1
|
Wang L, Su H, Tan G, Xin J, Wang X, Zhang Z, Li Y, Qiu Y, Li X, Li H, Ju J, Duan X, Xiao H, Chen W, Liu Q, Sun X, Wang D, Sun J. Boosting Efficient and Sustainable Alkaline Water Oxidation on a W-CoOOH-TT Pair-Sites Catalyst Synthesized via Topochemical Transformation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2302642. [PMID: 37434271 DOI: 10.1002/adma.202302642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/13/2023]
Abstract
The development of facile methods for constructing highly active, cost-effective catalysts that meet ampere-level current density and durability requirements for an oxygen evolution reaction is crucial. Herein, a general topochemical transformation strategy is posited: M-Co9S8 single-atom catalysts (SACs) are directly converted into M-CoOOH-TT (M = W, Mo, Mn, V) pair-sites catalysts under the role of incorporating of atomically dispersed high-valence metals modulators through potential cycling. Furthermore, in situ X-ray absorption fine structure spectroscopy is used to track the dynamic topochemical transformation process at the atomic level. The W-Co9S8 breaks through the low overpotential of 160 mV at 10 mA cm-2. A series of pair-site catalysts exhibit a large current density of approaching 1760 mA cm-2 at 1.68 V vs reversible hydrogen electrode (RHE) in alkaline water oxidation and achieve a ≈240-fold enhancement in the normalized intrinsic activity compare to that reported CoOOH, and sustainable stability of 1000 h. Moreover, the O─O bond formation is confirmed via a two-site mechanism, supported by in situ synchrotron radiation infrared and density functional theory (DFT) simulations, which breaks the limit of adsorption-energy scaling relationship on conventional single-site.
Collapse
Affiliation(s)
- Ligang Wang
- College of Chemistry and Molecular Engineering, Peking University, Beijing National Laboratory for Molecular Sciences (BNLMS), 5 Yiheyuan Road, Beijing, 100871, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hui Su
- Key Laboratory of Light Energy Conversion Materials of Hunan Province College, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Guoying Tan
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Junjie Xin
- College of Chemistry and Molecular Engineering, Peking University, Beijing National Laboratory for Molecular Sciences (BNLMS), 5 Yiheyuan Road, Beijing, 100871, China
| | - Xiaoge Wang
- College of Chemistry and Molecular Engineering, Peking University, Beijing National Laboratory for Molecular Sciences (BNLMS), 5 Yiheyuan Road, Beijing, 100871, China
| | - Zhuang Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yaping Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yi Qiu
- College of Chemistry and Molecular Engineering, Peking University, Beijing National Laboratory for Molecular Sciences (BNLMS), 5 Yiheyuan Road, Beijing, 100871, China
| | - Xiaohui Li
- College of Chemistry and Molecular Engineering, Peking University, Beijing National Laboratory for Molecular Sciences (BNLMS), 5 Yiheyuan Road, Beijing, 100871, China
| | - Haisheng Li
- College of Chemistry and Molecular Engineering, Peking University, Beijing National Laboratory for Molecular Sciences (BNLMS), 5 Yiheyuan Road, Beijing, 100871, China
| | - Jing Ju
- College of Chemistry and Molecular Engineering, Peking University, Beijing National Laboratory for Molecular Sciences (BNLMS), 5 Yiheyuan Road, Beijing, 100871, China
| | - Xinxuan Duan
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hai Xiao
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Wenxing Chen
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Qinghua Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, China
| | - Xiaoming Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Junliang Sun
- College of Chemistry and Molecular Engineering, Peking University, Beijing National Laboratory for Molecular Sciences (BNLMS), 5 Yiheyuan Road, Beijing, 100871, China
| |
Collapse
|
2
|
Wang L, Su H, Zhang Z, Xin J, Liu H, Wang X, Yang C, Liang X, Wang S, Liu H, Yin Y, Zhang T, Tian Y, Li Y, Liu Q, Sun X, Sun J, Wang D, Li Y. Co-Co Dinuclear Active Sites Dispersed on Zirconium-doped Heterostructured Co 9 S 8 /Co 3 O 4 for High-current-density and Durable Acidic Oxygen Evolution. Angew Chem Int Ed Engl 2023; 62:e202314185. [PMID: 37858292 DOI: 10.1002/anie.202314185] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 10/21/2023]
Abstract
Developing cost-effective and sustainable acidic water oxidation catalysts requires significant advances in material design and in-depth mechanism understanding for proton exchange membrane water electrolysis. Herein, we developed a single atom regulatory strategy to construct Co-Co dinuclear active sites (DASs) catalysts that atomically dispersed zirconium doped Co9 S8 /Co3 O4 heterostructure. The X-ray absorption fine structure elucidated the incorporation of Zr greatly facilitated the generation of Co-Co DASs layer with stretching of cobalt oxygen bond and S-Co-O heterogeneous grain boundaries interfaces, engineering attractive activity of significantly reduced overpotential of 75 mV at 10 mA cm-2 , a breakthrough of 500 mA cm-2 high current density, and water splitting stability of 500 hours in acid, making it one of the best-performing acid-stable OER non-noble metal materials. The optimized catalyst with interatomic Co-Co distance (ca. 2.80 Å) followed oxo-oxo coupling mechanism that involved obvious oxygen bridges on dinuclear Co sites (1,090 cm-1 ), confirmed by in situ SR-FTIR, XAFS and theoretical simulations. Furthermore, a major breakthrough of 120,000 mA g-1 high mass current density using the first reported noble metal-free cobalt anode catalyst of Co-Co DASs/ZCC in PEM-WE at 2.14 V was recorded.
Collapse
Affiliation(s)
- Ligang Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Hui Su
- Key Laboratory of Light Energy Conversion Materials of Hunan Province College, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Zhuang Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Junjie Xin
- College of Chemistry and Molecular Engineering, Peking University, Beijing National Laboratory for Molecular Sciences (BNLMS), 5 Yiheyuan Road, Beijing, 100871, P. R. China
| | - Hai Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaoge Wang
- College of Chemistry and Molecular Engineering, Peking University, Beijing National Laboratory for Molecular Sciences (BNLMS), 5 Yiheyuan Road, Beijing, 100871, P. R. China
| | - Chenyu Yang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, Anhui, P. R. China
| | - Xiao Liang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Shunwu Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Huan Liu
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yanfei Yin
- College of Chemistry and Molecular Engineering, Peking University, Beijing National Laboratory for Molecular Sciences (BNLMS), 5 Yiheyuan Road, Beijing, 100871, P. R. China
| | - Taiyan Zhang
- Department of Chemistry, Analytical Instrumentation Center, Capital Normal University, Beijing, 100048, P. R. China
| | - Yang Tian
- Department of Chemistry, Analytical Instrumentation Center, Capital Normal University, Beijing, 100048, P. R. China
| | - Yaping Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Qinghua Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, Anhui, P. R. China
| | - Xiaoming Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Junliang Sun
- College of Chemistry and Molecular Engineering, Peking University, Beijing National Laboratory for Molecular Sciences (BNLMS), 5 Yiheyuan Road, Beijing, 100871, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| |
Collapse
|
3
|
Kawashima K, Márquez RA, Smith LA, Vaidyula RR, Carrasco-Jaim OA, Wang Z, Son YJ, Cao CL, Mullins CB. A Review of Transition Metal Boride, Carbide, Pnictide, and Chalcogenide Water Oxidation Electrocatalysts. Chem Rev 2023. [PMID: 37967475 DOI: 10.1021/acs.chemrev.3c00005] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Transition metal borides, carbides, pnictides, and chalcogenides (X-ides) have emerged as a class of materials for the oxygen evolution reaction (OER). Because of their high earth abundance, electrical conductivity, and OER performance, these electrocatalysts have the potential to enable the practical application of green energy conversion and storage. Under OER potentials, X-ide electrocatalysts demonstrate various degrees of oxidation resistance due to their differences in chemical composition, crystal structure, and morphology. Depending on their resistance to oxidation, these catalysts will fall into one of three post-OER electrocatalyst categories: fully oxidized oxide/(oxy)hydroxide material, partially oxidized core@shell structure, and unoxidized material. In the past ten years (from 2013 to 2022), over 890 peer-reviewed research papers have focused on X-ide OER electrocatalysts. Previous review papers have provided limited conclusions and have omitted the significance of "catalytically active sites/species/phases" in X-ide OER electrocatalysts. In this review, a comprehensive summary of (i) experimental parameters (e.g., substrates, electrocatalyst loading amounts, geometric overpotentials, Tafel slopes, etc.) and (ii) electrochemical stability tests and post-analyses in X-ide OER electrocatalyst publications from 2013 to 2022 is provided. Both mono and polyanion X-ides are discussed and classified with respect to their material transformation during the OER. Special analytical techniques employed to study X-ide reconstruction are also evaluated. Additionally, future challenges and questions yet to be answered are provided in each section. This review aims to provide researchers with a toolkit to approach X-ide OER electrocatalyst research and to showcase necessary avenues for future investigation.
Collapse
Affiliation(s)
- Kenta Kawashima
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Raúl A Márquez
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Lettie A Smith
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Rinish Reddy Vaidyula
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Omar A Carrasco-Jaim
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ziqing Wang
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yoon Jun Son
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Chi L Cao
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - C Buddie Mullins
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Center for Electrochemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- H2@UT, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
4
|
Wang C, Wang Q, Du X, Zhang X. Controlled synthesis of M doped NiVS (M = Co, Ce and Cr) as a robust electrocatalyst for urea electrolysis. Dalton Trans 2023; 52:13161-13168. [PMID: 37656128 DOI: 10.1039/d3dt02586a] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Urea electrolysis can be used to treat wastewater containing urea and alleviate the energy crisis, so it is one of the best ways to solve environmental and energy problems. This paper reports the synthesis of M doped NiVS (M = Co, Ce and Cr) composites by a simple hydrothermal process for the first time. What is noteworthy is that the Ce-NiVS material as a catalytic electrode requires only 141 mV overpotential for the hydrogen evolution reaction (HER) and 1.291 V potential for the urea oxidation reaction (UOR) at a current density of 10 mA cm-2 in 1.0 M KOH and 0.5 M urea mixed alkaline solution. Using Ce-NiVS/NF as both the anode and cathode for urea electrolysis, a current density of 10 mA cm-2 is driven by a voltage of only 1.55 V, which is better than most previous catalysts. Experimental results demonstrate that the excellent catalytic activity of Ce-NiVS materials is due to the formation of a large number of active sites and the improvement of conductivity due to doping with Ce. Density functional theory calculation shows that the VS4 material has a small Gibbs free energy of hydrogen adsorption, which plays a major role in the hydrogen production process, and Ce-NiS has a higher density of states (DOS) near the Fermi level, indicating that Ce-NiS has better electronic conductivity. The synergistic catalysis of VS4 and Ce-NiS promoted the hydrogen production performance of the Ce-NiVS material. This work provides guidance for the optimization and design of low-cost electrocatalysts to replace expensive precious metal-based electrocatalysts for overall urea electrolysis.
Collapse
Affiliation(s)
- Chao Wang
- School of Chemistry and Chemical Engineering, Shanxi Key Laboratory of High Performance Battery Materials and Devices, North University of China, Xueyuan road 3, Taiyuan 030051, People's Republic of China.
| | - Qirun Wang
- School of Chemistry and Chemical Engineering, Shanxi Key Laboratory of High Performance Battery Materials and Devices, North University of China, Xueyuan road 3, Taiyuan 030051, People's Republic of China.
| | - Xiaoqiang Du
- School of Chemistry and Chemical Engineering, Shanxi Key Laboratory of High Performance Battery Materials and Devices, North University of China, Xueyuan road 3, Taiyuan 030051, People's Republic of China.
| | - Xiaoshuang Zhang
- School of Environment and Safety Engineering, North University of China, Xueyuan road 3, Taiyuan 030051, People's Republic of China
| |
Collapse
|
5
|
Tian J, Xu Y, Li J, Chi J, Feng L, Pan Q, Li X, Su Z. Post-decorated synthesis of metal-organic frameworks derived Ni/Ni3S2@CN electrocatalyst for efficient hydrogen evolution. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
In situ grown Co9S8 nanocrystals in sulfur-doped carbon matrix for electrocatalytic oxidation of hydrazine. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Peng Y, Zhang F, Zhang Y, Luo X, Chen L, Shi Y. N, S-doped hollow carbon nanosheet encapsulated Co9S8 nanoparticles as high-efficient bifunctional electrocatalyst for rechargeable zinc-air battery. Dalton Trans 2022; 51:12630-12640. [DOI: 10.1039/d2dt01650h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of non-noble metal-based oxygen reduction/evolution reaction (ORR/OER) bifunctional electrocatalyst with reasonably designed structure and inexpensive component is of practical significance for commercialization of rechargeable zinc-air batteries. Here, we...
Collapse
|
8
|
Yu Z, Wang C, Guo S, Yao H, Liang Z, Liu R, Shi K, Li C, Ma S. Triangle nanowall arrays of ultrathin MoS2 nanosheets vertically grown on Co-Fe bimetallic disulfide as highly efficient electrocatalysts for hydrogen evolution reaction. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Kim C, Lee S, Kim SH, Kwon I, Park J, Kim S, Lee JH, Park YS, Kim Y. Promoting electrocatalytic overall water splitting by sulfur incorporation into CoFe-(oxy)hydroxide. NANOSCALE ADVANCES 2021; 3:6386-6394. [PMID: 36133497 PMCID: PMC9418770 DOI: 10.1039/d1na00486g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/07/2021] [Indexed: 06/16/2023]
Abstract
The design and fabrication of highly cost-effective electrocatalysts with high activity, and stability to enhance the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) has been considered to be one of the most promising approaches toward overall water splitting. In this study, sulfur-incorporated cobalt-iron (oxy)hydroxide (S-(Co,Fe)OOH) nanosheets were directly grown on commercial iron foam via galvanic corrosion and hydrothermal methods. The incorporation of sulfur into (Co,Fe)OOH results in superior catalytic performance and high stability in both the HER and OER conducted in 1 M KOH. The incorporation of sulfur enhanced the electrocatalytic activity by modifying the electronic structure and chemical states of (Co,Fe)OOH. An alkaline water electrolyzer for overall water splitting was fabricated using a two-electrode configuration utilizing the S-(Co,Fe)OOH bifunctional electrocatalyst in both the HER and OER. The fabricated electrolyzer outperformed a precious metal-based electrolyzer using Pt/C as the HER electrocatalyst and IrO2 as the OER electrocatalyst, which are the benchmark catalysts. This electrolyzer provides a lower potential of 1.641 V at 10 mA cm-2 and maintains 98.4% of its performance after 50 h of durability testing. In addition, the S-(Co,Fe)OOH-based electrolyzer successfully generated hydrogen under natural illumination upon its combination with a commercial silicon solar cell and exhibited a solar to hydrogen (STH) efficiency of up to 13.0%. This study shows that S-(Co,Fe)OOH is a promising candidate for application in the future renewable energy industry due to its high cost-effectiveness, activity, and stability during overall water splitting. In addition, the combination of a commercial silicon solar cell with an alkaline water electrolyzer has great potential for the production of hydrogen.
Collapse
Affiliation(s)
- Chiho Kim
- Department of Materials Science and Engineering, Pusan National University Busan 46241 Republic of Korea
| | - Seunghun Lee
- Department of Materials Science and Engineering, Pusan National University Busan 46241 Republic of Korea
| | - Seong Hyun Kim
- Department of Materials Science and Engineering, Pusan National University Busan 46241 Republic of Korea
| | - Ilyeong Kwon
- Department of Materials Science and Engineering, Pusan National University Busan 46241 Republic of Korea
| | - Jaehan Park
- Department of Materials Science and Engineering, Pusan National University Busan 46241 Republic of Korea
| | - Shinho Kim
- BK21 four, Innovative Graduate Education Program for Global High-tech Materials & Parts, Pusan National University Busan 46241 Republic of Korea
| | - Jae-Ho Lee
- Department of Materials Science and Engineering, Hongik University Seoul 04066 Republic of Korea
| | - Yoo Sei Park
- Department of Materials Science and Engineering, Pusan National University Busan 46241 Republic of Korea
| | - Yangdo Kim
- Department of Materials Science and Engineering, Pusan National University Busan 46241 Republic of Korea
| |
Collapse
|
10
|
Zhu X, Wu Q, Dai J, Zhao D, Yang C, Li L, Li N, Chen S. Co9S8 nanoparticles embedded in nitrogen, sulfur codoped porous carbon nanosheets for efficient oxygen/hydrogen electrocatalysis. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Liu G, Wang K, Wang L, Wang B, Lin Z, Chen X, Hua Y, Zhu W, Li H, Xia J. A Janus cobalt nanoparticles and molybdenum carbide decorated N-doped carbon for high-performance overall water splitting. J Colloid Interface Sci 2021; 583:614-625. [PMID: 33039860 DOI: 10.1016/j.jcis.2020.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/17/2022]
Abstract
The fabrication of high-performance and stable electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is of importance for sustainable water-splitting technologies. Herein, the cobalt (Co) nanoparticles and molybdenum carbide (Mo2C) heterostructures anchored N-doped carbon (Co/Mo2C@NC-800) was designed as bifunctional electrocatalyst for overall water splitting via a simple pyrolysis approach for metal organic frameworks (MOFs) precursor. This composite shows a remarkable performance for HER and OER with a small overpotential of 121 mV and 311 mV at 10 mA cm-2, respectively. When the optimized electrocatalyst was employed as both anode and cathode for overall water splitting in a two-electrode system, the electrolyzer achieves a low cell voltage of 1.67 V at 10 mA cm-2 in 1 M KOH, as well as a superior and stable long-time operation of 30 h. The promising hybrid material demonstrates excellent electrocatalysis performance due to effective combination of the best of both worlds: Mo2C with remarkable HER performance and Co nanoparticles with excellent OER activity. The Mo2C possesses strong hydrogen binding energy and Co exhibits prominent electrical conductivity, thus the construction of heterostructures achieves more active sites with different functions and significantly boosts HER and OER process. The novel and effective synthesis strategy provides new insights into the design of outstanding non-noble metal bifunctional electrocatalysts for overall water splitting.
Collapse
Affiliation(s)
- Gaopeng Liu
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Keke Wang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lin Wang
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Bin Wang
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Zixia Lin
- Testing Center, Yangzhou University, Yangzhou City, Jiangsu 225009, China
| | - Xin Chen
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Yingjie Hua
- School of Chemistry and Chemical Engineering, The Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province, Hainan Normal University, Haikou, Hainan 571158, PR China
| | - Wenshuai Zhu
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China.
| | - Huaming Li
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Jiexiang Xia
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China.
| |
Collapse
|
12
|
Liu YL, Yan C, Wang GG, Li F, Shang Y, Zhang HY, Han JC, Yang HY. Self-templated formation of (NiCo) 9S 8 yolk-shelled spheres for high-performance hybrid supercapacitors. NANOSCALE 2020; 12:23497-23505. [PMID: 33211786 DOI: 10.1039/d0nr06447e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Rational materials design for the synthesis of desirable hollow micro- and nanostructures has recently revealed the remarkable potential for high-performance energy storage and conversion devices. Owing to their unique "core-void-shell" structural configurations, yolk-shell-structured electrode materials can achieve intimate contact with the electrolyte and alleviate the volume expansion issue during electrochemical cycling, which is therefore poised to further boost the electrochemical properties of hybrid supercapacitors. Herein, a facile self-templated strategy, consisting of a hydrothermal step and a high-temperature sulfurization process, has been developed for the construction of yolk-shell (NiCo)9S8 spheres in situ coated by graphite carbon ((NiCo)9S8/GC) due to the non-equilibrium thermal treatment of alkali metal alkoxides. The as-synthesized yolk-shelled sphere exhibits a high specific capacitance of 1434.4 F g-1 (179.3 mA h g-1) at a current density of 1 A g-1, and good rate capability and cycling stability with 83.1% capacitance retention at 8 A g-1 over 5000 cycles. To further demonstrate its practical application, a hybrid supercapacitor device was assembled using (NiCo)9S8/GC as the battery-type positive electrode and activated carbon (AC) as the capacitive-type electrode. The as-fabricated device can reach a wide voltage window of up to 1.6 V, deliver a high energy density of 55.6 W h kg-1 at a power density of 800.3 W kg-1 and maintain 90.2% of specific capacitance after 3000 cycles.
Collapse
Affiliation(s)
- Yi-Lin Liu
- Shenzhen Key Laboratory for Advanced Materials, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Bhanja P, Kim Y, Paul B, Lin J, Alshehri SM, Ahamad T, Kaneti YV, Bhaumik A, Yamauchi Y. Facile Synthesis of Nanoporous Transition Metal‐Based Phosphates for Oxygen Evolution Reaction. ChemCatChem 2020. [DOI: 10.1002/cctc.201901803] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Piyali Bhanja
- International Center for Materials Nanoarchitectonics (MANA)National Institute for Materials Science (NIMS) Tsukuba 305-0044 Japan
| | - Yena Kim
- International Center for Materials Nanoarchitectonics (MANA)National Institute for Materials Science (NIMS) Tsukuba 305-0044 Japan
- Key Laboratory of Eco-chemical Engineering College of Chemistry and Molecular EngineeringQingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Bappi Paul
- Department of Pure and Applied SciencesUniversity of Tsukuba Tsukuba 305-8573 Japan
| | - Jianjian Lin
- Key Laboratory of Eco-chemical Engineering College of Chemistry and Molecular EngineeringQingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Saad M. Alshehri
- Department of Chemistry, College of ScienceKing Saud University Riyadh 11451 Saudi Arabia
| | - Tansir Ahamad
- Department of Chemistry, College of ScienceKing Saud University Riyadh 11451 Saudi Arabia
| | - Yusuf Valentino Kaneti
- International Center for Materials Nanoarchitectonics (MANA)National Institute for Materials Science (NIMS) Tsukuba 305-0044 Japan
| | - Asim Bhaumik
- School of Materials SciencesIndian Association for the Cultivation of Science Kolkata 700032 India
| | - Yusuke Yamauchi
- International Center for Materials Nanoarchitectonics (MANA)National Institute for Materials Science (NIMS) Tsukuba 305-0044 Japan
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN)The University of Queensland Brisbane QLD 4072 Australia
- Department of Plant & Environmental New ResourcesKyung Hee University Gyeonggi-do 446-701 South Korea
| |
Collapse
|
14
|
Yang Y, Wang H, Qin W, Guo Y, Yao H, Li J, Shi K, Ma S. MoS 2/Au 0/N-CNT derived from Au(III) extraction by polypyrrole/MoS 4 as an electrocatalyst for hydrogen evolution reaction. J Colloid Interface Sci 2020; 561:298-306. [PMID: 31732147 DOI: 10.1016/j.jcis.2019.10.102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/21/2019] [Accepted: 10/27/2019] [Indexed: 10/25/2022]
Abstract
The nanotube type MoS42-/polypyrrole (MoS4-Ppy) is newly synthesized which exhibits exceptional uptake capability for Au(III) with a high removal rate of >99.99% and large Kd of >107 mL/g. Through simple calcination, the Au-loaded MoS4-Ppy is successfully converted to nitrogen-doped carbon nanotubes (N-CNT) decorated with MoS2 nanosheets as well as Au0 nanoparticles, forming a novel composite of MoS2/Au0/N-CNT. The conductivity of MoS2/Au/N-CNT is substantially improved by the highly conductive N-CNT and Au0 metal. In addition, the N-CNT can effectively eliminate the aggregation of MoS2 sheets and Au0 particles, thus endowing more exposed active sites. The optimized MoS2/Au0/N-CNT displays good electrocatalytic performance towards hydrogen evolution reaction (HER). For the first time, we demonstrate the MoS4-Ppy is a promising material for efficient extraction and recovery of trace amounts of precious metal Au from gold-bearing leachates, and the subsequent product MoS2/Au/N-CNT can act as an effective HER electrocatalyst. The fabrication process of the composite material can not only remediate water contamination but also reuse precious metals. This dual-use approach opens a new way to explore effective sorbents for recovery of trace of gold and apply them in catalysis and sensing fields.
Collapse
Affiliation(s)
- Yan Yang
- Beijing Key Laboratory of Energy Conversion and Storage Materials and College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Hui Wang
- Beijing Key Laboratory of Energy Conversion and Storage Materials and College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wenjing Qin
- Beijing Key Laboratory of Energy Conversion and Storage Materials and College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yuexin Guo
- School of Pharmacy, North China University of Science and Technology, Tangshan 063210, China.
| | - Huiqin Yao
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China.
| | - Jian Li
- Chemistry & Chemical and Environmental Engineering College, Weifang University, Weifang 261061, China.
| | - Keren Shi
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Shulan Ma
- Beijing Key Laboratory of Energy Conversion and Storage Materials and College of Chemistry, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
15
|
Yuan M, Wang R, Sun Z, Lin L, Yang H, Li H, Nan C, Sun G, Ma S. Morphology-Controlled Synthesis of Ni-MOFs with Highly Enhanced Electrocatalytic Performance for Urea Oxidation. Inorg Chem 2019; 58:11449-11457. [DOI: 10.1021/acs.inorgchem.9b01124] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mengwei Yuan
- Beijing Key Laboratory of Energy Conversion and Storage Materials and College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Rui Wang
- Beijing Key Laboratory of Energy Conversion and Storage Materials and College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Zemin Sun
- Beijing Key Laboratory of Energy Conversion and Storage Materials and College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Liu Lin
- Beijing Key Laboratory of Energy Conversion and Storage Materials and College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Han Yang
- Beijing Key Laboratory of Energy Conversion and Storage Materials and College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Huifeng Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials and College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Caiyun Nan
- Beijing Key Laboratory of Energy Conversion and Storage Materials and College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Genban Sun
- Beijing Key Laboratory of Energy Conversion and Storage Materials and College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Shulan Ma
- Beijing Key Laboratory of Energy Conversion and Storage Materials and College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
16
|
Jia N, Liu J, Gao Y, Chen P, Chen X, An Z, Li X, Chen Y. Graphene-Encapsulated Co 9 S 8 Nanoparticles on N,S-Codoped Carbon Nanotubes: An Efficient Bifunctional Oxygen Electrocatalyst. CHEMSUSCHEM 2019; 12:3390-3400. [PMID: 30895738 DOI: 10.1002/cssc.201900383] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 03/12/2019] [Indexed: 06/09/2023]
Abstract
An inexpensive and efficient bifunctional electrocatalyst for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) is central to the rechargeable zinc-air battery. Herein, a nanohybrid, in which N,S-codoped carbon nanotubes were decorated with Co9 S8 nanoparticles encapsulated in porous graphene layers, was fabricated by a one-step heat-treatment process. The N,S dopant species were the major active sites for the ORR, and Co9 S8 nanoparticles were mainly responsible for the OER. Compared with commercial 20 wt % Pt/C and Ir/C electrocatalysts, this nanohybrid exhibited a comparable ORR half-wave potential (0.831 V vs. reversible hydrogen electrode) and OER potential (1.591 V at 10 mA cm-2 ), better long-term stability in an alkaline medium, and a narrower potential gap (0.76 V) between ORR and OER. Furthermore, as air electrode of the rechargeable zinc-air battery, it delivered a low charge-discharge voltage gap (0.65 V at 5 mA cm-2 ), high open-circuit potential (1.539 V), good specific capacity (805 mA h g - 1 Zn at 5 mA cm-2 ), and excellent cycling stability (48 h), superior to those of commercial Pt/C and Ir/C catalysts, and thus showed promise for applications in renewable energy conversion devices.
Collapse
Affiliation(s)
- Nan Jia
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Jing Liu
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Yunshan Gao
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Pei Chen
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Xinbing Chen
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Zhongwei An
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Xifei Li
- Institute of Advanced Electrochemical Energy, Xi'an University of Technology, Xi'an, 710048, P. R. China
| | - Yu Chen
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| |
Collapse
|
17
|
Chen J, Qiu L, Li Z, Gao G, Zhong W, Zhang P, Gong Y, Deng L. Chitin-derived porous carbon loaded with Co, N and S with enhanced performance towards electrocatalytic oxygen reduction, oxygen evolution, and hydrogen evolution reactions. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.03.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Facile synthesis of hollow Co3O4-embedded carbon/reduced graphene oxides nanocomposites for use as efficient electrocatalysts in oxygen evolution reaction. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.01.100] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
Wang X, Su D, Xiao Y, Xu S, Fang S, Cao S. Ultra-dispersed island-like Co9S8 nanoparticles composed of nanosheets in-situ grown on nitrogen-doped graphene for asymmetric supercapacitor. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.10.059] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|