1
|
Feng ZY, Jiang JC, Meng LY. Carbon-based photoelectrochemical sensors: recent developments and future prospects. Dalton Trans 2024; 53:11192-11215. [PMID: 38864748 DOI: 10.1039/d4dt00534a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Owing to the considerable potential of photoelectrochemical (PEC) sensors, they have gained significant attention in the analysis of biological, environmental, and food markers. However, the limited charge mass transfer efficiency and rapid recombination of electron hole pairs have become obstacles in the development of PEC sensors. In this case, considering the unique advantages of carbon-based materials, they can be used as photosensitizers, supporting materials and conductive substrates and coupled with semiconductors to prepare composite materials, solving the above problems. In addition, there are many types of carbon materials, which can have semiconductor properties and form heterojunctions after coupling with semiconductors, effectively promoting the separation of electron hole pairs. Herein, we aimed to provide a comprehensive analysis of reports on carbon-based PEC sensors by introducing their research and application status and discussing future development trends in this field. In particular, the types and performance improvement strategies of carbon-based electrodes and the working principles of carbon-based PEC sensors are explained. Furthermore, the applications of carbon-based photoelectric sensors in environmental monitoring, biomedicine, and food detection are highlighted. Finally, the current limitations in the research on carbon-based PEC sensors are emphasized and the need to enhance the sensitivity and selectivity through material modification, structural design, improved device performance, and other strategies are emphasized.
Collapse
Affiliation(s)
- Zhi-Yuan Feng
- Department of Chemistry, College of Science, Yanbian University, Park Road 977, Yanji, 133002, PR China
| | - Jin-Chi Jiang
- Department of Chemistry, College of Science, Yanbian University, Park Road 977, Yanji, 133002, PR China
| | - Long-Yue Meng
- Department of Chemistry, College of Science, Yanbian University, Park Road 977, Yanji, 133002, PR China
- Department of Environmental Science, College of Geography and Ocean Science, Yanbian University, Park Road 977, Yanji, 133002, PR China.
| |
Collapse
|
2
|
Qi Y, Zhao J, Wang H, Zhang A, Li J, Yan M, Guo T. Shaddock peel-derived N-doped carbon quantum dots coupled with ultrathin BiOBr square nanosheets with boosted visible light response for high-efficiency photodegradation of RhB. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 325:121424. [PMID: 36906054 DOI: 10.1016/j.envpol.2023.121424] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
In the present work, we constructed a serials of novel shaddock peel-derived N-doped carbon quantum dots (NCQDs) coupled with BiOBr composites. The result showed that the as-synthesized BiOBr (BOB) was composed of ultrathin square nanosheets and flower-like structure, and NCQDs were uniformly dispersed on the surface of BiOBr. Furthermore, the BOB@NCQDs-5 with optimal NCQDs content displayed the top-flight photodegradation efficiency with ca. 99% of removal rate within 20 min under visible light and possessed excellent recyclability and photostability after 5 cycles. The reason was attributed to relatively large BET surface area, the narrow energy gap, inhibited recombination of charge carriers and excellent photoelectrochemical performances. Meanwhile, the improved photodegradation mechanism and possible reaction pathways were also elucidated in detail. On this basis, the study opens a novel perspective to obtain a highly efficient photocatalyst for practical environment remediation.
Collapse
Affiliation(s)
- Yu Qi
- College of Environment Science and Engineering, Taiyuan University of Technology, No. 209 University Street, Jinzhong 030600, Shanxi, PR China
| | - Jinjiang Zhao
- College of Environment Science and Engineering, Taiyuan University of Technology, No. 209 University Street, Jinzhong 030600, Shanxi, PR China
| | - Hongtao Wang
- College of Environment Science and Engineering, Taiyuan University of Technology, No. 209 University Street, Jinzhong 030600, Shanxi, PR China
| | - Aiming Zhang
- Department of Nuclear Environment Science, China Institute for Radiation Protection, No.102 Xuefu Street, Taiyuan 030006, Shanxi, PR China
| | - Jinping Li
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, 79 Yingze West Street, Taiyuan 030024, Shanxi, PR China; Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, No.79 Yingze west street, Taiyuan 030024, Shanxi, PR China
| | - Meifang Yan
- College of Environment Science and Engineering, Taiyuan University of Technology, No. 209 University Street, Jinzhong 030600, Shanxi, PR China
| | - Tianyu Guo
- College of Environment Science and Engineering, Taiyuan University of Technology, No. 209 University Street, Jinzhong 030600, Shanxi, PR China; Department of Nuclear Environment Science, China Institute for Radiation Protection, No.102 Xuefu Street, Taiyuan 030006, Shanxi, PR China; Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, No.79 Yingze west street, Taiyuan 030024, Shanxi, PR China.
| |
Collapse
|
3
|
FACILE SYNTHESIS OF NI DOPED BIOBR NANOSHEETS AS EFFICIENT PHOTO-ASSISTED CHARGING SUPERCAPACITORS. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.141979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
4
|
Xiang S, Mao S, Chen F, Zhao S, Su W, Fu L, Zare N, Karimi F. A bibliometric analysis of graphene in acetaminophen detection: Current status, development, and future directions. CHEMOSPHERE 2022; 306:135517. [PMID: 35787882 DOI: 10.1016/j.chemosphere.2022.135517] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/04/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Acetaminophen is a widely used analgesic throughout the world. Detection of acetaminophen has particular value in pharmacy and clinics. Electrochemical sensors assembled with advanced materials are an effective method for the rapid detection of acetaminophen. Graphene-based carbon nanomaterials have been extensively investigated for potential analytical applications in the last decade. In this article, we selected papers containing both graphene and acetaminophen. Bibliometrics was used to analyze the relationships and trends among these papers. The results show that the topic has grown at a high rate since 2009. Among them, the detection of acetaminophen by an electrochemical sensor based on graphene is the most important direction. Graphene has moved from being a primary sensing material to a substrate for immobilization of other active ingredients. In addition, the degradation of acetaminophen using graphene-modified electrodes is also an important direction. We analyzed the research history and current status of this topic through bibliometrics. Authors, institutions, countries, and key literature were discussed. We also proposed perspectives for this topic.
Collapse
Affiliation(s)
- Shuyan Xiang
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Shuduan Mao
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310021, China.
| | - Fei Chen
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Shichao Zhao
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Weitao Su
- School of Sciences, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Li Fu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Najmeh Zare
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Fatemeh Karimi
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| |
Collapse
|
5
|
Guo Z, Jiang K, Jiang H, Zhang H, Liu Q, You T. Photoelectrochemical aptasensor for sensitive detection of tetracycline in soil based on CdTe-BiOBr heterojunction: Improved photoactivity enabled by Z-scheme electron transfer pathway. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127498. [PMID: 34678564 DOI: 10.1016/j.jhazmat.2021.127498] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/25/2021] [Accepted: 10/10/2021] [Indexed: 05/15/2023]
Abstract
Exploring effective methods for tetracycline (TC) detection in soil has great significance because of its emerging environmental problem and increasing threat to soil quality and general public health worldwide. In this work, a sensitive photoelectrochemical (PEC) aptasensor toward TC detection was designed and constructed based on an efficient photosensitive material of Z-scheme CdTe-BiOBr heterojunction. Due to the sensitization of CdTe quantum dots (QDs) on the BiOBr nanoflowers, the photocurrent intensity of the CdTe-BiOBr heterojunction was enhanced about 5.0-fold and 8.0-fold than that of pure BiOBr and CdTe under visible-light irradiation, which was attributed to the low electron-hole combination efficiency, high visible light utilization efficiency, and high carrier density of the heterojunction. On the merits of the excellent PEC activity of the CdTe-BiOBr and the specificity of the aptamer, the proposed PEC aptasensor has the advantages of satisfying linear range (from 10 to 1500 pM), low detection limit (9.25 pM), good selectivity, and reproducibility. In addition, acceptable accuracy was obtained for TC detection in real soil sample, giving acceptable accuracy in comparison with the referenced high-performance liquid chromatography-diode array detector method, revealing a promising avenue for accurate and ultrasensitive estimation of other kinds of contaminants in the broad field of analysis.
Collapse
Affiliation(s)
- Zhijie Guo
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Kaituo Jiang
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Huihui Jiang
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hang Zhang
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qian Liu
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Tianyan You
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
6
|
Zhu X, Guo X, Song J, Han P, Xin G, Wang R. Facial precipitation fabrication of visible light driven nitrogen-doped graphene quantum dots decorated iodine bismuth oxide catalysts. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Applications of two-dimensional layered nanomaterials in photoelectrochemical sensors: A comprehensive review. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214156] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Li M, Li L, Li B, Zhai L, Wang B. TiO 2 nanotube arrays decorated with BiOBr nanosheets by the SILAR method for photoelectrochemical sensing of H 2O 2. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1803-1809. [PMID: 33885637 DOI: 10.1039/d1ay00021g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The design and construction of a photoelectrochemical (PEC) sensor with excellent photoelectric properties and good photoelectrocatalysis activity is significant for the effective detection of analytes. In this paper, based on a two-step anodic oxidation method and successive ionic layer adsorption (SILAR) method, a TiO2 nanotube array (TNT) photoelectrochemical sensor modified with BiOBr nanosheets was constructed and applied for the detection of H2O2 for the first time. The photocurrent of the photoelectrochemical sensor increases with the increase of the H2O2 concentration under the irradiation of an 8 W UV lamp. Excellent linearity was obtained in the concentration range from 10 nM to 100 μM with a low detection limit of 5 nM (S/N = 3). This excellent photoelectrochemical performance is due to the formation of a p-n heterojunction between BiOBr and TiO2 nanotube arrays, which provides efficient separation of charge carriers and accelerates electron transport. Moreover, it is applied to detect H2O2 in milk samples and it showed a good recovery result ranging from 95.73% to 105.65%, which provides a promising new strategy for the detection of H2O2.
Collapse
Affiliation(s)
- Mingqing Li
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing, 163318, P. R. China.
| | - Li Li
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing, 163318, P. R. China.
| | - Boya Li
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing, 163318, P. R. China.
| | - Liying Zhai
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing, 163318, P. R. China.
| | - Baohui Wang
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing, 163318, P. R. China.
| |
Collapse
|
9
|
Li Y, Yu X, Li R, Zhao F, Liu G, Wang X. Selective and sensitive visible-light-prompt photoelectrochemical sensor of paracetamol based on Bi 2WO 6 modified with Bi and copper sulfide. RSC Adv 2021; 11:2884-2891. [PMID: 35424228 PMCID: PMC8693892 DOI: 10.1039/d0ra08599e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/10/2020] [Indexed: 11/21/2022] Open
Abstract
Paracetamol (PA) is a ubiquitous non-steroidal anti-inflammatory drug, mainly used to treat headaches, arthritis and osteoarthritis and other diseases. In this work, a novel label free photoelectrochemical (PEC) sensor based on Bi-CuS/Bi2WO6 has been developed for the detection of PA, which was fabricated by a simple two-step hydrothermal process. It was found that Bi-CuS/Bi2WO6 with a CuS/Bi2WO6 heterojunction and surface plasmon resonance (SPR) effect of Bi possesses enhanced charge transfer and absorption wavelengths under visible light, particularly when compared to pristine Bi2WO6 films, thus producing an increase in the observed photocurrent. The photocurrent was increased after adding PA. And the photocurrent increment was linear with PA concentration in the range from 0.01-60 μM with a detection limit of 2.12 nM. Moreover, the PEC sensor also exhibited high anti-interference property and acceptable stability. In the present study, a Bi-CuS/Bi2WO6 photoelectrode is considered a promising candidate for carrying out PEC analysis.
Collapse
Affiliation(s)
- Yijiong Li
- Department of Orthopaedics, The First Hospital of Hebei Medical University Shijiazhuang Hebei 050000 P. R. China
| | - Xiaoguang Yu
- Department of Orthopaedics, The First Hospital of Hebei Medical University Shijiazhuang Hebei 050000 P. R. China
| | - Ruiqi Li
- Department of Orthopaedics, The First Hospital of Hebei Medical University Shijiazhuang Hebei 050000 P. R. China
| | - Feng Zhao
- Department of Orthopaedics, The First Hospital of Hebei Medical University Shijiazhuang Hebei 050000 P. R. China
| | - Guobin Liu
- Department of Orthopaedics, The First Hospital of Hebei Medical University Shijiazhuang Hebei 050000 P. R. China
| | - Xin Wang
- Department of Pathology, The First Hospital of Hebei Medical University Shijiazhuang Hebei 050000 P. R. China
| |
Collapse
|
10
|
Li Z, Zhu M. Detection of pollutants in water bodies: electrochemical detection or photo-electrochemical detection? Chem Commun (Camb) 2020; 56:14541-14552. [PMID: 33118579 DOI: 10.1039/d0cc05709f] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The massive discharge of pollutants including endocrine-disrupting chemicals (EDCs), heavy metals, pharmaceuticals and personal care products (PPCPs) into water bodies is endangering the ecological environment and human health, and needs to be accurately detected. Both electrochemical and photo-electrochemical detection methods have been widely used for the detection of these pollutants, however, which one is better for the detection of different environmental pollutants? In this feature article, different electrochemical and photo-electrochemical detection methods are summarized, including the principles, classification, common catalysts, and applications. By summarizing the advantages and disadvantages of different detection methods, this review provides a guide for other researchers to detect pollutants in water bodies by using electrochemical and photo-electrochemical analysis.
Collapse
Affiliation(s)
- Zhi Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, P. R. China.
| | | |
Collapse
|
11
|
Silva Araújo M, Barretto TR, Galvão JCR, Tarley CRT, Dall'Antônia LH, Matos R, Medeiros RA. Visible Light Photoelectrochemical Sensor for Acetaminophen Determination using a Glassy Carbon Electrode Modified with BiVO
4
Nanoparticles. ELECTROANAL 2020. [DOI: 10.1002/elan.202060031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Mayara Silva Araújo
- Departamento de Química Universidade Estadual de Londrina C.P. 6001 86057-970 Londrina PR Brazil
| | - Túlio Rolim Barretto
- Departamento de Química Universidade Estadual de Londrina C.P. 6001 86057-970 Londrina PR Brazil
| | | | - César Ricardo Teixeira Tarley
- Instituto Nacional de Ciência e Tecnologia (INCT) de Bioanalítica Universidade Estadual de Campinas (UNICAMP) Instituto de Química Departamento de Química Analítica Cidade Universitária Zeferino Vaz s/n CEP 13083-970 Campinas – SP Brazil
| | | | - Roberto Matos
- Departamento de Química Universidade Estadual de Londrina C.P. 6001 86057-970 Londrina PR Brazil
| | - Roberta Antigo Medeiros
- Departamento de Química Universidade Estadual de Londrina C.P. 6001 86057-970 Londrina PR Brazil
| |
Collapse
|
12
|
Wang H, Zhang B, Tang Y, Wang C, Zhao F, Zeng B. Recent advances in bismuth oxyhalide-based functional materials for photoelectrochemical sensing. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
13
|
Ganesan M, Nagaraaj P. Quantum dots as nanosensors for detection of toxics: a literature review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4254-4275. [PMID: 32940270 DOI: 10.1039/d0ay01293a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Great advances have been made in sensor-based methods for chemical analysis owing to their high sensitivity, selectivity, less testing time, and minimal usage of chemical reagents. Quantum Dots (QDs) having excellent optical properties have been thoroughly explored for variety of scientific applications wherein light plays an important role. In recent years, there have been an increasing number of publications on the applications of QDs as photoluminescent nanosensors for the detection of chemicals and biomolecules. However, there has been hardly any publication describing the use of QDs in the detection of various toxic chemicals at one place. Hence, a literature survey has been made on the applications of QDs as chemosensors for the detection of gaseous, anionic, phenolic, metallic, drug-overdose, and pesticide poison so as to open a new perspective towards the role of sensors in analytical toxicology. In this review, the QD-based analysis of biospecimens for poison detection in clinical and forensic toxicology laboratories is highlighted.
Collapse
Affiliation(s)
- Muthupandian Ganesan
- Toxicology Division, Regional Forensic Science Laboratory, Forensic Sciences Department, Forensic House, Chennai-4, India.
| | | |
Collapse
|
14
|
Porada R, Fendrych K, Baś B. The Mn‐zeolite/Graphite Modified Glassy Carbon Electrode: Fabrication, Characterization and Analytical Applications. ELECTROANAL 2020. [DOI: 10.1002/elan.201900744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Radosław Porada
- AGH University of Science and TechnologyFaculty of Materials Science and CeramicsDepartment of Analytical Chemistry Mickiewicza 30 30-059 Cracow Poland
| | - Katarzyna Fendrych
- AGH University of Science and TechnologyFaculty of Materials Science and CeramicsDepartment of Analytical Chemistry Mickiewicza 30 30-059 Cracow Poland
| | - Bogusław Baś
- AGH University of Science and TechnologyFaculty of Materials Science and CeramicsDepartment of Analytical Chemistry Mickiewicza 30 30-059 Cracow Poland
| |
Collapse
|
15
|
Purohit B, Kumar A, Mahato K, Chandra P. Novel Sensing Assembly Comprising Engineered Gold Dendrites and MWCNT‐AuNPs Nanohybrid for Acetaminophen Detection in Human Urine. ELECTROANAL 2019. [DOI: 10.1002/elan.201900551] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Buddhadev Purohit
- Laboratory of Bio-Physio Sensors and Nano-bioengineeringDepartment of Biosciences and Bioengineering, Indian Institute of Technology Guwahati Guwahati 781039 India
| | - Ashutosh Kumar
- Laboratory of Bio-Physio Sensors and Nano-bioengineeringDepartment of Biosciences and Bioengineering, Indian Institute of Technology Guwahati Guwahati 781039 India
| | - Kuldeep Mahato
- Laboratory of Bio-Physio Sensors and Nano-bioengineeringDepartment of Biosciences and Bioengineering, Indian Institute of Technology Guwahati Guwahati 781039 India
| | - Pranjal Chandra
- Laboratory of Bio-Physio Sensors and Nano-bioengineeringDepartment of Biosciences and Bioengineering, Indian Institute of Technology Guwahati Guwahati 781039 India
| |
Collapse
|