- Department
of Nanocatalysis, J. Heyrovsky Institute
of Physical Chemistry of the Czech Academy of Sciences v.v.i, Dolejškova 3, 18223 Prague, Czech Republic
| | - Stefania Sandoval
- Department
of Low Dimensional Systems, J. Heyrovsky
Institute of Physical Chemistry of the Czech Academy of Sciences v.v.i, Dolejškova 3, 18223 Prague, Czech Republic
| | - Zdeněk Bastl
- Department
of Low Dimensional Systems, J. Heyrovsky
Institute of Physical Chemistry of the Czech Academy of Sciences v.v.i, Dolejškova 3, 18223 Prague, Czech Republic
| | - Karolína Simkovičová
- Department
of Nanocatalysis, J. Heyrovsky Institute
of Physical Chemistry of the Czech Academy of Sciences v.v.i, Dolejškova 3, 18223 Prague, Czech Republic
- Department
of Physical Chemistry, Faculty of Science, Palacký University Olomouc, 17. Listopadu 12, 77900 Olomouc, Czech Republic
| | - Libor Kvítek
- Department
of Physical Chemistry, Faculty of Science, Palacký University Olomouc, 17. Listopadu 12, 77900 Olomouc, Czech Republic
| | - Juraj Jašík
- Department
of Nanocatalysis, J. Heyrovsky Institute
of Physical Chemistry of the Czech Academy of Sciences v.v.i, Dolejškova 3, 18223 Prague, Czech Republic
| | - Joanna Elżbieta Olszówka
- Department
of Nanocatalysis, J. Heyrovsky Institute
of Physical Chemistry of the Czech Academy of Sciences v.v.i, Dolejškova 3, 18223 Prague, Czech Republic
| | - Stanislav Valtera
- Department
of Nanocatalysis, J. Heyrovsky Institute
of Physical Chemistry of the Czech Academy of Sciences v.v.i, Dolejškova 3, 18223 Prague, Czech Republic
- Department
of Mathematics, Informatics and Cybernetics, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Mykhailo Vaidulych
- Department
of Nanocatalysis, J. Heyrovsky Institute
of Physical Chemistry of the Czech Academy of Sciences v.v.i, Dolejškova 3, 18223 Prague, Czech Republic
| | - Jaroslava Morávková
- Department
of Structure and Dynamics in Catalysis, J. Heyrovsky Institute of Physical Chemistry of the Czech Academy
of Sciences v.v.i, Dolejškova 3, 18223 Prague, Czech Republic
| | - Petr Sazama
- Department
of Structure and Dynamics in Catalysis, J. Heyrovsky Institute of Physical Chemistry of the Czech Academy
of Sciences v.v.i, Dolejškova 3, 18223 Prague, Czech Republic
| | - David Kubička
- Department
of Petroleum Technology and Alternative Fuels, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech
Republic
| | - Arnaud Travert
- Normandie
Univ., ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie, 14000 Caen, France
| | | | | | - Armin Kleibert
- Swiss
Light Source, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Martin Kalbáč
- Department
of Low Dimensional Systems, J. Heyrovsky
Institute of Physical Chemistry of the Czech Academy of Sciences v.v.i, Dolejškova 3, 18223 Prague, Czech Republic
| | - Štefan Vajda
- Department
of Nanocatalysis, J. Heyrovsky Institute
of Physical Chemistry of the Czech Academy of Sciences v.v.i, Dolejškova 3, 18223 Prague, Czech Republic
| |
Collapse
|
14
|
Xie F, Tang F, Li X, Wu X, Wang S, Xie H, Wang P, Li Y, Liu Q. Photo-assisted "co-movement catalysis": CoFe 2O 4/CNS heterojunction based portable electrochemical sensor for simultaneous detection of Pb 2+ and Cd 2+ in natural water. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132420. [PMID: 37703735 DOI: 10.1016/j.jhazmat.2023.132420] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/15/2023]
Abstract
Heavy metal ions (HMIs) seriously threaten human health even under trace conditions. Therefore, accurate, efficient and simultaneous detection of multiple HMIs is of great significance. Here, a strategy of "co-movement catalysis" based on photo-assisted electrochemical catalysis is proposed by constructing a flexible electrochemical sensor with CoFe2O4/CNS heterojunction-modified nickel foam as the working electrode for simultaneous detection of HMIs. Regarding photo-assisted catalysis, CoFe2O4/CNS nanocomposites formed a p-n type heterojunction, effectively separating photo-generated electron-hole pairs and reducing photo-generated carriers' recombination rate, leading to the catalytic reaction of photogenerated electrons and holes with HMIs and atoms to improve the efficiency of preconcentration and stripping, further amplifying the electrochemical signal. Regarding electrochemical catalysis, the CoFe2O4 spinel contains variable valence transition metal ions Fe2+/Fe3+ and Co2+/Co3+, which can reduce and oxidize HMIs circularly, further enhancing the sensor's sensitivity. The portable sensor based on "co-movement catalysis" exhibited sensitive detection performance. The linear range is 0.100-10.0 μM for Pb2+ and 1.00-10.0 μM for Cd2+, with the detection limit of 0.0310 μM for Pb2+ and 0.219 μM for Cd2+, respectively. The recovery rate of the sensor to natural water samples is between 96% and 105%, which proves its development potential in environmental monitoring.
Collapse
Affiliation(s)
- Fengqian Xie
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Feng Tang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Xinli Li
- Zibo Central Hospital, Zibo 255036, PR China
| | - Xiaoran Wu
- Zibo Central Hospital, Zibo 255036, PR China
| | - Shujun Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China.
| | | | - Ping Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Yueyun Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Qing Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China.
| |
Collapse
|
15
|
Liu C, Chen X, Zhang X, Li J, Wang B, Luo Z, Li J, Qian D, Liu J, Waterhouse GIN. Sodium Tartrate-Assisted Synthesis of High-Purity NiFe 2O 4 Nano-Microrods Supported by Porous Ketjenblack Carbon for Efficient Alkaline Oxygen Evolution. J Phys Chem Lett 2023:6099-6109. [PMID: 37364134 DOI: 10.1021/acs.jpclett.3c01244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Herein, a simple two-step synthetic method was developed for the synthesis of NiFe2O4 nano-microrods supported on Ketjenblack carbon (NiFe2O4/KB). A sodium tartrate-assisted hydrothermal method was employed for the synthesis of a NiFe-MOF/KB precursor, which was then pyrolyzed under N2 at 500 °C to yield NiFe2O4/KB. Benefiting from the presence of high-valence Ni3+ and Fe3+, high conductivity, and a large electrochemically active surface area, NiFe2O4/KB delivered outstanding OER electrocatalytic performance under alkaline conditions, including a very low overpotential of 258 mV (vs RHE) at 10 mA cm-2, a small Tafel slope of 43.01 mV dec-1, and excellent durability in 1.0 M KOH. Density functional theory calculations verified the superior alkaline OER electrocatalytic activity of NiFe2O4 to IrO2. While both catalysts possessed a similar metallic ground state, NiFe2O4 offered a lower energy barrier in the rate-determining OER step (*OOH → O2) compared to IrO2, resulting in faster OER kinetics.
Collapse
Affiliation(s)
- Canhui Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Xiangxiong Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
- Yoening Tianci Mining Changsha Technology Center, Changsha 410083, P.R. China
| | - Xinxin Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Jie Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Bowen Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Ziyu Luo
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Junhua Li
- College of Chemistry and Material Science, Hengyang Normal University, Hengyang 421008, P.R. China
| | - Dong Qian
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Jinlong Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | | |
Collapse
|
16
|
Panda A, Cho HK, Kim H. A Green Synthesis of CoFe 2O 4 Decorated ZIF-8 Composite for Electrochemical Oxygen Evolution. Int J Mol Sci 2023; 24:ijms24119585. [PMID: 37298534 DOI: 10.3390/ijms24119585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Low-cost, sustainable hydrogen production requires noble metal-free electrocatalysts for water splitting. In this study, we prepared zeolitic imidazolate frameworks (ZIF) decorated with CoFe2O4 spinel nanoparticles as active catalysts for oxygen evolution reaction (OER). The CoFe2O4 nanoparticles were synthesized by converting agricultural bio-waste (potato peel extract) into economically valuable electrode materials. The biogenic CoFe2O4 composite showed an overpotential of 370 mV at a current density of 10 mA cm-2 and a low Tafel slope of 283 mV dec-1, whereas the ZIF@CoFe2O4 composite prepared using an in situ hydrothermal method showed an overpotential of 105 mV at 10 mA cm-2 and a low Tafel slope of 43 mV dec-1 in a 1 M KOH medium. The results demonstrated an exciting prospect of high-performance noble metal-free electrocatalysts for low-cost, high-efficiency, and sustainable hydrogen production.
Collapse
Affiliation(s)
- Atanu Panda
- Department of Mechanical Engineering, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Hang-Kyu Cho
- Department of Mechanical Engineering, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Hansang Kim
- Department of Mechanical Engineering, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| |
Collapse
|
17
|
Wang W, Zhang L, Kang Y, Yang X, Ge S, Yu F. Experimental and density functional study of the light-assisted gas-sensing performance of a TiO 2-CoFe 2O 4 heterojunction. Dalton Trans 2023; 52:4911-4922. [PMID: 36946472 DOI: 10.1039/d2dt04051d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Toluene gas as a solvent is widely present in industrial production and indoor decoration, and can seriously harm human health even at low concentrations. Furthermore, toluene can be used as a typical biomarker for disease diagnosis. Therefore, the detection of toluene gas is very important. Herein, a hydrothermal method was used to successfully prepare a TiO2-CoFe2O4 heterostructure for detecting toluene gas. The ultraviolet (UV)-visible diffuse reflectance spectra and photoluminescence spectra showed that the bandgap of the heterojunction was considerably shorter than those of pure TiO2 and CoFe2O4, and the recombination of electron-hole pairs was inhibited. At the same time, the response value of the TiO2-CoFe2O4 heterojunction was 10.5 for 20 ppm toluene at 219 °C, which was much better than those of pure TiO2 and CoFe2O4. Moreover, its response value further increased under UV irradiation. In addition, density functional theory (DFT) was innovatively employed in this study to explain in detail how the heterojunction and UV irradiation can improve gas sensitivity through the calculation of the material energy band, adsorption energy, etc. This work provides a good reference for the preparation of high-efficiency and high-sensitivity gas sensors.
Collapse
Affiliation(s)
- Wenhao Wang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P.R. China.
| | - Lu Zhang
- Institute of Materia Medica, Xinjiang University, Urumqi 830017, China.
| | - Yanli Kang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P.R. China.
| | - Xiaodong Yang
- Key Laboratory of Ecophysics and Department of Physics, College of Science, Shihezi University, Xinjiang 832003, P.R. China.
| | - Shenguang Ge
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P.R. China
| | - Feng Yu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P.R. China.
| |
Collapse
|
18
|
Morphology-controlled NiFe2O4 nanostructures: influence of calcination temperature on structural, magnetic and catalytic properties towards OER. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
19
|
Szatmari A, Bortnic R, Souca G, Hirian R, Barbu-Tudoran L, Nekvapil F, Iacovita C, Burzo E, Dudric R, Tetean R. The Influence of Zn Substitution on Physical Properties of CoFe 2O 4 Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:189. [PMID: 36616099 PMCID: PMC9823853 DOI: 10.3390/nano13010189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Co1−xZnxFe2O4 nanoparticles (0 ≤ x ≤ 1) have been synthesized via a green sol−gel combustion method. The prepared samples were studied using X-ray diffraction measurements (XRD), transmission electron microscopy (TEM), Raman, and magnetic measurements. All samples were found to be single phases and have a cubic Fd-3m structure. EDS analysis confirmed the presence of cobalt, zinc, iron, and oxygen in all studied samples. Raman spectra clearly show that Zn ions are preferentially located in T sites for low Zn concentrations. Due to their high crystallinity, the nanoparticles show high values of the magnetization, which increases with the Zn content for x < 0.5. The magnetic properties are discussed based on Raman results. Co ferrite doped with 30% of Zn produced the largest SAR values, which increase linearly from 148 to 840 W/gMNPs as the H is increased from 20 to 60 kA/m.
Collapse
Affiliation(s)
- Adam Szatmari
- Faculty of Physics, “Babes Bolyai” University, Kogalniceanu 1, 400084 Cluj-Napoca, Romania
| | - Rares Bortnic
- Faculty of Physics, “Babes Bolyai” University, Kogalniceanu 1, 400084 Cluj-Napoca, Romania
| | - Gabriela Souca
- Faculty of Physics, “Babes Bolyai” University, Kogalniceanu 1, 400084 Cluj-Napoca, Romania
| | - Razvan Hirian
- Faculty of Physics, “Babes Bolyai” University, Kogalniceanu 1, 400084 Cluj-Napoca, Romania
| | - Lucian Barbu-Tudoran
- Electron Microscopy Center “Prof. C. Craciun”, Faculty of Biology & Geology, “Babes-Bolyai” University, 5-7 Clinicilor St., 400006 Cluj-Napoca, Romania
- Integrated Electron Microscopy Laboratory, National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat St., 400293 Cluj-Napoca, Romania
| | - Fran Nekvapil
- Faculty of Physics, “Babes Bolyai” University, Kogalniceanu 1, 400084 Cluj-Napoca, Romania
- RDI Laboratory of Applied Raman Spectroscopy, RDI Institute of Applied Natural Sciences (IRDI-ANS), Babeş-Bolyai University, Fântânele 42, 400293 Cluj-Napoca, Romania
| | - Cristian Iacovita
- Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 6 Pasteur St., 400349 Cluj-Napoca, Romania
| | - Emil Burzo
- Faculty of Physics, “Babes Bolyai” University, Kogalniceanu 1, 400084 Cluj-Napoca, Romania
| | - Roxana Dudric
- Faculty of Physics, “Babes Bolyai” University, Kogalniceanu 1, 400084 Cluj-Napoca, Romania
| | - Romulus Tetean
- Faculty of Physics, “Babes Bolyai” University, Kogalniceanu 1, 400084 Cluj-Napoca, Romania
| |
Collapse
|
20
|
Gebreslase GA, Sebastián D, Martínez-Huerta MV, Lázaro MJ. Nitrogen-doped carbon decorated-Ni3Fe@Fe3O4 electrocatalyst with enhanced oxygen evolution reaction performance. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Ramasamy T, Satheesh LG, Selvaraj V, Bazaka O, Levchenko I, Bazaka K, Mandhakini M. Spinel CoFe 2O 4 Nanoflakes: A Path to Enhance Energy Generation and Environmental Remediation Potential of Waste-Derived rGO. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3822. [PMID: 36364598 PMCID: PMC9657719 DOI: 10.3390/nano12213822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Carbon nanomaterials derived from agricultural waste streams present an exciting material platform that hits multiple sustainability targets by reducing waste entering landfill, and enabling clean energy and environmental remediation technologies. In this work, the energy and photocatalytic properties of reduced graphene oxide fabricated from coconut coir using a simple reduction method using ferrocene are substantially improved by introducing metallic oxides flakes. A series of cobalt ferrite rGO/CoFe2O4 nanocomposites were assembled using a simple soft bubble self-templating assembly, and their potential for clean energy applications confirmed. The transmission electron microscopy images revealed the uniform dispersion of the metal oxide on the rGO sheets. The functional group of the as synthesized metal oxide and the rGO nanocomposites, and its individual constituents, were identified through the FTIR and XPS studies, respectively. The composite materials showed higher specific capacitance then the pure materials, with rGO spinal metal oxide nanocomposites showing maximum specific capacitance of 396 F/g at 1 A/g. Furthermore, the hybrid super capacitor exhibits the excellent cyclic stability 2000 cycles with 95.6% retention. The photocatalytic properties of the synthesized rGO nanocomposites were analyzed with the help of malachite green dye. For pure metal oxide, the degradation rate was only around 65% within 120 min, while for rGO metal oxide nanocomposites, more than 80% of MG were degraded.
Collapse
Affiliation(s)
- Tamilselvi Ramasamy
- Center for Nanoscience and Technology, Anna University, Chennai 600025, India
| | - Lekshmi Gopakumari Satheesh
- International Centre for Research on Innovative Biobased Materials (ICRI-BioM)-International Research Agenda, Lodz University of Technology, 90-924 Lodz, Poland
| | - Vaithilingam Selvaraj
- Nanotech Research Lab, Department of Chemistry, University College of Engineering Villupuram (a Constituent College of Anna University, Chennai-25), Villupuram 605103, India
| | - Olha Bazaka
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3000, Australia
| | - Igor Levchenko
- Plasma Sources and Application Center, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore
| | - Kateryna Bazaka
- School of Engineering, Australian National University, Canberra, ACT 2600, Australia
| | - Mohandas Mandhakini
- Center for Nanoscience and Technology, Anna University, Chennai 600025, India
| |
Collapse
|
22
|
Olowoyo JO, Kriek RJ. Recent Progress on Bimetallic-Based Spinels as Electrocatalysts for the Oxygen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203125. [PMID: 35996806 DOI: 10.1002/smll.202203125] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Electrocatalytic water splitting is a promising and viable technology to produce clean, sustainable, and storable hydrogen as an energy carrier. However, to meet the ever-increasing global energy demand, it is imperative to develop high-performance non-precious metal-based electrocatalysts for the oxygen evolution reaction (OER), as the OER is considered the bottleneck for electrocatalytic water splitting. Spinels, in particular, are considered promising OER electrocatalysts due to their unique properties, precise structures, and compositions. Herein, the recent progress on the application of bimetallic-based spinels (AFe2 O4 , ACo2 O4 , and AMn2 O4 ; where A = Ni, Co, Cu, Mn, and Zn) as electrocatalysts for the OER is presented. The fundamental concepts of the OER are highlighted after which the family of spinels, their general formula, and classifications are introduced. This is followed by an overview of the various classifications of bimetallic-based spinels and their recent developments and applications as OER electrocatalysts, with special emphasis on enhancing strategies that have been formulated to improve the OER performance of these spinels. In conclusion, this review summarizes all studies mentioned therein and provides the challenges and future perspectives for bimetallic-based spinel OER electrocatalysts.
Collapse
Affiliation(s)
- Joshua O Olowoyo
- Electrochemistry for Energy & Environment Group, Research Focus Area: Chemical Resource Beneficiation (CRB), Private Bag X6001, North-West University, Potchefstroom, 2520, South Africa
| | - Roelof J Kriek
- Electrochemistry for Energy & Environment Group, Research Focus Area: Chemical Resource Beneficiation (CRB), Private Bag X6001, North-West University, Potchefstroom, 2520, South Africa
| |
Collapse
|
23
|
Xu H, Liu B, Liu J, Yao Y, Gu ZG, Yan X. Revealing the surface structure-performance relationship of interface-engineered NiFe alloys for oxygen evolution reaction. J Colloid Interface Sci 2022; 622:986-994. [PMID: 35561616 DOI: 10.1016/j.jcis.2022.04.160] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/02/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022]
Abstract
NiFe alloys are among the most promising electrocatalysts for oxygen evolution reaction (OER). However, a comprehensive study is yet to be done to reveal the surface structure-performance relationship of NiFe alloys. In particular, the role of the ultrathin surface oxide layer, which is unavoidable for pure NiFe alloys, is always neglected. Herein, a series of NiFe alloys with different Ni/Fe ratios are fabricated. It is found that different Ni/Fe ratios lead to significant differences in surface composition and structure of the NiFe alloys, and thus affect their catalytic performance. Then, the oxide/metal interface of the Ni4Fe1 alloy is tailored by adjusting the hydrogenation temperature to further understand the surface structure-activity relationship, and the optimal OER performance is achieved at the oxide/metal interfaces that have suitable surface Fe/Ni ratio and an appropriate amount of oxygen vacancies. In-situ Raman characterization shows that the Ni4Fe1 alloy with well-tailored oxide/metal interface facilitates the formation of active species. Density functional theory calculations demonstrate that the ultrathin surface oxide layers are responsible for the high catalytic activity of the NiFe alloys, and that the quantity of oxygen vacancies in the surface oxides affects the adsorption energy of O* and thus to a great extent determines the catalytic activity.
Collapse
Affiliation(s)
- Hanwen Xu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Bing Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Jiangyong Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Yang Yao
- Department of Health Sciences and Technology, ETH Zürich, Zürich 8092, Switzerland
| | - Zhi-Guo Gu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiaodong Yan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
24
|
Rao Daruvuri H, Chandu K, Murali N, Parajuli D, Mulushoa S Y, Dasari M. Effect on structural, dc electrical resistivity, and magnetic properties by the substitution of Zn2+ on Co-Cu nano ferrite. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Laser in situ synthesis of NiFe2O4 nanoparticle-anchored NiFe(OH)x nanosheets as advanced electrocatalysts for the oxygen evolution and urea oxidation reactions. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
26
|
Zhang Y, Yuan Z, Yu X, Hao Y, Zhao L. 3D self-supporting porous NiFe2O4-Ni3P-Fe2P film with sea urchin-like structure for efficient oxygen evolution. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Abstract
In this paper, two novel procedures based on powder sedimentation, thermal treatment, and galvanostatic deposition were proposed for the preparation of porous cobalt ferrite (CoFe2O4) coatings with a metallic and organic binder for use as catalysts in the oxygen evolution reaction (OER). The electrochemical properties of the obtained electrode materials were determined as well, using both dc and ac methods. It was found that cobalt ferrite coatings show excellent electrocatalytic properties towards the oxygen evolution reaction (OER) with overpotential measured at a current density of 10 mAcm−2 from 287 to 295 mV and a Tafel slope of 35–45 mVdec−1. It was shown that the increase in the apparent activity of the CoFe2O4 coatings with an organic binder results mainly from a large electrochemically active area. Incorporation of the nickel binder between the CoFe2O4 particles causes an increase in both the conductivity and the electrochemically active area. The Tafel slopes indicate that the same rate-determining step controls the OER for all obtained coatings. Furthermore, it was shown that the CoFe2O4 electrodes exhibit no significant activity decrease after 28 h of oxygen evolution. The proposed coating preparation procedures open a new path to develop high-performance OER electrocatalysts.
Collapse
|
28
|
Rushiti A, Hättig C. Activation of Molecular O 2 on CoFe 2 O 4 (001) Surfaces: An Embedded Cluster Study. Chemistry 2021; 27:17115-17126. [PMID: 34668611 PMCID: PMC9299649 DOI: 10.1002/chem.202102784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Indexed: 11/22/2022]
Abstract
Dioxygen activation pathways on the (001) surfaces of cobalt ferrite, CoFe2 O4 , were investigated computationally using density functional theory and the hybrid Perdew-Burke-Ernzerhof exchange-correlation functional (PBE0) within the periodic electrostatic embedded cluster model. We considered two terminations: the A-layer exposing Fe2+ and Co2+ metal sites in tetrahedral and octahedral positions, respectively, and the B-layer exposing octahedrally coordinated Co3+ . On the A-layer, molecular oxygen is chemisorbed as a superoxide on the Fe monocenter or bridging a Fe-Co cation pair, whereas on the B-layer it is adsorbed at the most stable anionic vacancy. Activation is promoted by transfer of electrons provided by the d metal centers onto the adsorbed oxygen. The subsequent dissociation of dioxygen into monoatomic species and surface reoxidation have been identified as the most critical steps that may limit the rate of the oxidation processes. Of the reactive metal-O species, [FeIII -O]2+ is thermodynamically most stable, while the oxygen of the Co-O species may easily migrate across the A-layer with barriers smaller than the associative desorption.
Collapse
Affiliation(s)
- Arjeta Rushiti
- Department of Theoretical ChemistryRuhr University Bochum44780BochumGermany
| | - Christof Hättig
- Department of Theoretical ChemistryRuhr University Bochum44780BochumGermany
| |
Collapse
|
29
|
Li X, Hu Q, Yang H, Ma T, Chai X, He C. Bimetallic two-dimensional materials for electrocatalytic oxygen evolution. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
30
|
Spinel ferrite MFe2O4 (M = Ni, Co, or Cu) nanoparticles prepared by a proteic sol-gel route for oxygen evolution reaction. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
31
|
Light-Excited Ag-Doped TiO 2-CoFe 2O 4 Heterojunction Applied to Toluene Gas Detection. NANOMATERIALS 2021; 11:nano11123261. [PMID: 34947609 PMCID: PMC8704540 DOI: 10.3390/nano11123261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 11/17/2022]
Abstract
(1) Background: Toluene gas is widely used in indoor decoration and industrial production, and it not only pollutes the environment but also poses serious health risks. (2) Methods: In this work, TiO2−CoFe2O4−Ag quaternary composite gas-sensing material was prepared using a hydrothermal method to detect toluene. (3) Results: The recombination of electron–hole pairs was suppressed, and the light absorption range was expanded after constructing a heterojunction and doping with Ag, according to ultraviolet–visible (UV–vis) diffuse reflectance spectra and photoluminescence spectroscopy. Moreover, in the detection range of toluene gas (3 ppm–50 ppm), the response value of TiO2−CoFe2O4−Ag increased from 2 to 15, which was much higher than that of TiO2−Ag (1.7) and CoFe2O4−Ag (1.7). In addition, the working temperature was reduced from 360 °C to 263 °C. Furthermore, its response/recovery time was 40 s/51 s, its limit of detection was as low as 10 ppb, and its response value to toluene gas was 3–7 times greater than that of other interfering gases under the same test conditions. In addition, the response value to 5 ppm toluene was increased from 3 to 5.5 with the UV wavelength of 395 nm–405 nm. (4) Conclusions: This is primarily due to charge flow caused by heterojunction construction, as well as metal sensitization and chemical sensitization of novel metal doping. This work is a good starting point for improving gas-sensing capabilities for the detection of toluene gas.
Collapse
|
32
|
Frisch M, Ye M, Hamid Raza M, Arinchtein A, Bernsmeier D, Gomer A, Bredow T, Pinna N, Kraehnert R. Mesoporous WC x Films with NiO-Protected Surface: Highly Active Electrocatalysts for the Alkaline Oxygen Evolution Reaction. CHEMSUSCHEM 2021; 14:4708-4717. [PMID: 34498408 PMCID: PMC8596595 DOI: 10.1002/cssc.202101243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Metal carbides are promising materials for electrocatalytic reactions such as water electrolysis. However, for application in catalysis for the oxygen evolution reaction (OER), protection against oxidative corrosion, a high surface area with facile electrolyte access, and control over the exposed active surface sites are highly desirable. This study concerns a new method for the synthesis of porous tungsten carbide films with template-controlled porosity that are surface-modified with thin layers of nickel oxide (NiO) to obtain active and stable OER catalysts. The method relies on the synthesis of soft-templated mesoporous tungsten oxide (mp. WOx ) films, a pseudomorphic transformation into mesoporous tungsten carbide (mp. WCx ), and a subsequent shape-conformal deposition of finely dispersed NiO species by atomic layer deposition (ALD). As theoretically predicted by density functional theory (DFT) calculations, the highly conductive carbide support promotes the conversion of Ni2+ into Ni3+ , leading to remarkably improved utilization of OER-active sites in alkaline medium. The obtained Ni mass-specific activity is about 280 times that of mesoporous NiOx (mp. NiOx ) films. The NiO-coated WCx catalyst achieves an outstanding mass-specific activity of 1989 A gNi -1 in a rotating-disc electrode (RDE) setup at 25 °C using 0.1 m KOH as the electrolyte.
Collapse
Affiliation(s)
- Marvin Frisch
- Department of ChemistryTechnische Universität BerlinStrasse des 17. Juni 12410623BerlinGermany
| | - Meng‐Yang Ye
- Department of ChemistryTechnische Universität BerlinStrasse des 17. Juni 12410623BerlinGermany
| | - Muhammad Hamid Raza
- Institut für Chemie und IRIS AdlershofHumboldt-Universität zu BerlinBrook-Taylor-Strasse 212489BerlinGermany
| | - Aleks Arinchtein
- Department of ChemistryTechnische Universität BerlinStrasse des 17. Juni 12410623BerlinGermany
| | - Denis Bernsmeier
- Department of ChemistryTechnische Universität BerlinStrasse des 17. Juni 12410623BerlinGermany
| | - Anna Gomer
- Mulliken Center for Theoretical ChemistryUniversität BonnBeringstrasse 453115BonnGermany
| | - Thomas Bredow
- Mulliken Center for Theoretical ChemistryUniversität BonnBeringstrasse 453115BonnGermany
| | - Nicola Pinna
- Institut für Chemie und IRIS AdlershofHumboldt-Universität zu BerlinBrook-Taylor-Strasse 212489BerlinGermany
| | - Ralph Kraehnert
- Department of ChemistryTechnische Universität BerlinStrasse des 17. Juni 12410623BerlinGermany
| |
Collapse
|
33
|
Spinel NiFe2O4 nanoparticles decorated 2D Ti3C2 MXene sheets for efficient water splitting: Experiments and theories. J Colloid Interface Sci 2021; 602:232-241. [DOI: 10.1016/j.jcis.2021.06.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/26/2021] [Accepted: 06/01/2021] [Indexed: 11/23/2022]
|
34
|
Highly efficient CoFe2O4 electrocatalysts prepared facilely by metal-organic decomposition process for the oxygen evolution reaction. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139195] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
35
|
Lu Z, Du X, Sun M, Zhang Y, Li Y, Wang X, Wang Y, Du H, Yin H, Rao H. Novel dual-template molecular imprinted electrochemical sensor for simultaneous detection of CA and TPH based on peanut twin-like NiFe 2O 4/CoFe 2O 4/NCDs nanospheres: Fabrication, application and DFT theoretical study. Biosens Bioelectron 2021; 190:113408. [PMID: 34126330 DOI: 10.1016/j.bios.2021.113408] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/09/2021] [Accepted: 06/02/2021] [Indexed: 11/29/2022]
Abstract
Hollow peanut-shaped NiFe2O4/CoFe2O4 twinned nano-spherical shell composite materials have interconnected electron channels and excellent electrochemical performance, which prompted the use of this unique spatial structure to fabricate efficient electrochemical sensors. In this work, N-doped carbon dots (NCDs) incorporated into magnetic NiFe2O4/CoFe2O4 nanoparticle shell (NiFe2O4/CoFe2O4/NCDs) modified glassy carbon electrode (GCE) was applied to construct a dual-template molecularly imprinted polymer (MIP) based electrochemistry sensor (NiFe2O4/CoFe2O4/NCDs/MIP/GCE) for the simultaneous detection of catechin (CA) and theophylline (TPH). MIP was fabricated by an in-situ electrochemical polymerization strategy based on the theoretical exploration and density functional theory (DFT) computer directional simulation to screen out the optimal functional monomer (L-arginine) and the optimal ratio between the dual template molecules (CA and TPH) and functional monomer. The materials were characterized by SEM, TEM, XRD, XPS, and TGA. Besides, electron binding energy, binding constant, and imprinting factor were investigated. With the optimal conditions, the proposed electrochemical dual detection system showed outstanding analytical performance for the simultaneous sensing of CA and TPH, with an ultralow detection limit (LOD, S/N = 3) of 1.3 nM for CA in 0.01-1 μM (R2 = 0.9956) and 1-50 μM (R2 = 0.9928), as well as a LOD of 20.0 nM for TPH in the linear range of 0.1-100 μM (R2 = 0.9939), respectively. Also, the selectivity and anti-interference performances of the fabricated sensor were performed by differential pulse voltammetry and chronoamperometry, and successfully detected the analyte from tea drinks and human urine samples with the recovery rates ranging from 98.22% to 104.76% and relative standard deviations (RSD) were 1.19%-3.81%, demonstrated the sensor has excellent stability, repeatability, and reproducibility, which paves the way for other platforms to use this nanomaterial for the detection of antioxidant in the filed food safety.
Collapse
Affiliation(s)
- Zhiwei Lu
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, PR China.
| | - Xin Du
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, PR China
| | - Mengmeng Sun
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, PR China
| | - Yan Zhang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, PR China
| | - Yifan Li
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, PR China
| | - Xianxiang Wang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, PR China
| | - Yanying Wang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, PR China
| | - Haijun Du
- School of Chemical Engineering, Guizhou Minzu University, Guiyang, 550025, PR China
| | - Huadong Yin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China.
| | - Hanbing Rao
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, PR China.
| |
Collapse
|
36
|
Gürbüz MU, Elmacı G, Zhang Y, Meng X, Ertürk AS. Cryptomelane nanorods coated with Ni ion doped Birnessite polymorphs as bifunctional efficient catalyst for the oxygen evolution reaction and degradation of organic contaminants. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Mustafa Ulvi Gürbüz
- Department of Chemistry, Faculty of Arts and Sciences Yıldız Technical University Istanbul Turkey
| | - Gökhan Elmacı
- Department of Chemistry School of Technical Sciences, Adıyaman University Adıyaman Turkey
| | - Yajun Zhang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences Lanzhou China
| | - Xu Meng
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences Lanzhou China
| | - Ali Serol Ertürk
- Department of Analytical Chemistry, Faculty of Pharmacy Adıyaman University Adıyaman Turkey
| |
Collapse
|
37
|
Karpuraranjith M, Chen Y, Wang B, Ramkumar J, Yang D, Srinivas K, Wang W, Zhang W, Manigandan R. Hierarchical ultrathin layered MoS 2@NiFe 2O 4 nanohybrids as a bifunctional catalyst for highly efficient oxygen evolution and organic pollutant degradation. J Colloid Interface Sci 2021; 592:385-396. [PMID: 33677198 DOI: 10.1016/j.jcis.2021.02.062] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/10/2021] [Accepted: 02/14/2021] [Indexed: 02/07/2023]
Abstract
Rational design and highly efficient dual-functional catalyst are still difficult to develop for electrocatalytic oxygen evolution reaction and degradation of RhB dye pollutant. Herein, we report a highly efficient "bandgap matching and interfacial coupling" strategy to synthesize nano-assembled ultrathin layered MoS2@NiFe2O4 (MS@NiFeO) bifunctional catalyst constructed by the hydrothermal route and subsequently amine-hydrolysis. The OER performance of the prepared MS@NiFeO catalyst delivers a low overpotential of 290 mV at 10 mA/cm2 and Tafel slope is 69.2 mV dec-1 in an alkaline solution. In addition, the nano-assembled ultrathin layered structure of MS@NiFeO showed a highly efficient (96.37%) RhB dye degradation performance than that of MoS2 nanosheets and NiFe2O4 nanostructures. Unique nanostructure of ultrathin layered MS@NiFeO with suitable band matching, interfacial charge transfer, high surface area and more active sites favored for the enhancement of the catalytic activity. This work presents an unpretentious construction and low-cost production strategy to synthesize bifunctional hybrid catalyst for oxygen evolution reaction as well as degradation of organic pollutant with superior efficiency and longer stability.
Collapse
Affiliation(s)
- Marimuthu Karpuraranjith
- School of Electronic Science and Technology, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| | - Yuanfu Chen
- School of Electronic Science and Technology, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, PR China; School of Science and Institute of Oxygen Supply, Tibet University, Lhasa 850000, PR China.
| | - Bin Wang
- School of Electronic Science and Technology, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Jeyagopal Ramkumar
- School of Electronic Science and Technology, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Dongxu Yang
- School of Electronic Science and Technology, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Katam Srinivas
- School of Electronic Science and Technology, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Wei Wang
- School of Electronic Science and Technology, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Wanli Zhang
- School of Electronic Science and Technology, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Ramadoss Manigandan
- School of Electronic Science and Technology, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| |
Collapse
|
38
|
Recent Advances in Synthesis and Applications of MFe 2O 4 (M = Co, Cu, Mn, Ni, Zn) Nanoparticles. NANOMATERIALS 2021; 11:nano11061560. [PMID: 34199310 PMCID: PMC8231784 DOI: 10.3390/nano11061560] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 12/31/2022]
Abstract
In the last decade, research on the synthesis and characterization of nanosized ferrites has highly increased and a wide range of new applications for these materials have been identified. The ability to tailor the structure, chemical, optical, magnetic, and electrical properties of ferrites by selecting the synthesis parameters further enhanced their widespread use. The paper reviews the synthesis methods and applications of MFe2O4 (M = Co, Cu, Mn, Ni, Zn) nanoparticles, with emphasis on the advantages and disadvantages of each synthesis route and main applications. Along with the conventional methods like sol-gel, thermal decomposition, combustion, co-precipitation, hydrothermal, and solid-state synthesis, several unconventional methods, like sonochemical, microwave assisted combustion, spray pyrolysis, spray drying, laser pyrolysis, microemulsion, reverse micelle, and biosynthesis, are also presented. MFe2O4 (M = Co, Cu, Mn, Ni, Zn) nanosized ferrites present good magnetic (high coercivity, high anisotropy, high Curie temperature, moderate saturation magnetization), electrical (high electrical resistance, low eddy current losses), mechanical (significant mechanical hardness), and chemical (chemical stability, rich redox chemistry) properties that make them suitable for potential applications in the field of magnetic and dielectric materials, photoluminescence, catalysis, photocatalysis, water decontamination, pigments, corrosion protection, sensors, antimicrobial agents, and biomedicine.
Collapse
|
39
|
Shen Y, Zhao Q, Li X, Hou Y. Comparative investigation of visible-light-induced benzene degradation on M-ferrite/hematite (M = Ca, Mg, Zn) nanospheres by in situ FTIR: Intermediates and reaction mechanism. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126501] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
40
|
Sharma MD, Mahala C, Modak B, Pande S, Basu M. Doping of MoS 2 by "Cu" and "V": An Efficient Strategy for the Enhancement of Hydrogen Evolution Activity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4847-4858. [PMID: 33844924 DOI: 10.1021/acs.langmuir.1c00036] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
To replace Pt-based compounds in the electrocatalytic hydrogen evolution reaction (HER), MoS2 has already been established as an efficient catalyst. The electrocatalytic activity of MoS2 is further improved by tuning the morphology and the electronic structure through doping, which helps the band energy position to be modified. Presently, thin sheets of MoS2 (MoS2-TSs) are synthesized via a microwave technique. Thin sheets of MoS2 can outperform nanosheets of MoS2 in the HER. Further, the efficiency of the thin sheets is improved by doping with different metals like Cu, V, Zn, Mn, Fe, Sn, etc. "Cu"- and "V"-doped MoS2-TSs are highly efficient for the HER. At a fixed potential of -0.588 V vs RHE, Cu-doped MoS2 (Cu-MoS2-TS), V-doped MoS2 (V-MoS2-TS), and MoS2-TS can generate current densities of 327.46, 308.45, and 127.82 mA/cm2, respectively. The electrochemically active surface area increases nearly 7.7-fold and 2.5-fold for Cu-MoS2-TS and V-MoS2-TS than for MoS2-TS, respectively. Cu-MoS2-TS shows exceptionally high electrocatalytic stability up to 140 h in an acidic medium (0.5 M H2SO4). First-principles calculations using density functional theory (DFT) are performed, which are well matched with the experimental observations. DFT calculations dictate that after doping with "V" and "Cu" both valance band maxima and conduction band minima are uplifted, which indicates the higher hydrogen-ion-reducing ability of M-MoS2-TS (M = Cu, V) compared to bare MoS2-TS.
Collapse
Affiliation(s)
- Mamta Devi Sharma
- Department of Chemistry, BITS Pilani, Pilani Campus, Rajasthan 333031, India
| | - Chavi Mahala
- Department of Chemistry, BITS Pilani, Pilani Campus, Rajasthan 333031, India
| | - Brindaban Modak
- Theoretical Chemistry Section, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Surojit Pande
- Department of Chemistry, BITS Pilani, Pilani Campus, Rajasthan 333031, India
| | - Mrinmoyee Basu
- Department of Chemistry, BITS Pilani, Pilani Campus, Rajasthan 333031, India
| |
Collapse
|
41
|
Nitrogen-doped-carbon coated FeCo modified CoFe2O4 nanoflowers heterostructure with robust stability for oxygen evolution and urea oxidation. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137817] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
42
|
Pan J, Li S, Li F, Yu T, Liu Y, Zhang L, Ma L, Sun M, Tian X. The NiFe2O4/NiCo2O4/GO composites electrode material derived from dual-MOF for high performance solid-state hybrid supercapacitors. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125650] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Rizk MR, Abd El-Moghny MG, Mazhar A, El-Deab MS, El-Anadouli BE. Dual-functioning porous catalysts: robust electro-oxidation of small organic molecules and water electrolysis using bimetallic Ni/Cu foams. SUSTAINABLE ENERGY & FUELS 2021; 5:986-994. [DOI: 10.1039/d0se01835j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The simultaneous co-deposition of Cu within the matrix of Ni foams (utilizing DHBT) increases their intrinsic catalytic activity towards water electrolysis, urea oxidation reaction (UOR), and glycerol oxidation reaction (GOR) in alkaline media.
Collapse
Affiliation(s)
- Mohamed R. Rizk
- Chemistry Department
- Faculty of Science
- Cairo University
- Cairo
- Egypt
| | | | - Amina Mazhar
- Chemistry Department
- Faculty of Science
- Cairo University
- Cairo
- Egypt
| | | | | |
Collapse
|
44
|
Rizk MR, Abd El-Moghny MG. Controlled galvanic decoration boosting catalysis: Enhanced glycerol electro-oxidation at Cu/Ni modified macroporous films. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 2021; 46:645-655. [DOI: 10.1016/j.ijhydene.2020.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
45
|
Li S, Lei X, Hu H, Fu L, Peng R, Huang H, Wang J. Flaky cobalt phosphide-modified manganese iron oxide as a highly efficient OER catalyst. NEW J CHEM 2021. [DOI: 10.1039/d1nj01587g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel CoP modified manganese ferrite was synthesized by a new strategy, showing efficient OER catalytic performance.
Collapse
Affiliation(s)
- Shumei Li
- Faculty of Materials Metallurgy and Chemistry
- Jiangxi University of Science and Technology
- Gan Zhou 341000
- P. R. China
| | - Xiang Lei
- Faculty of Materials Metallurgy and Chemistry
- Jiangxi University of Science and Technology
- Gan Zhou 341000
- P. R. China
| | - Huixia Hu
- Faculty of Materials Metallurgy and Chemistry
- Jiangxi University of Science and Technology
- Gan Zhou 341000
- P. R. China
| | - Liwen Fu
- Faculty of Materials Metallurgy and Chemistry
- Jiangxi University of Science and Technology
- Gan Zhou 341000
- P. R. China
| | - Ruzhen Peng
- Faculty of Materials Metallurgy and Chemistry
- Jiangxi University of Science and Technology
- Gan Zhou 341000
- P. R. China
| | - Haiping Huang
- Faculty of Materials Metallurgy and Chemistry
- Jiangxi University of Science and Technology
- Gan Zhou 341000
- P. R. China
| | - Jinliang Wang
- Faculty of Materials Metallurgy and Chemistry
- Jiangxi University of Science and Technology
- Gan Zhou 341000
- P. R. China
| |
Collapse
|
46
|
Sreekanth T, Nam ND, Kim J, Yoo K. SnO2 QDs@CoFe2O4 NPs as an efficient electrocatalyst for methanol oxidation and oxygen evolution reactions in alkaline media. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114363] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
47
|
Zhang Y, Lu T, Ye Y, Dai W, Zhu Y, Pan Y. Stabilizing Oxygen Vacancy in Entropy-Engineered CoFe 2O 4-Type Catalysts for Co-prosperity of Efficiency and Stability in an Oxygen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2020; 12:32548-32555. [PMID: 32614574 DOI: 10.1021/acsami.0c05916] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We used entropy engineering to design a series of CoFe2O4-type spinels. Through microstructural characterization, electrochemical measurements, and X-ray photoelectron spectroscopy, we demonstrated that the entropy-stabilized oxide (Co0.2Mn0.2Ni0.2Fe0.2Zn0.2)Fe2O4 has a single-phase spinel structure and exhibits both efficient and stable catalytic oxygen evolution. This is attributable to disordered occupation of multivalent cations, which induces severe lattice distortion and increases configurational entropy, thereby facilitating formation of structurally stable, high-density oxygen vacancies on the exposed surface of the spinel. Thus, more catalytic sites on the surface are activated and retained over the course of long-duration testing for oxygen evolution. Entropy engineering expands researchers' access to catalysts that link entropy-stabilized structures to useful properties.
Collapse
Affiliation(s)
- Yue Zhang
- School of Materials Science and Engineering, Jiangsu Key Laboratory of Advanced Metallic Materials, Southeast University, Nanjing 211189, China
| | - Tao Lu
- School of Materials Science and Engineering, Jiangsu Key Laboratory of Advanced Metallic Materials, Southeast University, Nanjing 211189, China
| | - Yike Ye
- School of Materials Science and Engineering, Jiangsu Key Laboratory of Advanced Metallic Materials, Southeast University, Nanjing 211189, China
| | - Weiji Dai
- School of Materials Science and Engineering, Jiangsu Key Laboratory of Advanced Metallic Materials, Southeast University, Nanjing 211189, China
| | - Yin'an Zhu
- School of Materials Science and Engineering, Jiangsu Key Laboratory of Advanced Metallic Materials, Southeast University, Nanjing 211189, China
| | - Ye Pan
- School of Materials Science and Engineering, Jiangsu Key Laboratory of Advanced Metallic Materials, Southeast University, Nanjing 211189, China
| |
Collapse
|
48
|
Recent Advances in Nanocasting Cobalt-Based Mesoporous Materials for Energy Storage and Conversion. Electrocatalysis (N Y) 2020. [DOI: 10.1007/s12678-020-00608-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
49
|
Novel (Ni, Fe)S2/(Ni, Fe)3S4 solid solution hybrid: an efficient electrocatalyst with robust oxygen-evolving performance. Sci China Chem 2020. [DOI: 10.1007/s11426-020-9770-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Kanazawa T, Eguchi M, Nozawa S, Maeda K. Improved Electrochemical Water Oxidation over Chromium-Substituted Cobalt Aluminate Spinels. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20190272] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tomoki Kanazawa
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-2 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Japan Society for the Promotion of Science, Kojimachi Business Center Building, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Miharu Eguchi
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Shunsuke Nozawa
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Kazuhiko Maeda
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-2 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|