1
|
Hajesfandyari Z, Naderi L, Shahrokhian S, Amini MK. Glycerate-assisted CoMn-sulfide with microsphere architecture confined by nanoparticles as an efficient enzyme-free sensor for amperometric measurement of glucose in serum, saliva and beverage samples. Food Chem 2024; 467:142175. [PMID: 39689544 DOI: 10.1016/j.foodchem.2024.142175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 12/19/2024]
Abstract
The preparation of binary metal chalcogenides with ideal architectures can effectively enhance the electrocatalytic properties of these materials, as promising glucose sensors. Herein, CoMn-S spheres were synthesized using CoMn-glycerate as the precursor, followed by a sulfidation reaction. First, glycerate spheres were prepared by solvothermal treatment of Co and Mn ions in isopropanol solvent mixed with glycerol. Then, CoMn-glycerate was solvothermally sulfidized using an ion-exchange process to prepare glycerate-assisted CoMn-S spheres with many nanoparticles on their surface which provide abundant electrocatalyst sites. The sensing outcomes revealed that glycerate-assisted CoMn-S spheres have impressive electroanalytical performance with high sensitivities of 5148 and 1928 μA mM-1 cm-2 in broad measuring ranges of 0.001-0.63 mM and 0.63-2.53 mM, quick response to glucose oxidation (2 s), and a low detection limit of (0.88 μM). Furthermore, the sensor has been successfully employed to measure glucose in human serum, saliva, and beverage samples such as fruit juice, milk, and soft drinks with satisfactory recoveries. The high electrocatalytic activity of the CoMn-S sphere sensor results from the synergy between the components and nanoparticle-assembled microspheres, which creates a high surface area, shortens the charge transfer routes, and improves the electro-conductivity. The performance characteristics of the glycerate-assisted CoMn-S spheres were compared with CoMn-hydroxide needles and CoMn-S sheets. The glycerate-derived design provides an efficient and effective strategy to construct the enzyme-free platforms with high assay capability.
Collapse
Affiliation(s)
- Zahra Hajesfandyari
- Department of Chemistry, Sharif University of Technology, Tehran 11155-9516, Iran
| | - Leila Naderi
- Department of Chemistry, Sharif University of Technology, Tehran 11155-9516, Iran.
| | - Saeed Shahrokhian
- Department of Chemistry, Sharif University of Technology, Tehran 11155-9516, Iran.
| | | |
Collapse
|
2
|
González-Banciella A, Martinez-Diaz D, Sánchez M, Ureña A. Nanostructured Transition Metal Oxides on Carbon Fibers for Supercapacitor and Li-Ion Battery Electrodes: An Overview. Int J Mol Sci 2024; 25:8514. [PMID: 39126084 PMCID: PMC11312658 DOI: 10.3390/ijms25158514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Nowadays, owing to the new technological and industrial requirements for equipment, such as flexibility or multifunctionally, the development of all-solid-state supercapacitors and Li-ion batteries has become a goal for researchers. For these purposes, the composite material approach has been widely proposed due to the promising features of woven carbon fiber as a substrate material for this type of material. Carbon fiber displays excellent mechanical properties, flexibility, and high electrical conductivity, allowing it to act as a substrate and a collector at the same time. However, carbon fiber's energy-storage capability is limited. Several coatings have been proposed for this, with nanostructured transition metal oxides being one of the most popular due to their high theoretical capacity and surface area. In this overview, the main techniques used to achieve these coatings-such as solvothermal synthesis, MOF-derived obtention, and electrochemical deposition-are summarized, as well as the main strategies for alleviating the low electrical conductivity of transition metal oxides, which is the main drawback of these materials.
Collapse
Affiliation(s)
- Andrés González-Banciella
- Materials Science and Engineering Area, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Mostoles, Spain; (A.G.-B.); (D.M.-D.); (A.U.)
| | - David Martinez-Diaz
- Materials Science and Engineering Area, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Mostoles, Spain; (A.G.-B.); (D.M.-D.); (A.U.)
| | - María Sánchez
- Materials Science and Engineering Area, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Mostoles, Spain; (A.G.-B.); (D.M.-D.); (A.U.)
- Instituto de Investigación de Tecnologías para la Sostenibilidad, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Mostoles, Spain
| | - Alejandro Ureña
- Materials Science and Engineering Area, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Mostoles, Spain; (A.G.-B.); (D.M.-D.); (A.U.)
- Instituto de Investigación de Tecnologías para la Sostenibilidad, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Mostoles, Spain
| |
Collapse
|
3
|
Kim KC, Lin X, Liu X, Li C. High-performance anode electrocatalyst of MnCo 2S 4-Co 4S 3/bamboo charcoal for stimulating power generation in microbial fuel cell. ENVIRONMENTAL TECHNOLOGY 2024; 45:3328-3338. [PMID: 37194302 DOI: 10.1080/09593330.2023.2215453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 05/05/2023] [Indexed: 05/18/2023]
Abstract
Microbial fuel cell (MFC) is a promising technology for recovering energy in wastewater through bacterial metabolism. However, it always suffers from low power density and electron transfer efficiency, restricting the application. This study fabricated the MnCo2S4-Co4S3/bamboo charcoal (MCS-CS/BC) through an easy one-step hydrothermal method, and the material was applied to carbon felt (CF) to form high-performance MFC anode. MCS-CS/BC-CF anode exhibited lower Rct (10.1 Ω) than BC-CF (17.24 Ω) and CF anode (116.1 Ω), exhibiting higher electrochemical activity. MCS-CS/BC-CF anode promoted the electron transfer rate and resulted in enhanced power density, which was 9.27 times higher (980 mW m-2) than the bare CF (105.7 mW m-2). MCS-CS/BC-CF anode showed the best biocompatibility which attracted distinctly larger biomass (146.27 mg/μL) than CF (20 mg/μL) and BC-CF anode (20.1 mg/μL). The typical exoelectrogens (Geobacter and etc.) took dramatically higher proportion on MCS-CS/BC-CF anode (59.78%) than CF (2.99%) and BC-CF anode (26.67%). In addition, MCS-CS/BC stimulated the synergistic effect between exoelectrogens and fermentative bacteria, greatly favouring the extracellular electron transfer rate between bacteria and the anode and the power output. This study presented an efficient way of high-performance anode electrocatalyst fabrication for stimulating MFC power generation, giving suggestions for high-efficient energy recovery from wastewater.
Collapse
Affiliation(s)
- Kuk Chol Kim
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, People's Republic of China
- Metallurgical Faculty, Kim Chaek University of Science and Technology, Pyongyang, Democratic People's Republic of Korea
| | - Xiaoqiu Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, People's Republic of China
| | - Xiaolu Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, People's Republic of China
| | - Congju Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, People's Republic of China
| |
Collapse
|
4
|
Xiang Y, Xie X, Zhong H, Xiao F, Xie R, Liu B, Guo H, Hu D, Zhang P, Huang H. Efficient Catalytic Elimination of Toxic Volatile Organic Compounds via Advanced Oxidation Process Wet Scrubbing with Bifunctional Cobalt Sulfide/Activated Carbon Catalysts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8846-8856. [PMID: 38728579 DOI: 10.1021/acs.est.4c00481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Advanced oxidation process (AOP) wet scrubber is a powerful and clean technology for organic pollutant treatment but still presents great challenges in removing the highly toxic and hydrophobic volatile organic compounds (VOCs). Herein, we elaborately designed a bifunctional cobalt sulfide (CoS2)/activated carbon (AC) catalyst to activate peroxymonosulfate (PMS) for efficient toxic VOC removal in an AOP wet scrubber. By combining the excellent VOC adsorption capacity of AC with the highly efficient PMS activation activity of CoS2, CoS2/AC can rapidly capture VOCs from the gas phase to proceed with the SO4•- and HO• radical-induced oxidation reaction. More than 90% of aromatic VOCs were removed over a wide pH range (3-11) with low Co ion leaching (0.19 mg/L). The electron-rich sulfur vacancies and low-valence Co species were the main active sites for PMS activation. SO4•- was mainly responsible for the initial oxidation of VOCs, while HO• and O2 acted in the subsequent ring-opening and mineralization processes of intermediates. No gaseous intermediates from VOC oxidation were detected, and the highly toxic liquid intermediates like benzene were also greatly decreased, thus effectively reducing the health toxicity associated with byproduct emissions. This work provided a comprehensive understanding of the deep oxidation of VOCs via AOP wet scrubber, significantly accelerating its application in environmental remediation.
Collapse
Affiliation(s)
- Yongjie Xiang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Xiaowen Xie
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Huanran Zhong
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Fei Xiao
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Ruijie Xie
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Biyuan Liu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Hao Guo
- School of Chemical Engineering and Technology, Xinjiang University, Urumchi 830017, P. R. China
| | - Di Hu
- School of Chemical Engineering and Technology, Xinjiang University, Urumchi 830017, P. R. China
| | - Pan Zhang
- School of Chemical Engineering and Technology, Xinjiang University, Urumchi 830017, P. R. China
| | - Haibao Huang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
- School of Chemical Engineering and Technology, Xinjiang University, Urumchi 830017, P. R. China
| |
Collapse
|
5
|
Kaur R, Kaur S, Dwibedi V, Kaur C, Akhtar N, Alzahrani A. Development and characterization of rice bran-gum Arabic based encapsulated biofertilizer for enhanced shelf life and controlled bacterial release. Front Microbiol 2023; 14:1267730. [PMID: 37822736 PMCID: PMC10563852 DOI: 10.3389/fmicb.2023.1267730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/05/2023] [Indexed: 10/13/2023] Open
Abstract
Introduction Currently, microbe-based approaches are being tested to address nutrient deficiencies and enhance nutrient use efficiency in crops. However, these bioinoculants have been unsuccessful at the commercial level due to differences in field and in-vivo conditions. Thus, to enhance bacterial stability, microbial formulations are considered, which will provide an appropriate microenvironment and protection to the bacteria ensuring better rhizospheric-colonization. Methods The present study aimed to develop a phosphobacterium-based encapsulated biofertilizer using the ion-chelation method, wherein a bacterial strain, Myroid gitamensis was mixed with a composite solution containing rice bran (RB), gum Arabic (GA), tricalcium phosphate, and alginate to develop low-cost and slow-release microbeads. The developed microbead was studied for encapsulation efficiency, shape, size, external morphology, shelf-life, soil release behavior, and biodegradability and characterized using SEM, FTIR, and XRD. Further, the wheat growth-promoting potential of microbeads was studied. Results The developed microbeads showed an encapsulation efficiency of 94.11%. The air-dried beads stored at 4°C were favorable for bacterial survival for upto 6 months. Microbeads showed 99.75% degradation within 110 days of incubation showing the bio-sustainable nature of the beads. The application of dried formulations to the pot-grown wheat seedlings resulted in a higher germination rate, shoot length, root length, fresh weight, dry weight of the seedlings, and higher potassium and phosphorus uptake in wheat. Discussion This study, for the first time, provides evidence that compared to liquid biofertilizers, the RB-GA encapsulated bacteria have better potential of enhancing wheat growth and can be foreseen as a future fertilizer option for wheat.
Collapse
Affiliation(s)
- Rajinder Kaur
- Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, Mohali, India
| | - Sukhminderjit Kaur
- Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, Mohali, India
| | - Vagish Dwibedi
- Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, Mohali, India
| | - Charanjit Kaur
- Department of Microbiology, Bhojia Institute of Life Sciences, Baddi, India
| | - Nadeem Akhtar
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Abdulhakeem Alzahrani
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Jiang J, Huang X, Sun R, Chen X, Han S. Interface engineered hydrangea-like ZnCo 2O 4/NiCoGa-layered double hydroxide@polypyrrole core-shell heterostructure for high-performance hybrid supercapacitor. J Colloid Interface Sci 2023; 640:662-679. [PMID: 36893533 DOI: 10.1016/j.jcis.2023.02.132] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/15/2023] [Accepted: 02/25/2023] [Indexed: 03/08/2023]
Abstract
Rationally constructing advanced battery-type electrodes with hierarchical core-shell heterostructure is essential for improving the energy density and cycling stability of hybrid supercapacitors. Herein, this work successfully constructs hydrangea-like ZnCo2O4/NiCoGa-layered double hydroxide@polypyrrole (denoted as ZCO/NCG-LDH@PPy) core-shell heterostructure. Specifically, the ZCO/NCG-LDH@PPy employs ZCO nanoneedles clusters with large open void space and rough surfaces as the core, and NCG-LDH@PPy composite as the shell, comprising hexagonal NCG-LDH nanosheets with rich active surface area, and conductive PPy films with different thicknesses. Meanwhile, density functional theory (DFT) calculations authenticate the charge redistribution at the heterointerfaces between ZCO and NCG-LDH phases. Benefiting from the abundant heterointerfaces and synergistic effect among different active components, the ZCO/NCG-LDH@PPy electrode acquires an extraordinary specific capacity of 381.4 mAh g-1 at 1 A g-1, along with excellent cycling stability (89.83% capacity retention) after 10,000 cycles at 20 A g-1. Furthermore, the prepared ZCO/NCG-LDH@PPy//AC hybrid supercapacitor (HSC) exhibits a remarkable energy density (81.9 Wh kg-1), an outstanding power density (17,003.7 W kg-1), and superior cycling performance (a capacitance retention of 88.41% and a coulombic efficiency of 93.97%) at the end of the 10,000th cycle. Finally, two ZCO/NCG-LDH@PPy//AC HSCs in series can light up a LED lamp for 15 min, indicating its excellent application prospects.
Collapse
Affiliation(s)
- Jibo Jiang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Haiquan Road 100, 201418 Shanghai, PR China.
| | - Xing Huang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Haiquan Road 100, 201418 Shanghai, PR China
| | - Ran Sun
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Haiquan Road 100, 201418 Shanghai, PR China
| | - Xiaomin Chen
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Haiquan Road 100, 201418 Shanghai, PR China
| | - Sheng Han
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Haiquan Road 100, 201418 Shanghai, PR China.
| |
Collapse
|
7
|
Liu L, Li Z, Wang H. Dual regulation strategy to enhance the electrochemical performance of rich sulfur vacancies NiCo2S4 integrate electrode material for supercapacitors. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.141819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
8
|
FeTe:Fe2TeO5 nanodots embedded MWCNTs: Nanocomposite electrode towards supercapacitor application. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2022.104607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
9
|
Liu T, Chen L, Chen L, Tian G, Ji M, Zhou S. Layer-by-Layer Heterostructure of MnO 2@Reduced Graphene Oxide Composites as High-Performance Electrodes for Supercapacitors. MEMBRANES 2022; 12:1044. [PMID: 36363599 PMCID: PMC9697611 DOI: 10.3390/membranes12111044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/22/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
In this paper, δ-MnO2 with layered structure was prepared by a facile liquid phase method, and exfoliated MnO2 nanosheet (e-MnO2) was obtained by ultrasonic exfoliation, whose surface was negatively charged. Then, positive charges were grafted on the surface of MnO2 nanosheets with a polycation electrolyte of polydiallyl dimethylammonium chloride (PDDA) in different concentrations. A series of e-MnO2@reduced graphene oxide (rGO) composites were obtained by electrostatic self-assembly combined with hydrothermal chemical reduction. When PDDA was adjusted to 0.75 g/L, the thickness of e-MnO2 was ~1.2 nm, and the nanosheets were uniformly adsorbed on the surface of graphene, which shows layer-by-layer morphology with a specific surface area of ~154 m2/g. On account of the unique heterostructure, the composite exhibits good electrochemical performance as supercapacitor electrodes. The specific capacitance of e-MnO2-0.75@rGO can reach 456 F/g at a current density of 1 A/g in KOH electrolyte, which still remains 201 F/g at 10 A/g. In addition, the capacitance retention is 98.7% after 10000 charge-discharge cycles at 20 A/g. Furthermore, an asymmetric supercapacitor (ASC) device of e-MnO2-0.75@rGO//graphene hydrogel (GH) was assembled, of which the specific capacitance achieves 94 F/g (1 A/g) and the cycle stability is excellent, with a retention rate of 99.3% over 10000 cycles (20 A/g).
Collapse
Affiliation(s)
- Tingting Liu
- Qinhuangdao Key Laboratory of Marine Oil and Gas Resource Exploitation and Pollution Prevention, Northeast Petroleum University at Qinhuangdao, Qinhuangdao 066004, China
- Provincial Key Laboratory of Polyolefin New Materials, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, China
| | - Lei Chen
- Qinhuangdao Key Laboratory of Marine Oil and Gas Resource Exploitation and Pollution Prevention, Northeast Petroleum University at Qinhuangdao, Qinhuangdao 066004, China
| | - Ling Chen
- Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Guoxing Tian
- Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Mingtong Ji
- Qinhuangdao Key Laboratory of Marine Oil and Gas Resource Exploitation and Pollution Prevention, Northeast Petroleum University at Qinhuangdao, Qinhuangdao 066004, China
- Provincial Key Laboratory of Polyolefin New Materials, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, China
| | - Shuai Zhou
- Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
10
|
Dong X, Wang J, Miao J, Ren B, Wang X, Zhang L, Liu Z, Xu Y. Fe3O4/MnO2 co-doping phenolic resin porous carbon for high performance supercapacitors. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Revisiting the anodic stability of nickel-cobalt hydroxide/carbon composite electrodes for rechargeable Ni-Zn battery. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Tian ZF, Zeng HY, Lv SB, Long YW, Xu S, Li HB, Zou KM. Construction of NiCoZnS materials with controllable morphology for high-performance supercapacitors. NANOTECHNOLOGY 2022; 33:245703. [PMID: 34891144 DOI: 10.1088/1361-6528/ac4210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 12/09/2021] [Indexed: 06/13/2023]
Abstract
A facile two-step hydrothermal approach with post-sulfurization treatment was put forward to construct the mixed transition metal sulfide (NiCoZnS) with a high electrochemical performance. The different morphologies of NiCoZnS materials were successfully fabricated by adjusted the Ni/Co molar ratio of the NiCoZn(OH)F precursor. Moreover, thein situphase transformation from the NiCoZn(OH)F phase to Zn0.76Co0.24S and NiCo2S4phases and lattice defects via the S2-ion-exchange were determined by x-ray diffractometer, transmission electron microscopy and x-ray photoelectron spectroscopy techniques, which improved electric conductivity and interfacial active sites of the NiCoZnS, and so promoted the reaction kinetics. Significantly, the urchin-like NiCoZnS1/1prepared at the Ni/Co molar ratio of 1.0 exhibited promising electrochemical performances with high capacitance and excellent cycling stability. Furthermore, the asymmetric device (NiCoZnS//AC) using NiCoZnS1/1as the positive electrode had excellent supercapacitor performances with an energy density of 57.8 Wh·kg-1at a power density of 750 W·kg-1as well as a long cycle life (79.2% capacity retention after 10 000 cycles), indicating the potential application in high-performance supercapacitors.
Collapse
Affiliation(s)
- Zi-Feng Tian
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, People's Republic of China
| | - Hong-Yan Zeng
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, People's Republic of China
| | - Shi-Bing Lv
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, People's Republic of China
| | - Yi-Wen Long
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, People's Republic of China
| | - Sheng Xu
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, People's Republic of China
| | - Hao-Bo Li
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, People's Republic of China
| | - Kai-Min Zou
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, People's Republic of China
| |
Collapse
|
13
|
Jeong I, Han DY, Hwang J, Song WJ, Park S. Foldable batteries: from materials to devices. NANOSCALE ADVANCES 2022; 4:1494-1516. [PMID: 36134364 PMCID: PMC9419599 DOI: 10.1039/d1na00892g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 02/03/2022] [Indexed: 06/16/2023]
Abstract
Wearable electronics is a growing field that has important applications in advanced human-integrated systems with high performance and mechanical deformability, especially foldable characteristics. Although foldable electronics such as rollable TVs (LG signature OLED R) or foldable smartphones (Samsung Galaxy Z fold/flip series) have been successfully established in the market, these devices are still powered by rigid and stiff batteries. Therefore, to realize fully wearable devices, it is necessary to develop state-of-the-art foldable batteries with high performance and safety in dynamic deformation states. In this review, we cover the recent progress in developing materials and system designs for foldable batteries. The Materials section is divided into three sections aimed at helping researchers choose suitable materials for their systems. Several foldable battery systems are discussed and the combination of innovative materials and system design that yields successful devices is considered. Furthermore, the basic analysis process of electrochemical and mechanical properties is provided as a guide for researchers interested in the evaluation of foldable battery systems. The current challenges facing the practical application of foldable batteries are briefly discussed. This review will help researchers to understand various aspects (from material preparation to battery configuration) of foldable batteries and provide a brief guideline for evaluating the performance of these batteries.
Collapse
Affiliation(s)
- Insu Jeong
- Department of Chemistry, Pohang University of Science and Technology Pohang 37673 South Korea
| | - Dong-Yeob Han
- Department of Chemistry, Pohang University of Science and Technology Pohang 37673 South Korea
| | - Jongha Hwang
- Department of Organic Materials Engineering, Chungnam National University Daejeon 34134 South Korea
| | - Woo-Jin Song
- Department of Organic Materials Engineering, Chungnam National University Daejeon 34134 South Korea
| | - Soojin Park
- Department of Chemistry, Pohang University of Science and Technology Pohang 37673 South Korea
| |
Collapse
|
14
|
Cetinkaya A, Karadurmus L, Kaya SI, Ozcelikay G, Ozkan SA. Electrochemical Sensing of Anticancer Drug Using New Electrocatalytic Approach. Top Catal 2022. [DOI: 10.1007/s11244-021-01536-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Jia Y, Yin G, Lin Y, Ma Y. Recent progress of hierarchical MoS2 nanostructures for electrochemical energy storage. CrystEngComm 2022. [DOI: 10.1039/d1ce01439k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hierarchical MoS2 nanostructures are of increasing importance in energy storage via batteries or supercapacitors. Herein, the various hierarchical MoS2 materials as electrochemical electrode are reviewed in detail by classifying the...
Collapse
|
16
|
Li Y, Yan X, Zhang W, Zhou W, Zhu Y, Zhang M, Zhu W, Cheng X. Hierarchical micro-nano structure based NiCoAl-LDH nanosheets reinforced by NiCo2S4 on carbon cloth for asymmetric supercapacitor. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115982] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Wang H, Shu T, Yuan J, Li Y, Lin B, Wei F, Qi J, Sui Y. Highly stable lamellar array composed of CoSe2 nanoparticles for supercapacitors. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Carbon cloth as an important electrode support for the high selective electrosorption of uranium from acidic uranium mine wastewater. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119843] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
19
|
Design and fabrication of graphene anchored CeO2 hybrid nanocomposite electrodes for high performance energy storage device applications. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Nasrin K, Subramani K, Karnan M, Sathish M. MnCo2S4 – MXene: A novel hybrid electrode material for high performance long-life asymmetric supercapattery. J Colloid Interface Sci 2021; 600:264-277. [DOI: 10.1016/j.jcis.2021.05.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 01/23/2023]
|
21
|
Wang G, Zhu J, Quan Y, Wang J, Gao S, Xu X, Min Q, Ma Y, Guo Y, Wang Z. Facile synthesis of cobalt Disulfide/Carbon nanotube composite as High-performance supercapacitors electrode. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Metal-organic framework derived Co9S8/Ni3S2 composites on Ni foam with enhanced electrochemical performance by one-step sulfuration strategy for supercapacitors electrode. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Wang S, Zhang P, Liu C. Synthesis of hierarchical bimetallic sulfide NiCo2S4 for high-performance supercapacitors. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126334] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
24
|
Vinoth S, Govindasamy M, Wang SF, Alothman AA, Alshgari RA. Hydrothermally synthesized cubical zinc manganite nanostructure for electrocatalytic detection of sulfadiazine. Mikrochim Acta 2021; 188:131. [PMID: 33742263 DOI: 10.1007/s00604-021-04768-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/20/2021] [Indexed: 11/30/2022]
Abstract
An electrocatalyst modified electrode has been investigated to develop the rapid detection of antibiotics. The modified electrocatalyst was intended for the determination of sulfadiazine (SFZ) in biological fluids by electrochemical methods. Nanocube of zinc manganite (ZnMn2O4-NC) is prepared by hydrothermal method and a glassy carbon electrode (GCE) has been modified with the zinc manganite. The ZnMn2O4/GCE exhibit enhanced detection performances towards SFZ drug owing to their selective adsorption ability and the combination of electrostatic attraction of nanocube with SFZ. The modified electrocatalyst shows excellent electrocatalytic interactions with antibiotic drug. Besides, the modified sensors exhibit nanomolar detection limit (0.0021 μM) in 0.05 M phosphate buffer (pH = 7.0) using differential pulse voltammetric method. The working range of the modified electrode is 0.008-1264 μM, and the sensitivity of the SFZ sensor is 11.44 μA μM-1 cm-2. The modified sensor stability and reproducibility performances have been examined by electrochemical method. In addition, the obtained results of real sample analysis with different concentrations of SFZ in biological fluids are satisfactory with good recovery.
Collapse
Affiliation(s)
- Subramaniyan Vinoth
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Rd., Taipei, 106, Taiwan
| | - Mani Govindasamy
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Rd., Taipei, 106, Taiwan.
| | - Sea-Fue Wang
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Rd., Taipei, 106, Taiwan.
| | - Asma A Alothman
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Razan A Alshgari
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
25
|
Sriram B, Sathiyan A, Wang SF, Elanthamilan E, Joseph XB, Baby JN, Merlin JP, Ezhilarasi JC. Synergistic effect of Co3O4 nanoparticles with Bauhinia vahlii dry fruits derived activated carbon on energy storage applications. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2020.121931] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Abdel Maksoud MIA, Fahim RA, Shalan AE, Abd Elkodous M, Olojede SO, Osman AI, Farrell C, Al-Muhtaseb AH, Awed AS, Ashour AH, Rooney DW. Advanced materials and technologies for supercapacitors used in energy conversion and storage: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2021; 19:375-439. [DOI: 10.1007/s10311-020-01075-w] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/06/2020] [Indexed: 09/02/2023]
Abstract
AbstractSupercapacitors are increasingly used for energy conversion and storage systems in sustainable nanotechnologies. Graphite is a conventional electrode utilized in Li-ion-based batteries, yet its specific capacitance of 372 mA h g−1 is not adequate for supercapacitor applications. Interest in supercapacitors is due to their high-energy capacity, storage for a shorter period and longer lifetime. This review compares the following materials used to fabricate supercapacitors: spinel ferrites, e.g., MFe2O4, MMoO4 and MCo2O4 where M denotes a transition metal ion; perovskite oxides; transition metals sulfides; carbon materials; and conducting polymers. The application window of perovskite can be controlled by cations in sublattice sites. Cations increase the specific capacitance because cations possess large orbital valence electrons which grow the oxygen vacancies. Electrodes made of transition metal sulfides, e.g., ZnCo2S4, display a high specific capacitance of 1269 F g−1, which is four times higher than those of transition metals oxides, e.g., Zn–Co ferrite, of 296 F g−1. This is explained by the low charge-transfer resistance and the high ion diffusion rate of transition metals sulfides. Composites made of magnetic oxides or transition metal sulfides with conducting polymers or carbon materials have the highest capacitance activity and cyclic stability. This is attributed to oxygen and sulfur active sites which foster electrolyte penetration during cycling, and, in turn, create new active sites.
Collapse
|
27
|
Vijayalakshmi S, Elanthamilan E, Merlin JP, Lydia IS. Tuning the efficiency of CoFe 2O 4@rGO composite by encapsulating Ag nanoparticles for the photocatalytic degradation of methyl violet dye and energy storage systems. NEW J CHEM 2021. [DOI: 10.1039/d1nj03410c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photocatalytic activity of the Ag NPs/CoFe2O4@rGO composite.
Collapse
Affiliation(s)
- S. Vijayalakshmi
- PG & Research Department of Chemistry, Bishop Heber College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli-620 017, Tamil Nadu, India
| | - E. Elanthamilan
- PG & Research Department of Chemistry, Bishop Heber College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli-620 017, Tamil Nadu, India
| | - J. Princy Merlin
- PG & Research Department of Chemistry, Bishop Heber College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli-620 017, Tamil Nadu, India
| | - I. Sharmila Lydia
- PG & Research Department of Chemistry, Bishop Heber College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli-620 017, Tamil Nadu, India
| |
Collapse
|
28
|
A simple chemical approach for synthesis of Sr2Co2O5 nanoparticles and its application in the detection of chloramphenicol and in energy storage systems. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2020.114911] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
29
|
Cobalt sulfide embedded carbon nanofibers as a self-supporting template to improve lithium ion battery performances. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137351] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
30
|
Wang Y, Wang X, Dai X, Li K, Bao Z, Li H, Tian H, Yang PA, Zhou H, Chen H, Yu Y, Yan P, Zhang Y. Structural evolution and sulfuration of nickel cobalt hydroxides from 2D to 1D on 3D diatomite for supercapacitors. CrystEngComm 2021. [DOI: 10.1039/d1ce00838b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transition metal nickel–cobalt hydroxides are widely used as electrode materials for supercapacitors due to their intriguing active component properties.
Collapse
Affiliation(s)
- Yi Wang
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Xiushuang Wang
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Xingjian Dai
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Kailin Li
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Zhihao Bao
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Haiyan Li
- School of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing, 163318, China
| | - Huiwen Tian
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Ping-an Yang
- Key Laboratory of Industrial Internet of Things and Networked Control, Ministry of Education, School of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Huan Zhou
- China Ship Development and Design Center, Wuhan 430064, China
| | - Hui Chen
- China Ship Development and Design Center, Wuhan 430064, China
| | - Yaolun Yu
- Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing, 100094, China
| | - Peng Yan
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yuxin Zhang
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
31
|
Tseng TW, Rajaji U, Chen TW, Chen SM, Huang YC, Mani V, Irudaya Jothi A. Sonochemical synthesis and fabrication of perovskite type calcium titanate interfacial nanostructure supported on graphene oxide sheets as a highly efficient electrocatalyst for electrochemical detection of chemotherapeutic drug. ULTRASONICS SONOCHEMISTRY 2020; 69:105242. [PMID: 32673961 DOI: 10.1016/j.ultsonch.2020.105242] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
In green approaches for electrocatalyst synthesis, sonochemical methods play a powerful role in delivering the abundant surface areas and nano-crystalline properties that are advantageous to electrocatalytic detection. In this article, we proposed the sphere-like and perovskite type of bimetal oxides which are synthesized through an uncomplicated sonochemical procedure. As a yield, the novel calcium titanate (orthorhombic nature) nanoparticles (CaTiO3 NPs) decorated graphene oxide sheets (GOS) were obtained through simple ultrasonic irradiation by a high-intensity ultrasonic probe (Titanium horn; 50 kHz and 60 W). The GOS/CaTiO3 NC were characterized morphologically and chemically through the analytical methods (SEM, XRD, and EDS). Besides, as-prepared nanocomposites were modified on a GCE (glassy carbon electrode) and applied towards electrocatalytic and electrochemical sensing of chemotherapeutic drug flutamide (FD). Notably, FD is a crucial anticancer drug and also a non-steroidal anti-androgen chemical. Mainly, the designed and modified sensor has shown a wide linear range (0.015-1184 µM). A limit of detection was calculated as nanomolar level (5.7 nM) and sensitivity of the electrode is 1.073 μA μM-1 cm-2. The GOS/CaTiO3 modified electrodes have been tested in human blood and urine samples towards anticancer drug detection.
Collapse
Affiliation(s)
- Tien-Wen Tseng
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC.
| | - Umamaheswari Rajaji
- Electroanalysis and Biotelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC
| | - Tse-Wei Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC; Research and Development Center for Smart Textile Technology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Shen-Ming Chen
- Electroanalysis and Biotelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC.
| | - Yi-Chen Huang
- Electroanalysis and Biotelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC
| | - Veerappan Mani
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC
| | - A Irudaya Jothi
- Department of Chemistry, St. Joseph's College (Autonomous), Tiruchirappalli 620002, (Affiliated to Bharathidasan University, Tiruchirappali 620024), Tamilnadu, India
| |
Collapse
|
32
|
Hong X, Li J, Zhu G, Xu H, Zhang X, Zhao Y, Zhang J, Yan D, Yu A. Cobalt–nickel sulfide nanosheets modified by nitrogen-doped porous reduced graphene oxide as high-conductivity cathode materials for supercapacitor. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137156] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
33
|
Singh A, Ojha AK. Designing vertically aligned porous NiCo 2O 4@MnMoO 4 Core@Shell nanostructures for high-performance asymmetric supercapacitors. J Colloid Interface Sci 2020; 580:720-729. [PMID: 32717440 DOI: 10.1016/j.jcis.2020.07.062] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/28/2020] [Accepted: 07/12/2020] [Indexed: 11/28/2022]
Abstract
NiCo2O4@MnMoO4 core@shell nanostructures are synthesized as electrode material using hydrothermal method for the fabrication of asymmetric supercapacitor (ASC) device. The NiCo2O4@MnMoO4 electrode shows better electrochemical performance with specific capacitance (SC) of 1821 F/g at current density of 5 A/g and cycling stability of 94%. The NiCo2O4@MnMoO4 core@shell electrode shows better SC compared to pure NiCo2O4 and MnMoO4 electrodes. An ASC device is fabricated using NiCo2O4@MnMoO4 as a positive and rGO/Fe2O3 as negative electrode materials. Remarkably, the fabricated device shows a SC of 294 F/g at current density 4 A/g, with an energy density of 91.87 Wh/kg at a power density of 374.15 W/kg. The device shows good reversibility with cycling stability of 68% after 2,000 cycles. The ASC device is used to illuminate nine green color LEDs for 35 min. Therefore, the present report provides a simple method to fabricate efficient and stable energy storage devices for industrial applications.
Collapse
Affiliation(s)
- Arvind Singh
- Department of Physics, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Animesh K Ojha
- Department of Physics, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India.
| |
Collapse
|
34
|
Chinnapaiyan S, Chen TW, Chen SM, Abdullah Alothman Z, Ajmal Ali M, Wabaidur SM, Al-Hemaid F, Lee SY, Chang WH. Ultrasonic-assisted preparation and characterization of magnetic ZnFe 2O 4/g-C 3N 4 nanomaterial and their applications towards electrocatalytic reduction of 4-nitrophenol. ULTRASONICS SONOCHEMISTRY 2020; 68:105071. [PMID: 32505099 DOI: 10.1016/j.ultsonch.2020.105071] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/13/2020] [Accepted: 03/19/2020] [Indexed: 05/20/2023]
Abstract
Nanoball-structured ferromagnetic zinc ferrite nanocrystals (ZnFe2O4 NPs) entrapped with graphitic-carbon nitride (g-C3N4) was produced via straightforward and facile sonochemical synthetical technique (titanium probe; 100 W/cm2 and 50 KHz). The morphological (SEM), elemental (EDS), diffraction (XRD), XPS, and electrochemical studies (CV) have been carry out to verify the nanostructure and shape of the materials. The ZnFe2O4 NPs/g-C3N4 electrode (GCE) was constructed which displayed outstanding electrochemical ability towards toxic 4-nitrophenol (NTP). A sensitive, selective, reproducible, and durable electrochemical NTP sensor was developed by ZnFe2O4 NPs/g-C3N4 modified electrode. The modified sensor exhibited a high sensitivity and 4.17 nanomolars of LOD. It's greater than the LOD of previously reported NTP modified sensors. The real-time experiments of the modified electrochemical (ZnFe2O4 NPs/g-C3N4 electrode) sensor were successfully explained in various water (river and drinking) samples and its showed high standard recoveries. Therefore, sonochemical synthetical method and fabrication of modified electrode were developed this work based on environmental analysis of NTP sensor.
Collapse
Affiliation(s)
- Sathishkumar Chinnapaiyan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC
| | - Tse-Wei Chen
- Department of Materials, Imperial College London, London SW7, 2AZ, United Kingdom
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC.
| | - Z Abdullah Alothman
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - M Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - S M Wabaidur
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fahad Al-Hemaid
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Shih-Yi Lee
- Division of Pulmonary and Critical Care Medicine, Taitung MacKay Memorial Hospital, MacKay Memorial Hospital, MacKay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan.
| | - Wen-Han Chang
- MacKay Memorial College, Department of Cardiology, MacKay Memorial Hospital, Taiwan; Department of Emergency Medicine, MacKay Memorial Hospital, Taiwan; Graduate Institute of Injury Prevention and Control, Taipei Medical University, Department of Medicine, Taiwan
| |
Collapse
|
35
|
Elanthamilan E, Rajkumar S, Merlin JP, Jona DS, Monisha K, Meena BC. Effect of decorating cobalt ferrite spinel structures on pistachio vera shell –derived activated carbon on energy storage applications. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136953] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
36
|
Investigation of sonochemically synthesized sphere-like metal tungstate nanocrystals decorated activated carbon sheets network and its application towards highly sensitive detection of arsenic drug in biological samples. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.09.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
37
|
Chen TW, Chinnapaiyan S, Chen SM, Ali MA, Elshikh MS, Lee SY, Chang WH, Mahmoud AH. Sonochemical approach to the synthesis of metal tungstate/nafion composite with electrocatalytic properties and its electrochemical sensing performance. ULTRASONICS SONOCHEMISTRY 2020; 66:104901. [PMID: 32244087 DOI: 10.1016/j.ultsonch.2019.104901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/19/2019] [Accepted: 11/25/2019] [Indexed: 06/11/2023]
Abstract
High-intensity ultrasound can be used to produce novel materials, offering an atypical pathway to recognized products without high bulk temperatures, high pressures, or long reaction times. A highly sensitive and selective robust modified sensor was developed using a composition of electrochemically active strontium metal (Sr) based tungstate interconnected with nafion polymer through a facile sonochemical approach. In addition, multiple parameters are important for sonochemical methods and specifically nanomaterial or electrocatalyst development during the ultrasonic irradiation. Moreover, high-intensity ultrasonic probe (Ti-horn) was used to synthesis of nanomaterial at 50 kHz and 200 W. The SrWO4/nafion was characterized via FESEM, EDX and XRD methods. 8-HD-guanosine (8-hydroxydeoxyguanosine) is one of the major byproduct of deoxyribonucleic acid (DNA) oxidation. The concentrations of 8-HD-guanosine within a cell are a measurement of oxidative stress in body and however its excess level in body causes carcinogenic threats. Therefore, the quantification of 8-HD-guanosine in biological samples with high sensitivity is of great significance. The SrWO4/nafion modified sensor displayed low detection of 14.36 nM and wide linear range (0.025-398.6 µM), compare to previous reports.
Collapse
Affiliation(s)
- Tse-Wei Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan; Research and Development Center for Smart Textile Technology, National Taipei University of Technology, Taipei 106, Taiwan
| | - Sathishkumar Chinnapaiyan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan.
| | - M Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed Soliman Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shih-Yi Lee
- Division of Pulmonary and Critical Care Medicine, Taitung MacKay Memorial Hospital, MacKay Memorial Hospital, MacKay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan.
| | - Wen-Han Chang
- Department of Emergency Medicine, Mackay Memorial Hospital, Taipei, Taiwan; The Graduate Institute of Manufacturing Technology (GIMT), National Taipei University of Technology, Taipei 106, Taiwan (ROC); Institute of Mechatronic Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Ahmed Hossam Mahmoud
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
38
|
Ye B, Cao X, Zhao Q, Zhou A, Wang J. Free-standing NiCoSe 2 nanostructure on Ni foam via electrodeposition as high-performance asymmetric supercapacitor electrode. NANOTECHNOLOGY 2020; 31:335706. [PMID: 32340008 DOI: 10.1088/1361-6528/ab8d6a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Designing a high-energy-density and power-density electrode for supercapacitors has become an increasingly important concept in the energy storage community. In this article, NiCoSe2 nanostructures were electrodeposited on nickel (Ni) foam and directly used as electrodes for supercapacitors. The effect on the morphology and electrochemical performance of NiCoSe2 prepared under different scan rates was measured through scanning electron microscopy and various electrochemical measurements. The resultant NiCoSe2 prepared with 5 mV s-1 exhibits a cross-linked porous nanostructure and a high specific capacitance of 2185 F g-1 at a current density of 1 A g-1. Taking advantage of these features, an ASC is constructed by using NiCoSe2 on Ni foam as the positive electrode and an active carbon electrode as the negative electrode with 3 M KOH as the electrolyte. The ASC displays a high-energy density of 41.8 Wh kg-1, an ultrahigh power output of 8 kW kg-1, as well as a long cycling life (91.4% capacity retention after 10 000 cycles). The excellent electrochemical performance makes the porous NiCoSe2 nanostructures a promising alternative in energy storage devices.
Collapse
Affiliation(s)
- Beirong Ye
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
| | | | | | | | | |
Collapse
|
39
|
Li HB, Xiao GF, Zeng HY, Cao XJ, Zou KM, Xu S. Supercapacitor based on the CuCo2S4@NiCoAl hydrotalcite array on Ni foam with high-performance. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136500] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
40
|
Zhu X, Sun M, Zhao R, Li Y, Zhang B, Zhang Y, Lang X, Zhu Y, Jiang Q. 3D hierarchical self-supported NiO/Co 3O 4@C/CoS 2 nanocomposites as electrode materials for high-performance supercapacitors. NANOSCALE ADVANCES 2020; 2:2785-2791. [PMID: 36132397 PMCID: PMC9417718 DOI: 10.1039/d0na00013b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/01/2020] [Indexed: 05/19/2023]
Abstract
Multi-dimensional nanomaterials have drawn great interest for application in supercapacitors due to their large accessible surface area. However, the achievements of superior rate capability and cycle stability are hindered by their intrinsic poor electronic/ionic conductivity and the erratic structure. Herein, we develop a three-dimensional hierarchical self-supported NiO/Co3O4@C/CoS2 hybrid electrode, in which NiO/Co3O4 nanosheets are in situ grown on a nickel foam substrate and combined with CoS2 nanospheres through a carbon medium. The hybrid electrode has a high specific capacity of ∼1025 C g-1 at 1 A g-1 with a superior rate performance of ∼74% capacity retention even at a current density of 30 A g-1. Moreover, the assembled NiO/Co3O4@C/CoS2//AC hybrid supercapacitor achieves excellent performance with a maximum voltage of 1.64 V and a high energy density of 62.83 W h kg-1 at a power density of 824.99 W kg-1 and excellent cycle stability performance with a capacity retention of ∼92% after 5000 cycles. The high electrochemical performance of the hybrid supercapacitor is mainly attributed to the porous structure of the NiO/Co3O4@C nanosheets and CoS2 nanospheres and intimate integration of active species. The rational strategy for the combination of various earth-abundant nanomaterials paves a new way for energy storage materials.
Collapse
Affiliation(s)
- Xingxing Zhu
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University Changchun 130022 China
| | - Mengyao Sun
- School of Materials Science and Engineering, Fudan University Shanghai 200433 China
| | - Rui Zhao
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University Changchun 130022 China
| | - Yingqi Li
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University Changchun 130022 China
- College of Materials Science and Engineering, Jilin Jianzhu University Changchun 130118 China
| | - Bo Zhang
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University Changchun 130022 China
| | - Yingli Zhang
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University Changchun 130022 China
| | - Xingyou Lang
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University Changchun 130022 China
| | - Yongfu Zhu
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University Changchun 130022 China
| | - Qing Jiang
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University Changchun 130022 China
| |
Collapse
|
41
|
Singh A, Ojha SK, Singh M, Ojha AK. Controlled synthesis of NiCo2S4@NiCo2O4 core@Shell nanostructured arrays decorated over the rGO sheets for high-performance asymmetric supercapacitor. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136349] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Tian J, Zhang A, Liu R, Huang W, Yuan Z, Zheng R, Wei D, Liu J. Preparation of CoS 2 supported flower-like NiFe layered double hydroxides nanospheres for high-performance supercapacitors. J Colloid Interface Sci 2020; 579:607-618. [PMID: 32645528 DOI: 10.1016/j.jcis.2020.06.086] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/13/2020] [Accepted: 06/21/2020] [Indexed: 11/27/2022]
Abstract
Layered double hydroxides (LDHs) are a kind of classic pseudocapacitive materials with lamellar structure and large specific surface area, which have attracted swinging attention in the electrochemical energy storage area. The CoS2@Ni is synthesized through a hydrothermal process, followed by surface generation of the flower-like nickel-iron layered double hydroxide (NiFe-LDH) nanospheres through a hydrothermal process, which is directly used to design a binder-free electrode with a splendid capacitance capability. The as-synthesized NiFe-LDH@CoS2@Ni electrode presents an outstanding specific capacitance of 11.28 F cm-2 (3880 F g-1) at 2 mA cm-2 (1.17 A g-1) in a three electrodes system. Also, the all-solid-state asymmetric supercapacitor (ASC) is combined utilizing the NiFe-LDH@CoS2@Ni hybrid as the positive electrodes and active carbon covered Ni foam as negative electrodes, respectively. The as-fabricated ASC exhibits a high energy density of 15.84 Wh kg-1 at the power density of 375.16 W kg-1 and can be able to lighten a blue LED indicator for more than 30 min, revealing that the prepared NiFe-LDH@CoS2@Ni owns great potential in the aspect of practical applications. Therefore, the prepared NiFe-LDH@CoS2@Ni with outstanding electrochemical properties could be applied for high-performance supercapacitors.
Collapse
Affiliation(s)
- Jinmi Tian
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao 266071, China
| | - Aitang Zhang
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao 266071, China
| | - Rui Liu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao 266071, China
| | - Weiguo Huang
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao 266071, China
| | - Zhen Yuan
- College of Material Science and Engineering, Linyi University, Linyi 276000, Shandong, China.
| | - Rongkun Zheng
- College of Material Science and Engineering, Linyi University, Linyi 276000, Shandong, China
| | - Di Wei
- College of Material Science and Engineering, Linyi University, Linyi 276000, Shandong, China
| | - Jingquan Liu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao 266071, China; College of Material Science and Engineering, Linyi University, Linyi 276000, Shandong, China.
| |
Collapse
|
43
|
Cao L, Kang ZW, Ding Q, Zhang X, Lin H, Lin M, Yang DP. Rapid pyrolysis of Cu 2+-polluted eggshell membrane into a functional Cu 2+-Cu +/biochar for ultrasensitive electrochemical detection of nitrite in water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 723:138008. [PMID: 32203798 DOI: 10.1016/j.scitotenv.2020.138008] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/03/2020] [Accepted: 03/16/2020] [Indexed: 05/28/2023]
Abstract
Bioremediation is one of efficient methods to solve the issues of water or soil contaminated by metal ions. However, the harvested biowaste is often troublesome to handle owing to the second pollution. Herein, the waste eggshell membrane was used to adsorb Cu2+ in wastewater, which was then converted into biochar containing copper ions (Cu2+-Cu+/Biochar) via a rapid pyrolysis. By integrating the collective advantages of eggshell membrane and Cu2+-Cu+, such as superior electrical conductivity, enlarged electrochemically active surface area, unique three-dimensional porous network characteristics, and fast charge transport, the Cu2+-Cu+/Biochar system can be used as a self-supporting sensor for detection of nitrite (NO2-). The sensor demonstrated superior electrochemical sensing abilities accompanied by a broad linear range (1-300 μM), ultralow detection limit (0.63 μM), and high sensitivity (30.0 μA·mM-1·cm-2). In addition, the fabricated electrochemical sensor has excellent stability, good reproducibility, and strong anti-interference performance. More importantly, the sensor has a high recovery rate when it is used to detect nitrite in tap water, mineral water, and sausage, indicating the feasibility of using this sensor in practical applications. This study provides a green and sustainable approach for simultaneous treatment of biomass waste eggshell membrane, remedy of heavy metals, and electrochemical detection of nitrite.
Collapse
Affiliation(s)
- Liping Cao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian 362000, China
| | - Ze-Wen Kang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian 362000, China
| | - Qi Ding
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian 362000, China
| | - Xiaohui Zhang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian 362000, China
| | - Hetong Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Mengshi Lin
- Food Science Program, Division of Food System & Bioengineering, University of Missouri, Columbia, MO 65211-5160, USA
| | - Da-Peng Yang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian 362000, China.
| |
Collapse
|
44
|
Zhang Y, Xu R, Qin Z, Feng S, Wang W, Chen C, Ju A. Facile preparation of porous sheet-sheet hierarchical nanostructure NiO/Ni-Co-Mn-O x with enhanced specific capacity and cycling stability for high performance supercapacitors. RSC Adv 2020; 10:22422-22431. [PMID: 35514605 PMCID: PMC9054623 DOI: 10.1039/d0ra03056b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/04/2020] [Indexed: 11/21/2022] Open
Abstract
NiO, Ni–Co–Mn–Ox and NiO/Ni–Co–Mn–Ox on nickel foam substrates were prepared via a chemical bath deposition–calcination. The thermodynamic behavior was observed by TG/DTA. The chemical structure and composition, phase structure and microstructures were tested by XPS, XRD, FE-SEM and TEM. The electrochemical performance was measured by CV, GCD and EIS. The mechanism for formation and enhancing electrochemical performance is also discussed. Firstly, the precursors such as NiOOH, CoOOH and MnOOH grow on nickel foam substrates from a homogeneous mixed solution via chemical bath deposition. Thereafter, these precursors are calcined and decomposed into NiO, Co3O4 and MnO2 respectively under different temperatures in a muffle furnace. Notably, NiO/Ni–Co–Mn–Ox on nickel foam substrates reveals a high specific capacity with 1023.50 C g−1 at 1 A g−1 and an excellent capacitance retention with 103.94% at 5 A g−1 after 3000 cycles in 2 M KOH, its outstanding electrochemical performance and cycling stability are mainly attributed to a porous sheet–sheet hierarchical nanostructure and synergistic effects of pseudo-capacitive materials and excellent redox reversibility. Therefore, this research offers a facile synthesis route to transition metal oxides for high performance supercapacitors. NiO, Ni–Co–Mn–Ox and NiO/Ni–Co–Mn–Ox on nickel foam substrates were prepared via a chemical bath deposition–calcination.![]()
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology Kunming 650093 China +86 871 65161278 +86 871 65160072.,Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology Kunming 650093 China
| | - Ruidong Xu
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology Kunming 650093 China +86 871 65161278 +86 871 65160072.,Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology Kunming 650093 China
| | - Ziyang Qin
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology Kunming 650093 China
| | - Suyang Feng
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology Kunming 650093 China +86 871 65161278 +86 871 65160072.,Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology Kunming 650093 China
| | - Wenbin Wang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology Kunming 650093 China
| | - Chen Chen
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology Kunming 650093 China
| | - Ao Ju
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology Kunming 650093 China
| |
Collapse
|
45
|
Vinoth S, Govindasamy M, Wang SF, Anandaraj S. Layered nanocomposite of zinc sulfide covered reduced graphene oxide and their implications for electrocatalytic applications. ULTRASONICS SONOCHEMISTRY 2020; 64:105036. [PMID: 32146333 DOI: 10.1016/j.ultsonch.2020.105036] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
Herein, we have synthesized zinc sulfide nanospheres (ZnS NPs) encapsulated on reduced graphene oxide (RGO) hybrid by an ultrasonic bath (50 kHz/60 W). The physical and structural properties of ZnS NPs@RGO hybrid were analyzed by TEM, XRD, EIS and EDS. As-prepared ZnS NPs@RGO hybrid was applied towards the electrochemical determination of caffeic acid (CA) in various food samples. The ZnS NPs@RGO hybrid modified electrode (GCE) exhibited an excellent electrocatalytic performance towards caffeic acid detection and determination, when compared to other modified electrodes. Therefore, the electrochemical sensing performance of the fabricated and nanocomposite modified electrode was significantly improved owing to the synergistic effect of ZnS NPs and RGO catalyst. Furthermore, the hybrid materials provide highly active electro-sites as well as rapid electron transport pathways. The proposed electrochemical caffeic acid sensor produces a wide linear range of 0.015-671.7 µM with a nanomolar level detection limit (3.29 nM). In addition, the real sample analysis of the proposed sensor has applied to the determination of caffeic acid in various food samples.
Collapse
Affiliation(s)
- Subramaniyan Vinoth
- Department of Materials Science and Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC
| | - Mani Govindasamy
- Department of Materials Science and Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC.
| | - Sea-Fue Wang
- Department of Materials Science and Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC.
| | - Sathiyan Anandaraj
- Department of Chemistry, Bishop Heber College (Autonomous), Tiruchirappalli, Tamil Nadu 620017, India
| |
Collapse
|
46
|
Chen TW, Arumugam R, Chen SM, Altaf M, Manohardas S, Saeed Ali Abuhasil M, Ajmal Ali M. Ultrasonic preparation and nanosheets supported binary metal oxide nanocomposite for the effective application towards the electrochemical sensor. ULTRASONICS SONOCHEMISTRY 2020; 64:105007. [PMID: 32092696 DOI: 10.1016/j.ultsonch.2020.105007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/29/2020] [Accepted: 02/06/2020] [Indexed: 06/10/2023]
Abstract
Binary metal oxides (La2O3@SnO2) decorated reduced graphene oxide nanocomposite was synthesized by ultrasound process in an environmentally benign solvent with a working frequency of 25 and 40 kHz (6.5 l200 H, Dakshin, India and maximum input power 210 W). Further, to enhance the electrocatalytic activity, the reduced graphene oxide (rGO) was prepared from graphene oxide by ultrasonication method. As prepared La2O3@SnO2/rGO was scrutinized using XRD, TEM, EDX and quantitative test for the structural and morphology properties. As modified La2O3@SnO2/rGO nanocomposite exhibits better electrochemical activity towards the oxidation of methyl nicotinate with higher anodic current compared to other modified and unmodified electrode for the detection of methyl nicotinate with larger linear range (0.035-522.9 µM) and lower limit of detection (0.0197 µM). In addition, the practical feasibility of the sensor was inspected with biological samples, reveals the acceptable recovery of the sensor in real samples.
Collapse
Affiliation(s)
- Tse-Wei Chen
- Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom
| | - Rameshkumar Arumugam
- Department of Chemistry, Bannari Amman Institute of Technology, Sathyamangalam, Erode, India
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC.
| | - Mohammad Altaf
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; Central Laboratory, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Salim Manohardas
- Central Laboratory, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohammed Saeed Ali Abuhasil
- Department of Food Science and Nutrition, College of Food & Agriculture Sciences, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohammad Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
47
|
Chen TW, Princy Merlin J, Chen SM, Anandaraj S, Elshikh MS, Tseng TW, Wang K, Qi D, Jiang J. Sonochemical synthesis and fabrication of neodymium sesquioxide entrapped with graphene oxide based hierarchical nanocomposite for highly sensitive electrochemical sensor of anti-cancer (raloxifene) drug. ULTRASONICS SONOCHEMISTRY 2020; 64:104717. [PMID: 32062532 DOI: 10.1016/j.ultsonch.2019.104717] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/20/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
The ultrasound-assisted synthesis of a novel neodymium sesquioxide nanoparticles (Nd2O5 NPs) decorated graphene oxide (GO) nanocomposite under ultrasonic probe (Ultrasonic processor model-PR 1000; frequency-30 kHz; power of 100 W/cm2) has been reported. After then, SEM, TEM, XRD, EDX and electrochemical impedance spectroscopy characterized was analyzed using Nd2O5 NPs@GO nanomaterial. Furthermore, the nanomaterial modified GCE (glassy carbon electrode) shows excellent electrochemical sensing performance towards anti-cancer drug. Raloxifene is one of the important anti-cancer drug. Moreover, the fabricated electrochemical sensor has showed a wide linear range for raloxifene between 0.03 and 472.5 µM and nanomolar detection limit (18.43 nM). In addition, the Nd2O5 NPs@GO modified sensor has been applied to the determination of raloxifene in human blood and urine samples.
Collapse
Affiliation(s)
- Tse-Wei Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan; Research and Development Center for Smart Textile Technology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | | | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan.
| | | | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Tien-Wen Tseng
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan.
| | - Kang Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Dongdong Qi
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Jianzhuang Jiang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
48
|
Elshikh MS, Al-Hemaid FMA, Chen TW, Chinnapaiyan S, Ajmal Ali M, Chen SM. Sonochemical synthesis of graphitic carbon nitrides-wrapped bimetal oxide nanoparticles hybrid materials and their electrocatalytic activity for xanthine electro-oxidation. ULTRASONICS SONOCHEMISTRY 2020; 64:105006. [PMID: 32146332 DOI: 10.1016/j.ultsonch.2020.105006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/03/2020] [Accepted: 02/06/2020] [Indexed: 05/27/2023]
Abstract
A novel network-like magnetic nanoparticle was fabricated on a graphitic carbon nitride through a facile sonochemical route at frequency 20 kHz and power 70 W. To enhance the electrocatalytic activity of the modified materials, the graphitic carbon nitrides (g-C3N4) was prepared from melamine. Monitoring of xanthine concentration level in biological fluids is more important for clinical diagnosis and medical applications. As modified CuFe2O4/g-C3N4 nanocomposite exhibits better electrochemical activity towards the oxidation of xanthine with higher anodic current compared to other modified and unmodified electrode for the detection of xanthine with larger linear range (0.03-695 µM) and lower limit of detection (13.2 nM). To compare with these methods, the electrochemical techniques may be an alternative high sensitive method due to their simplicity and rapid detection time. In addition, the practical feasibility of the sensor was inspected with biological samples, reveals the acceptable recovery of the sensor in real samples.
Collapse
Affiliation(s)
- Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fahad M A Al-Hemaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Tse-Wei Chen
- Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom
| | - Sathishkumar Chinnapaiyan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - M Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan.
| |
Collapse
|
49
|
Lou BS, Rajaji U, Chen SM, Chen TW. A simple sonochemical assisted synthesis of NiMoO 4/chitosan nanocomposite for electrochemical sensing of amlodipine in pharmaceutical and serum samples. ULTRASONICS SONOCHEMISTRY 2020; 64:104827. [PMID: 31953007 DOI: 10.1016/j.ultsonch.2019.104827] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/08/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
In this investigation, a facile sonochemical route has been developed for the preparation of porous nickel molybdate nanosheets/chitosan nanocomposite (NiMoO4/CHIT) by using ammonium molybdate and nickel(II) acetate tetrahydrate and as nickel and molybdate precursor, respectively (ultrasonic power 60 W/cm2 and frequency 20 kHz). The ultrasonic based materials preparation as a fast, convenient and economical approach has been widely used to generate novel nanomaterials. Herein, we report an efficient voltammetric sensor for amlodipine drug by using porous nickel molybdate nanosheets/chitosan nanocomposite (NiMoO4/CHIT). Its structure and properties were characterized by x-ray diffraction pattern, scanning electron microscope, transmission electron microscope, elemental analysis and mapping. The electrochemical studies are indicated the NiMoO4/CHIT modified glassy carbon electrode (GCE) exhibited the good performance towards electrocatalytic sensing of amlodipine drug. Consequently, a linear correlation between the anodic peak current with sensor concentration 0.025-373.6 µM with a detection limit and sensitivity of 4.62 nM and 4.753 µA·µM-1·cm-2, respectively. A voltammetry based drug analysis was found to be high sensitive and reproducible, which able to detect nanomolar concentration. Furthermore, the fabricated electrochemical sensor was applied in drug and biological samples.
Collapse
Affiliation(s)
- Bih-Show Lou
- Chemistry Division, Center for General Education, Chang Gung University, Taoyuan 333, Taiwan; Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Umamaheswari Rajaji
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, Republic of China
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, Republic of China.
| | - Tse-Wei Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, Republic of China
| |
Collapse
|
50
|
Chen TW, Chinnapaiyan S, Chen SM, Ajmal Ali M, Elshikh MS, Hossam Mahmoud A. Facile synthesis of copper ferrite nanoparticles with chitosan composite for high-performance electrochemical sensor. ULTRASONICS SONOCHEMISTRY 2020; 63:104902. [PMID: 31951998 DOI: 10.1016/j.ultsonch.2019.104902] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
Herein, the synthesis of copper ferrite nanoparticles (CuFe2O4 NPs)/chitosan have been prepared by sonochemical route under ultrasonic irradiation bath at 40 kHz and 50 W. A high sensitive and stable modified electrochemical sensor was developed using a composition of copper ferrite nanoparticles coordinated with biopolymer through a facile ultrasound approach. Besides, power and frequency parameters are highly important for sonochemical synthesis and specifically structure, and size of the nanomaterials development during the ultrasonic irradiation time. In this work, ultrasonic bath was used to synthesis of CuFe2O4 nanomaterial at 40 kHz with 1 h. CuFe2O4/chitosan was characterized by FESEM, EDX, XRD and electrochemical methods. Furthermore, 8-hydroxyguanine is one of biomarker by oxidative stress. The concentrations of 8-hydroxyguanine within a cell are a measurement of oxidative stress in human body. Consequently, the measurement of 8-hydroxyguanine in blood serum samples with high specificity is of greatest importance. The CuFe2O4/chitosan modified electrode is displayed a low detection limit of 8.6 nM and long linear range (0.025-697.175 µM).
Collapse
Affiliation(s)
- Tse-Wei Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC; Research and Development Center for Smart Textile Technology, National Taipei University of Technology, Taipei, Taiwan, ROC
| | - Sathishkumar Chinnapaiyan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC.
| | - M Ajmal Ali
- Department of Botany and Microbiology, College of Sciences, King Saud University P.O. Box. 2455, Riyadh 11451, Saudi Arabia
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Sciences, King Saud University P.O. Box. 2455, Riyadh 11451, Saudi Arabia
| | - Ahmed Hossam Mahmoud
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|