Niknazar S, Ensafi AA, Heydari-Soureshjani E, Rezaei B. Green application of trimetallic nickel-cobalt-molybdenum nanocomposites on 3D graphene oxide as a powerful electrocatalyst for hydrogen evolution reaction.
CHEMOSPHERE 2022;
294:133670. [PMID:
35066081 DOI:
10.1016/j.chemosphere.2022.133670]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/02/2022] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
In-situ designing of multiple metals electrocatalysts with high active sites and performance is the main challenge for hydrogen evolution reaction (HER). So in this work, 3D-rGO was easily obtained from 2D-graphene by a simple one-step hydrothermal method to create the interspace sites and active surface area. The Ni-Co-Mo tri-metallic@3D-rGO was synthesized and fully characterized by different techniques, e.g., FT-IR, XRD, Raman, FE-SEM, TEM, EDS, mapping, ICP-OES, AFM, voltammetry, and electrochemical impedance spectroscopy. According to the FE-SEM and TEM images, the Ni-Co-Mo tri-metallic@3D-rGO has a crumpled-formed structure. The as-prepared nanocomposite has high HER performance with a low potential of -0.11 (vs. RHE) to deliver 10 mA cm-2 and Tafel slope of 68 mV dec-1 for Pt and -0.25 V (vs. RHE) to deliver 10 mA cm-2 and Tafel slope of 110 mV dec-1 for graphite counter electrode. Furthermore, the 3D structure illustrates high long-term durability in the HER process for 1000 continuous cycles and 12 h operation at -0.42 V (vs. RHE) for Pt and graphite counter electrode. It's noticeable HER performance has the synergetic effect between 3D-rGO and tri-metallic structure with high porosity and electrical conductivity, enhancing HER kinetic.
Collapse