1
|
Ma R, Zhang J, Gong J, Lin Y, Zhang J, Huang ZQ, Chang CR, Liu S, Zhu W, Wang Y, Zeng K, Tao Y, Hu J, Zhang Z, Liang X, Han Y, Mao J, Zhuang Z, Yan J, Wang D, Xiong Y. The Cooperative Effects of the Rh-M Dual-Metal Atomic Pairs in Formic Acid Oxidation. Angew Chem Int Ed Engl 2025; 64:e202503095. [PMID: 40095392 DOI: 10.1002/anie.202503095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/14/2025] [Accepted: 03/14/2025] [Indexed: 03/19/2025]
Abstract
The continuously increasing mass activity of precious metal in formic acid oxidation reaction (FAOR) is the key to achieving the practical application of direct formic acid fuel cells (DFAFCs). Herein, Rh-based dual-metal atomic pairs supported on nitrogen-doped carbon catalysts [DAP-(M, Rh)/CN] with adjacent interatomic Rh-M (M = V, Cr, Mn, Fe, Co, Ni, Cu) have been synthesized by a "host-guest" strategy. It is discovered that DAP-(Cr, Rh)/CN shows the highest mass activity of 64.1 A mg-1, which is 3.8 times higher than that of the single atom Rh catalyst (17.0 A mg-1) and two orders of magnitude higher than Pd/C (0.58 A mg-1). Interestingly, the mass activity of DAP-(M, Rh)/CN first increases from 11.7 A mg-1 (Rh-V) to 64.1 A mg-1 (Rh-Cr) and then decreases to 21.8 A mg-1 (Rh-Cu), forming a volcano curve of the reaction activity. Density functional theory calculations combined with in situ Fourier transform infrared spectrometer (FTIR) spectra reveal that formic acid oxidized on a series of DAP-(M, Rh)/CN catalysts through the formate route with the subsidiary M metal atoms binding the HCOO species and the Rh atom accepting the H atoms. The most suitable adsorption strength of HCOO on the Cr sites luckily contributes to two spontaneous elementary steps and thus accelerates the FAOR rates.
Collapse
Affiliation(s)
- Runze Ma
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P.R. China
| | - Jin Zhang
- Beijing Key Laboratory of Bioinspired Materials and Devices & School of Energy and Power Engineering, Beihang University, Beijing, 100191, P.R. China
| | - Jiaxin Gong
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P.R. China
| | - Yunxiang Lin
- Institutes of Physical Science and Information Technology, School of Materials Science and Engineering, Anhui Key Laboratory of Information Materials and Device, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Hefei, Anhui, 230601, P.R. China
| | - Jialin Zhang
- Beijing Key Laboratory of Bioinspired Materials and Devices & School of Energy and Power Engineering, Beihang University, Beijing, 100191, P.R. China
| | - Zheng-Qing Huang
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Chun-Ran Chang
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Shoujie Liu
- Institutes of Physical Science and Information Technology, School of Materials Science and Engineering, Anhui Key Laboratory of Information Materials and Device, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Hefei, Anhui, 230601, P.R. China
| | - Wei Zhu
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Yuxin Wang
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Ke Zeng
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P.R. China
| | - Yu Tao
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P.R. China
| | - Jinhua Hu
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P.R. China
| | - Zedong Zhang
- Department of Chemistry, Tsinghua University, Beijing, 100029, P.R. China
| | - Xiao Liang
- Department of Chemistry, Tsinghua University, Beijing, 100029, P.R. China
| | - Yunhu Han
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710072, P.R. China
| | - Junjie Mao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P.R. China
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, Beijing, 100029, P.R. China
| | - Jun Yan
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P.R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100029, P.R. China
| | - Yu Xiong
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P.R. China
| |
Collapse
|
2
|
Tang M, Sun M, Chen W, Ding Y, Fan X, Wu X, Fu XZ, Huang B, Luo S, Luo JL. Atomic Diffusion Engineered PtSnCu Nanoframes with High-Index Facets Boost Ethanol Oxidation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311731. [PMID: 38267017 DOI: 10.1002/adma.202311731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/13/2024] [Indexed: 01/26/2024]
Abstract
Electrochemical ethanol oxidation is crucial to directly convert a biorenewable liquid fuel with high energy density into electrical energy, but it remains an inefficient reaction even with the best catalysts. To boost ethanol oxidation, developing multimetallic nanoalloy has emerged as one of the most effective strategies, yet faces a challenge in the rational engineering of multimetallic active-site ensembles at atomic-level. Herein, starting from typical PtCu nanocrystals, an atomic Sn diffusion strategy is developed to construct well-defined Pt47Sn12Cu41 octopod nanoframes, which is enclosed by high-index facets of n (111)-(111), such as {331} and {221}. Pt47Sn12Cu41 achieves a high mass activity of 3.10 A mg-1 Pt and promotes the C-C bond breaking and oxidation of poisonous CO intermediate, representing a state-of-the-art electrocatalyst toward ethanol oxidation in acidic electrolyte. Density functional theory (DFT) calculations have confirmed that the introduction of Sn improves the electroactivity by uplifting the d-band center through the s-p-d coupling. Meanwhile, the strong binding of ethanol and the reduced energy barrier of CO oxidation guarantee a highly efficient ethanol oxidation process with improved Faradic efficiency of C1 products. This work offers a promising strategy for constructing novel multimetallic nanoalloys tailored by atomic metal sites as the efficient electrocatalysts.
Collapse
Affiliation(s)
- Min Tang
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
- Department of Chemistry, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, P. R. China
| | - Mingzi Sun
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| | - Wen Chen
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
| | - Yutian Ding
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
| | - Xiaokun Fan
- Department of Chemistry, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, P. R. China
| | - Xiaoyu Wu
- The New Energy Automotive Technology Research Institute, Shenzhen Polytechnic University, Shenzhen, 518055, China
| | - Xian-Zhu Fu
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| | - Shuiping Luo
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
- Department of Chemistry, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, P. R. China
| | - Jing-Li Luo
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
| |
Collapse
|
3
|
Yan W, Li G, Cui S, Park GS, Oh R, Chen W, Cheng X, Zhang JM, Li W, Ji LF, Akdim O, Huang X, Lin H, Yang J, Jiang YX, Sun SG. Ga-Modification Near-Surface Composition of Pt-Ga/C Catalyst Facilitates High-Efficiency Electrochemical Ethanol Oxidation through a C2 Intermediate. J Am Chem Soc 2023; 145:17220-17231. [PMID: 37492900 DOI: 10.1021/jacs.3c04320] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
In electrochemical ethanol oxidation reactions (EOR) catalyzed by Pt metal nanoparticles through a C2 route, the dissociation of the C-C bond in the ethanol molecule can be a limiting factor. Complete EOR processes producing CO2 were always exemplified by the oxidative dehydrogenation of C1 intermediates, a reaction route with less energy utilization efficiency. Here, we report a Pt3Ga/C electrocatalyst with a uniform distribution of Ga over the nanoparticle surface for EOR that produces CO2 at medium potentials (>0.3 V vs SCE) efficiently through direct and sustainable oxidation of C2 intermediate species, i.e., acetaldehyde. We demonstrate the excellent performance of the Pt3Ga-200/C catalyst by using electrochemical in situ Fourier transform infrared reflection spectroscopy (FTIR) and an isotopic labeling method. The atomic interval structure between Pt and Ga makes the surface of nanoparticles nonensembled, avoiding the formation of poisonous *CHx and *CO species via bridge-type adsorption of ethanol molecules. Meanwhile, the electron redistribution from Ga to Pt diminishes the *O/*OH adsorption and CO poisoning on Pt atoms, exposing more available sites for interaction with the C2 intermediates. Furthermore, the dissociation of H2O into *OH is facilitated by the high hydrophilicity of Ga, which is supported by DFT calculations, promoting the deep oxidation of C2 intermediates. Our work represents an extremely rare EOR process that produces CO2 without observing kinetic limitations under medium potential conditions.
Collapse
Affiliation(s)
- Wei Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Guang Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Shuangshuang Cui
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Gyeong-Su Park
- Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Rena Oh
- Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Weixin Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Xiaoyang Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Jun-Ming Zhang
- Shaanxi Normal University Key Laboratory of Magnetic Molecules & Magnetic Information Materials, Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030031, Xi'an, Shaanxi 710062, People's Republic of China
| | - Weize Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Li-Fei Ji
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Ouardia Akdim
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, Wales, U.K
| | - Xiaoyang Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, Wales, U.K
| | - Haixin Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Jian Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yan-Xia Jiang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Shi-Gang Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|
4
|
General strategy for evaluating the d-band center shift and ethanol oxidation reaction pathway towards Pt-based electrocatalysts. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1420-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Moreira TFM, Kokoh KB, Napporn TW, Olivi P, Morais C. Insights on the C2 and C3 electroconversion in alkaline medium on Rh/C catalyst: in situ FTIR spectroscopic and chromatographic studies. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Moreira TFM, Andrade AR, Kokoh KB, Morais C, Napporn TW, Olivi P. An FTIR study of the electrooxidation of C2 and C3 alcohols on carbon‐supported PdxRhy in alkaline medium. ChemElectroChem 2022. [DOI: 10.1002/celc.202200205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | | | | | - Claudia Morais
- University of Poitiers: Universite de Poitiers Chemistry FRANCE
| | - Teko Wilhelmin Napporn
- Universite de Poitiers Chemistry IC2MP UMR 7285 CNRSUniversite de Poitiers4, rue Michel Brunet B27 TSA 51106 86073 Poitiers FRANCE
| | - Paulo Olivi
- University of Sao Paulo: Universidade de Sao Paulo FFCLRP BRAZIL
| |
Collapse
|
7
|
Liang Y, Ma T, Xiong Y, Qiu L, Yu H, Liang F. Highly efficient blackberry-like trimetallic PdAuCu nanoparticles with optimized Pd content for ethanol electrooxidation. NANOSCALE 2021; 13:9960-9970. [PMID: 34018506 DOI: 10.1039/d1nr00841b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The rational design of highly efficient catalysts for ethanol electrooxidation is extremely challenging for developing direct ethanol fuel cells (DEFCs). Herein, a facile one-pot method has been developed to prepare blackberry-like PdAuCu nanoparticles (NPs) with tunable composition and surface structures. Among PdAuCu NPs with different Pd contents (1.6-22 mass%), PdAuCu NPs-0.5 (contained Pd at 2.5 mass%) delivered one of the highest catalytic activities of Pd-based catalysts towards ethanol electrooxidation, exhibiting a mass activity of 23.0 A mgPd-1. Kinetic analysis, electrochemical impedance spectroscopy and CO stripping test results suggested that the excellent electrocatalytic activity may originate from the optimized balance between Pd content and surface structure of PdAuCu NPs-0.5. The optimization of the balance between composition and surface structure would contribute to the further design of multimetallic nanoparticles for fuel cells and other applications.
Collapse
Affiliation(s)
- Yinyin Liang
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | | | | | | | | | | |
Collapse
|
8
|
Influence of Solvents on the Electroactivity of PtAl/rGO Catalyst Inks and Anode in Direct Ethanol Fuel Cell. J CHEM-NY 2021. [DOI: 10.1155/2021/6649089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This paper presents research on the effects of common solvents such as n-butyl acetate, isopropanol, and ethanol on the properties and electroactivity of catalyst ink based on PtAl/rGO. The inks prepared by mixing PtAl/rGO catalyst, Nafion solution (5 wt%), and solvent were coated on carbon cloth by the spin coating method. The results obtained showed that ethanol was the most suitable solvent for the preparation of catalyst ink with a volume ratio between catalyst slurry and solvent of 1 : 1 (CI-EtOH (1/1) ink). The surface of the CI-EtOH (1/1) coated electrode was smooth, flat, and even and had no cracks due to the increase of Nafion mobility, resulting in significant improvement in the interaction between Pt particles and ionomer. Moreover, the electrochemical activity of the CI-EtOH (1/1) ink in ethanol electrooxidation reaction, in both acidic and alkaline media, has the highest value, with the forward current density, IF, reaching 1793 mA mgPt−1 and 4751 mA mgPt−1, respectively. In the application in direct ethanol fuel cell (DEFC), the CI-EtOH ink-coated anode also exhibited the highest power density in both PEM-DEFC (with a proton exchange membrane) and AEM-DEFC (with an anion exchange membrane) at 19.10 mW cm−2 and 27.07 mW cm−2, respectively.
Collapse
|
9
|
Xie L, Liang J, Priest C, Wang T, Ding D, Wu G, Li Q. Engineering the atomic arrangement of bimetallic catalysts for electrochemical CO 2 reduction. Chem Commun (Camb) 2021; 57:1839-1854. [PMID: 33527108 DOI: 10.1039/d0cc07589b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The electrochemical CO2 reduction reaction (CO2RR) to form highly valued chemicals is a sustainable solution to address the environmental issues caused by excessive CO2 emissions. Generally, it is challenging to achieve high efficiency and selectivity simultaneously in the CO2RR due to multi-proton/electron transfer processes and complex reaction intermediates. Among the studied formulations, bimetallic catalysts have attracted significant attention with promising activity, selectivity, and stability. Engineering the atomic arrangement of bimetallic nanocatalysts is a promising strategy for the rational design of structures (intermetallic, core/shell, and phase-separated structures) to improve catalytic performance. This review summarizes the recent advances, challenges, and opportunities in developing bimetallic catalysts for the CO2RR. In particular, we firstly introduce the possible reaction pathways on bimetallic catalysts concerning the geometric and electronic properties of intermetallic, core/shell, and phase-separated structures at the atomic level. Then, we critically examine recent advances in crystalline structure engineering for bimetallic catalysts, aiming to establish the correlations between structures and catalytic properties. Finally, we provide a perspective on future research directions, emphasizing current challenges and opportunities.
Collapse
Affiliation(s)
- Linfeng Xie
- State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Jiashun Liang
- State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Cameron Priest
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA. and Idaho National Laboratory, Idaho Falls, ID 83415, USA.
| | - Tanyuan Wang
- State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Dong Ding
- Idaho National Laboratory, Idaho Falls, ID 83415, USA.
| | - Gang Wu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA.
| | - Qing Li
- State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
10
|
Dong X, Lu S, Xu W, Li S. The fabrication composite material of bimetallic micro/nanostructured palladium–platinum alloy and graphene on nickel foam for the enhancement of electrocatalytic activity. NEW J CHEM 2021. [DOI: 10.1039/d1nj00196e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A composite of micro/nanostructured palladium–platinum alloy, reduced graphene oxide and polydopamine on nickel foam was obtained by a chemical immersion method and anneal method with high catalytic efficiency for the ethanol oxidation.
Collapse
Affiliation(s)
- Xiuqi Dong
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
- P. R. China
| | - Shixiang Lu
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
- P. R. China
| | - Wenguo Xu
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
- P. R. China
| | - Shuguang Li
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
- P. R. China
| |
Collapse
|
11
|
Zhang J, Shen L, Jiang Y, Sun S. Random alloy and intermetallic nanocatalysts in fuel cell reactions. NANOSCALE 2020; 12:19557-19581. [PMID: 32986070 DOI: 10.1039/d0nr05475e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fuel cells that use small organic molecules or hydrogen as the anode fuel can power clean electric vehicles. From an experimental perspective, the possible fuel cells' electrocatalytic reaction mechanisms are obtained through in situ electrochemical spectroscopy techniques and density functional theory calculations, providing theoretical guidance for further development of novel nanocatalysts. As advanced nanocatalysts for fuel cells' electrochemical reactions, alloy nanomaterials have greatly improved electrocatalytic activity and stability and have attracted widespread attention. Enhanced electrocatalytic performance of alloy nanocatalysts could be closely related to the synergistic effects, such as electronic and strain effects. Depending on the arrangement of atoms, alloys can be classified into random alloy and intermetallic compounds (ordered structure). Intermetallic compounds generally have lower heats of formation and stronger heteroatomic bonding strength relative to the random alloy, resulting in high chemical and structural stability in either full pH solutions or electrochemical tests. Here, we summarize the latest advances and the structure-function relationship of noble metal alloy nanocatalysts, among which Pt-based catalysts are the main ones, as well as comprehensively understand why they significantly affect the electrocatalytic performance of fuel cells. Novel alloy nanocatalysts with a robust three-phase interface to achieve efficient charge and mass transfer can obtain desirable activity and stability in the electrochemical workstation tests, and is expected to acquire a higher power density on fuel cell test systems with harsh test conditions.
Collapse
Affiliation(s)
- Junming Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China.
| | | | | | | |
Collapse
|
12
|
Messa Moreira TF, Neto SA, Lemoine C, Kokoh KB, Morais C, Napporn TW, Olivi P. Rhodium effects on Pt anode materials in a direct alkaline ethanol fuel cell. RSC Adv 2020; 10:35310-35317. [PMID: 35515668 PMCID: PMC9056937 DOI: 10.1039/d0ra06570f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/17/2020] [Indexed: 12/04/2022] Open
Abstract
The development of efficient catalysts for ethanol oxidation in alkaline medium requires a synthetic approach that may prevent the surfactant molecules from being adsorbed at the catalytic sites and decreasing the electrochemical performance of the final direct ethanol fuel cell. Toward this goal, the recently reported surfactant-less Bromide Anion Exchange (BAE) method, appears as a promising route to conveniently aim at preparing PtRh alloys dispersed on carbon substrates. The catalysts prepared herein by the BAE method were characterized physicochemically to obtain structural information on the PtRh/C nanomaterials, their morphology (size and shape), and their chemical and surface composition. Electrochemical behavior and properties of these electrodes were then investigated in a half-cell before the implementation of a direct ethanol fuel cell (DEFC) in a home-made anion exchange membrane Teflon cell. The analysis of the electrolytic solution in the anodic compartment by chromatography revealed that acetate was the major reaction product and the carbonate amount increased with the Rh content in the bimetallic composition. With 2.8–3.6 nm particle sizes, the Pt50Rh50/C catalyst exhibited the highest activity towards the ethanol electrooxidation. The development of efficient catalysts for ethanol oxidation in alkaline medium requires an approach that avoids surfactant molecules from being adsorbed at active sites and decreasing the electrochemical performance of the direct ethanol fuel cell.![]()
Collapse
Affiliation(s)
- Thamyres Fernandes Messa Moreira
- Laboratório de Eletroquímica e Eletrocatálise Ambiental, Departamento de Química da Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo Av. Bandeirantes, 3900 14040-901 Ribeirão Preto SP Brazil .,Université de Poitiers, IC2MP UMR 7285 CNRS 4, Rue Michel Brunet, B27, TSA 51106 86073 Poitiers Cedex 09 France
| | - Sidney Aquino Neto
- Laboratório de Eletroquímica e Eletrocatálise Ambiental, Departamento de Química da Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo Av. Bandeirantes, 3900 14040-901 Ribeirão Preto SP Brazil
| | - Charly Lemoine
- Université de Poitiers, IC2MP UMR 7285 CNRS 4, Rue Michel Brunet, B27, TSA 51106 86073 Poitiers Cedex 09 France
| | - Kouakou Boniface Kokoh
- Université de Poitiers, IC2MP UMR 7285 CNRS 4, Rue Michel Brunet, B27, TSA 51106 86073 Poitiers Cedex 09 France
| | - Cláudia Morais
- Université de Poitiers, IC2MP UMR 7285 CNRS 4, Rue Michel Brunet, B27, TSA 51106 86073 Poitiers Cedex 09 France
| | - Teko Wilhelmin Napporn
- Université de Poitiers, IC2MP UMR 7285 CNRS 4, Rue Michel Brunet, B27, TSA 51106 86073 Poitiers Cedex 09 France
| | - Paulo Olivi
- Laboratório de Eletroquímica e Eletrocatálise Ambiental, Departamento de Química da Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo Av. Bandeirantes, 3900 14040-901 Ribeirão Preto SP Brazil
| |
Collapse
|
13
|
High stability three-dimensional porous PtSn nano-catalyst for ethanol electro-oxidation reaction. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.04.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Wang F, Wang K, An C, An C, Zhang W. PtPdCu nanodendrites enable complete ethanol oxidation by enhancing C C bond cleavage. J Colloid Interface Sci 2020; 571:118-125. [DOI: 10.1016/j.jcis.2020.03.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 10/24/2022]
|
15
|
Xiong Y, Dong J, Huang ZQ, Xin P, Chen W, Wang Y, Li Z, Jin Z, Xing W, Zhuang Z, Ye J, Wei X, Cao R, Gu L, Sun S, Zhuang L, Chen X, Yang H, Chen C, Peng Q, Chang CR, Wang D, Li Y. Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. NATURE NANOTECHNOLOGY 2020; 15:390-397. [PMID: 32231268 DOI: 10.1038/s41565-020-0665-x] [Citation(s) in RCA: 229] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/26/2020] [Indexed: 05/03/2023]
Abstract
To meet the requirements of potential applications, it is of great importance to explore new catalysts for formic acid oxidation that have both ultra-high mass activity and CO resistance. Here, we successfully synthesize atomically dispersed Rh on N-doped carbon (SA-Rh/CN) and discover that SA-Rh/CN exhibits promising electrocatalytic properties for formic acid oxidation. The mass activity shows 28- and 67-fold enhancements compared with state-of-the-art Pd/C and Pt/C, respectively, despite the low activity of Rh/C. Interestingly, SA-Rh/CN exhibits greatly enhanced tolerance to CO poisoning, and Rh atoms in SA-Rh/CN resist sintering after long-term testing, resulting in excellent catalytic stability. Density functional theory calculations suggest that the formate route is more favourable on SA-Rh/CN. According to calculations, the high barrier to produce CO, together with the relatively unfavourable binding with CO, contribute to its CO tolerance.
Collapse
Affiliation(s)
- Yu Xiong
- Department of Chemistry, Tsinghua University, Beijing, China
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, China
| | - Juncai Dong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Zheng-Qing Huang
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Pingyu Xin
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Wenxing Chen
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Yu Wang
- Shanghai Synchrotron Radiation Facilities, Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai, China
| | - Zhi Li
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Zhao Jin
- Laboratory of Advanced Power Sources, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
- Jilin Province Key Laboratory of Low Carbon Chemical Power Sources, Changchun, Jilin, China
| | - Wei Xing
- Laboratory of Advanced Power Sources, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
- Jilin Province Key Laboratory of Low Carbon Chemical Power Sources, Changchun, Jilin, China
| | - Zhongbin Zhuang
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Jinyu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Xing Wei
- College of Chemistry and Molecular Sciences, Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan, China
| | - Rui Cao
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Shigang Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Lin Zhuang
- College of Chemistry and Molecular Sciences, Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan, China
| | - Xiaoqing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, China
| | - Chen Chen
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Qing Peng
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Chun-Ran Chang
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, China.
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing, China.
| |
Collapse
|
16
|
Supporting PtRh alloy nanoparticle catalysts by electrodeposition on carbon paper for the ethanol electrooxidation in acidic medium. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.113960] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
de Carmargo VF, Fontes EH, Nandenha J, de Souza RFB, Neto AO. High activity of Pt–Rh supported on C–ITO for ethanol oxidation in alkaline medium. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-04050-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Rizo R, Pérez‐Rodríguez S, García G. Well‐Defined Platinum Surfaces for the Ethanol Oxidation Reaction. ChemElectroChem 2019. [DOI: 10.1002/celc.201900600] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rubén Rizo
- Instituto de Materiales y Nanotecnología Departamento de QuímicaUniversidad de La Laguna PO Box 456 38200 La Laguna, Santa Cruz de Tenerife Spain
- Current address: Department of Interface ScienceFritz-Haber Institute of the Max Planck Society Faradayweg 4–6 14195 Berlin Germany
| | | | - Gonzalo García
- Instituto de Materiales y Nanotecnología Departamento de QuímicaUniversidad de La Laguna PO Box 456 38200 La Laguna, Santa Cruz de Tenerife Spain
| |
Collapse
|
19
|
Zhu Y, Bu L, Shao Q, Huang X. Subnanometer PtRh Nanowire with Alleviated Poisoning Effect and Enhanced C–C Bond Cleavage for Ethanol Oxidation Electrocatalysis. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01375] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yiming Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu 215123, China
| | - Lingzheng Bu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu 215123, China
| | - Qi Shao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu 215123, China
| | - Xiaoqing Huang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu 215123, China
| |
Collapse
|
20
|
Zhu C, Lan B, Wei RL, Wang CN, Yang YY. Potential-Dependent Selectivity of Ethanol Complete Oxidation on Rh Electrode in Alkaline Media: A Synergistic Study of Electrochemical ATR-SEIRAS and IRAS. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00138] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chan Zhu
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University, Chengdu, 610041 Sichuan Province, China
| | - Bin Lan
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University, Chengdu, 610041 Sichuan Province, China
| | - Rui-Lin Wei
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University, Chengdu, 610041 Sichuan Province, China
| | - Chao-Nan Wang
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University, Chengdu, 610041 Sichuan Province, China
| | - Yao-Yue Yang
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University, Chengdu, 610041 Sichuan Province, China
| |
Collapse
|