1
|
Zhou Y, Wang B, Ling Z, Liu Q, Fu X, Zhang Y, Zhang R, Hu S, Zhao F, Li X, Bao X, Yang J. Advances in ionogels for proton-exchange membranes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171099. [PMID: 38387588 DOI: 10.1016/j.scitotenv.2024.171099] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/29/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024]
Abstract
To ensure the long-term performance of proton-exchange membrane fuel cells (PEMFCs), proton-exchange membranes (PEMs) have stringent requirements at high temperatures and humidities, as they may lose proton carriers. This issue poses a serious challenge to maintaining their proton conductivity and mechanical performance throughout their service life. Ionogels are ionic liquids (ILs) hybridized with another component (such as organic, inorganic, or organic-inorganic hybrid skeleton). This design is used to maintain the desirable properties of ILs (negligible vapor pressure, thermal stability, and non-flammability), as well as a high ionic conductivity and wide electrochemical stability window with low outflow. Ionogels have opened new routes for designing solid-electrolyte membranes, especially PEMs. This paper reviews recent research progress of ionogels in proton-exchange membranes, focusing on their electrochemical properties and proton transport mechanisms.
Collapse
Affiliation(s)
- Yilin Zhou
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Bei Wang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Zhiwei Ling
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Qingting Liu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China.
| | - Xudong Fu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Yanhua Zhang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Rong Zhang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Shengfei Hu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Feng Zhao
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China; Wuhan Troowin Power System Technology Co., Ltd., Wuhan 430079, China
| | - Xiao Li
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China; Wuhan Troowin Power System Technology Co., Ltd., Wuhan 430079, China
| | - Xujin Bao
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China; Department of Materials, Loughborough University, Leicestershire LE11 3NW, UK.
| | - Jun Yang
- Zhuzhou Times New Material Technology Co., Ltd, Zhuzhou, Hunan 412007, China.
| |
Collapse
|
2
|
Structurally modulated and functionalized carbon nanotubes as potential filler for Nafion matrix toward improved power output and durability in proton exchange membrane fuel cells operating at reduced relative humidity. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120393] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Omran B, Baek KH. Graphene-derived antibacterial nanocomposites for water disinfection: Current and future perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 298:118836. [PMID: 35032599 DOI: 10.1016/j.envpol.2022.118836] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/29/2021] [Accepted: 01/08/2022] [Indexed: 05/11/2023]
Abstract
Antimicrobial nanomaterials provide numerous opportunities for the synthesis of next-generation sustainable water disinfectants. Using the keywords graphene and water disinfection and graphene antibacterial activity, a detailed search of the Scopus database yielded 198 and 1433 studies on using graphene for water disinfection applications and graphene antibacterial activity in the last ten years, respectively. Graphene family nanomaterials (GFNs) have emerged as effective antibacterial agents. The current innovations in graphene-, graphene oxide (GO)-, reduced graphene oxide (rGO)-, and graphene quantum dot (GQD)-based nanocomposites for water disinfection, including their functionalization with semiconductor photocatalysts and metal and metal oxide nanoparticles, have been thoroughly discussed in this review. Furthermore, their novel application in the fabrication of 3D porous hydrogels, thin films, and membranes has been emphasized. The physicochemical and structural properties affecting their antibacterial efficiency, such as sheet size, layer number, shape, edges, smoothness/roughness, arrangement mode, aggregation, dispersibility, and surface functionalization have been highlighted. The various mechanisms involved in GFN antibacterial action have been reviewed, including the mechanisms of membrane stress, ROS-dependent and -independent oxidative stress, cell wrapping/trapping, charge transfer, and interaction with cellular components. For safe applications, the potential biosafety and biocompatibility of GFNs in aquatic environments are emphasized. Finally, the current limitations and future perspectives are discussed. This review may provide ideas for developing efficient and practical solutions using graphene-, GO-, rGO-, and GQD-based nanocomposites in water disinfection by rationally employing their unique properties.
Collapse
Affiliation(s)
- Basma Omran
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Gyeongsan, 38541, Republic of Korea; Department of Processes Design & Development, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo PO, 11727, Egypt
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
4
|
Oxidized black phosphorus nanosheets/sulfonated poly (ether ether ketone) composite membrane for vanadium redox flow battery. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Abstract
Graphene is a unique attractive material owing to its characteristic structure and excellent properties. To improve the preparation efficiency of graphene, reduce defects and costs, and meet the growing market demand, it is crucial to explore the improved and innovative production methods and process for graphene. This review summarizes recent advanced graphene synthesis methods including “bottom-up” and “top-down” processes, and their influence on the structure, cost, and preparation efficiency of graphene, as well as its peeling mechanism. The viability and practicality of preparing graphene using polymers peeling flake graphite or graphite filling polymer was discussed. Based on the comparative study, it is potential to mass produce graphene with large size and high quality using the viscoelasticity of polymers and their affinity to the graphite surface.
Collapse
|
6
|
Zhang J, Zhang R, Liu Y, Kong YR, Luo HB, Zou Y, Zhai L, Ren XM. Acidic Groups Functionalized Carbon Dots Capping Channels of a Proton Conductive Metal-Organic Framework by Coordination Bonds to Improve the Water-Retention Capacity and Boost Proton Conduction. ACS APPLIED MATERIALS & INTERFACES 2021; 13:60084-60091. [PMID: 34889608 DOI: 10.1021/acsami.1c20884] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Crystalline porous materials, such as metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), have been demonstrated to be versatile material platforms for the development of solid proton conductors. However, most crystalline porous proton conductors suffer from decreasing proton conductivity with increasing temperature due to releasing water molecules, and this disadvantage severely restricts their practical application in electrochemical devices. In this work, for the first time, hydrophilic carbon dots (CDs) were utilized to hybridize with high proton conductivity MOF-802, which is a model of MOF proton conductors, aiming to improve its water-retention capacity and thus enhance proton conduction. The resultant CDs@MOF-802 exhibits impregnable proton conduction with increasing temperature, and the proton conductivity reaches 10-1 S cm-1, much superior to that of MOF-802, making CDs@MOF-802 one of the most efficient MOF proton conductors reported so far. This study provides a new strategy to improve the water-retention capacity of porous proton conductors and further realize excellent proton conduction.
Collapse
Affiliation(s)
- Jin Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Ru Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Yangyang Liu
- Department of Chemistry and Biochemistry, California State University, Los Angeles, 5151 State University Drive, Los Angeles, California 90032-8202, United States
| | - Ya-Ru Kong
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Hong-Bin Luo
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Yang Zou
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Lu Zhai
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Xiao-Ming Ren
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
7
|
Li Z, Hao X, Cheng G, Huang S, Han D, Xiao M, Wang S, Meng Y. In situ implantation of cross-linked functional POSS blocks in Nafion® for high performance direct methanol fuel cells. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119798] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
8
|
Yan F, Xu M, Xu J, Zang Y, Sun J, Yi C, Wang Y. Advances in Integrating Carbon Dots With Membranes and Their Applications. ChemistrySelect 2021. [DOI: 10.1002/slct.202101957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Fanyong Yan
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes School of Chemistry and Chemical Engineering Tiangong University Tianjin 300387 PR China
| | - Ming Xu
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes School of Chemistry and Chemical Engineering Tiangong University Tianjin 300387 PR China
| | - Jinxia Xu
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes School of Chemistry and Chemical Engineering Tiangong University Tianjin 300387 PR China
| | - Yueyan Zang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes School of Chemistry and Chemical Engineering Tiangong University Tianjin 300387 PR China
| | - Jingru Sun
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes School of Chemistry and Chemical Engineering Tiangong University Tianjin 300387 PR China
| | - Chunhui Yi
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes School of Chemistry and Chemical Engineering Tiangong University Tianjin 300387 PR China
| | - Yao Wang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes School of Chemistry and Chemical Engineering Tiangong University Tianjin 300387 PR China
| |
Collapse
|
9
|
Zhao C, Song X, Liu Y, Fu Y, Ye L, Wang N, Wang F, Li L, Mohammadniaei M, Zhang M, Zhang Q, Liu J. Synthesis of graphene quantum dots and their applications in drug delivery. J Nanobiotechnology 2020; 18:142. [PMID: 33008457 PMCID: PMC7532648 DOI: 10.1186/s12951-020-00698-z] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/24/2020] [Indexed: 12/23/2022] Open
Abstract
This review focuses on the recent advances in the synthesis of graphene quantum dots (GQDs) and their applications in drug delivery. To give a brief understanding about the preparation of GQDs, recent advances in methods of GQDs synthesis are first presented. Afterwards, various drug delivery-release modes of GQDs-based drug delivery systems such as EPR-pH delivery-release mode, ligand-pH delivery-release mode, EPR-Photothermal delivery-Release mode, and Core/Shell-photothermal/magnetic thermal delivery-release mode are reviewed. Finally, the current challenges and the prospective application of GQDs in drug delivery are discussed.
Collapse
Affiliation(s)
- Changhong Zhao
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, 453003, P. R. China.
- Electronics Materials and Systems Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, 412 96, Gothenburg, Sweden.
| | - Xuebin Song
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, 453003, P. R. China
| | - Ya Liu
- Electronics Materials and Systems Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Yifeng Fu
- Electronics Materials and Systems Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Lilei Ye
- SHT Smart High-Tech AB, 411 33, Gothenburg, Sweden
| | - Nan Wang
- SHT Smart High-Tech AB, 411 33, Gothenburg, Sweden
| | - Fan Wang
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, 453003, P. R. China
| | - Lu Li
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, 453003, P. R. China
| | - Mohsen Mohammadniaei
- Department of Health Technology, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Ming Zhang
- Department of Health Technology, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Qiqing Zhang
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, 453003, P. R. China.
| | - Johan Liu
- Electronics Materials and Systems Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, 412 96, Gothenburg, Sweden.
- School of Automation and Mechanical Engineering, SMIT Center, Shanghai University, No 20, Chengzhong Road, Box 808, ShanghaiShanghai, 201800, China.
| |
Collapse
|
10
|
Yuan C, Wang Y. Synthesis and characterization of a novel sulfonated poly (aryl ether ketone sulfone) semi-crosslinked membrane with high proton selectivity through click reaction for direct methanol fuel cells. HIGH PERFORM POLYM 2020. [DOI: 10.1177/0954008320960216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A novel sulfonated polyvinyl alcohol containing alkynyl groups (SPVA-C≡C) and a new sulfonated poly (aryl ether ketone sulfone) (SPAEKS) are synthesized. Semi-crosslinked membrane (semi-crosslink-SPAEKS-x) was prepared by click reaction of mercapto-alkynes between 1, 5-pentanedithiol and SPVA-C≡C. The chemical structures of SPAEKS, SPVA-C≡C and semi-crosslink-SPAEKS-x are confirmed by 1H-NMR and FTIR spectra. The semi-crosslink-SPAEKS-x membranes show good mechanical properties, excellent dimensional stability and oxidative stability. The proton conductivity of SPAEKS and semi-crosslink-SPAEKS-x membranes is in the range of 25.6–52.5 mS/cm. The methanol permeability of semi-crosslink-SPAEKS-x membranes is in the range of 1.4–1.7 × 10−7 cm−2 s−1, which is much lower than that of Nafion 117 membrane (18.3 × 10−7 cm−2 s−1). Especially, the proton selectivity of semi-crosslink-SPAEKS-15 membrane (24.3 × 104 S s cm−3) is above seven times higher than that of Nafion 117 membrane (3.4 × 104 S s cm−3).
Collapse
Affiliation(s)
- Chengyun Yuan
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, People’s Republic of China
| | - Yinghan Wang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
11
|
Sabet M, Soleimani H, Hosseini S, Mohammadian E. Impact of graphene oxide on epoxy resin characteristics. HIGH PERFORM POLYM 2020. [DOI: 10.1177/0954008320943929] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The incorporation of a small part of graphene oxide (GO) offers an appropriate fire retardant for thermally conductive epoxy (EP) resin composites, which is verified by the upper limiting oxygen index of 24.5% and other standard flame-retardant tests. The smoke production rate, total smoke production (TSP), and the smoke density of EP composites were reduced with additional GO. The increased efficiency of fire resistance and smoke suppression is primarily due to the formation of physical barrier and compactness of the developed GO char layers, serving as an effective barrier layer that increases the fire resistance, and the thermal steadiness of the char layers derives from the effect of GO inclusion. The barrier impact of GO and the limited mobility of polymer chains are crucial factors in increasing thermal stability and reduction of generating dangerous carbon monoxide during burns. The thermal stability increased and the peak heat release rate, total heat release, TSP, and the largest smoke density value reduced to 52.5%, 43.6%, 33.9%, and 44.2%, correspondingly, compared with pure EP. The tensile strength and elongation at break of EP composites were enhanced by 23% and 8.4% compared with pure EP, respectively.
Collapse
Affiliation(s)
- Maziyar Sabet
- Petroleum and Chemical Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, Brunei Darussalam
| | - Hassan Soleimani
- Faculty of Science and Information Technology, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Ipoh, Malaysia
| | - Seyednooroldin Hosseini
- Department of Petroleum Engineering, EOR Research Center, Omidiyeh Branch, Islamic Azad University, Omidiyeh, Iran
| | - Erfan Mohammadian
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
12
|
Shukla A, Dhanasekaran P, Sasikala S, Nagaraju N, Bhat SD, Pillai VK. Covalent grafting of polystyrene sulfonic acid on graphene oxide nanoplatelets to form a composite membrane electrolyte with sulfonated poly(ether ether ketone) for direct methanol fuel cells. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117484] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Non-invasive macroscopic and molecular quantification of water in Nafion® and SPEEK Proton Exchange Membranes using terahertz spectroscopy. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Xu W, Wang X, Wu X, Li W, Cheng C. Organic-Inorganic dual modified graphene: Improving the dispersibility of graphene in epoxy resin and the fire safety of epoxy resin. Polym Degrad Stab 2019. [DOI: 10.1016/j.polymdegradstab.2019.04.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|