1
|
Cai Q, Zhang X, Geng W, Liu F, Yuan D, Sun R. Experimental study of microwave-catalytic oxidative degradation of COD in livestock farming effluent by copper-loaded activated carbon. ENVIRONMENTAL TECHNOLOGY 2024; 45:4565-4575. [PMID: 37697812 DOI: 10.1080/09593330.2023.2259092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/25/2023] [Indexed: 09/13/2023]
Abstract
The problem of massive discharge of livestock wastewater is becoming more and more severe, causing irreversible damage to the ecological environment, and how to treat livestock wastewater efficiently and rapidly deserves to be studied in depth. In this work, CuO/granular activated carbon (GAC) loaded catalysts were prepared and characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), nitrogen adsorption/desorption techniques, and X-ray energy spectroscopy (EDS). The results showed that CuO was successfully attached to the GAC surface with good adsorption performance. The effects of catalyst dosage, H2O2 dosage, initial pH, microwave power and microwave irradiation time in different reaction systems on the degradation efficiency of chemical oxygen demand (COD) in wastewater were investigated, and the orthogonal experiments were used to explore the importance ranking of these factors. The highest degradation rate of COD was found to be enhanced by 12.1% in the reaction system of CuO/GAC, and the initial pH had the greatest effect on the COD removal rate. The combined MW/catalyst/H2O2 method used in this work provided a rapid and effective degradation of COD in wastewater, which can be helpful for reference in other microwave catalytic oxidation studies.
Collapse
Affiliation(s)
- Qingfeng Cai
- School of Thermal Engineering, Shandong Jianzhu University, Jinan, People's Republic of China
| | - Xiao Zhang
- School of Thermal Engineering, Shandong Jianzhu University, Jinan, People's Republic of China
| | - Wenguang Geng
- Energy Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
- School of Energy and Power Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
| | - Fang Liu
- School of Thermal Engineering, Shandong Jianzhu University, Jinan, People's Republic of China
| | - Dongling Yuan
- Energy Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
- School of Energy and Power Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
| | - Rongfeng Sun
- Energy Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
- School of Energy and Power Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
| |
Collapse
|
2
|
Reza A, Chen L, Mao X. Response surface methodology for process optimization in livestock wastewater treatment: A review. Heliyon 2024; 10:e30326. [PMID: 38726140 PMCID: PMC11078649 DOI: 10.1016/j.heliyon.2024.e30326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 02/25/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
With increasing demand for meat and dairy products, the volume of wastewater generated from the livestock industry has become a significant environmental concern. The treatment of livestock wastewater (LWW) is a challenging process that involves removing nutrients, organic matter, pathogens, and other pollutants from livestock manure and urine. In response to this challenge, researchers have developed and investigated different biological, physical, and chemical treatment technologies that perform better upon optimization. Optimization of LWW handling processes can help improve the efficacy and sustainability of treatment systems as well as minimize environmental impacts and associated costs. Response surface methodology (RSM) as an optimization approach can effectively optimize operational parameters that affect process performance. This review article summarizes the main steps of RSM, recent applications of RSM in LWW treatment, highlights the advantages and limitations of this technique, and provides recommendations for future research and practice, including its cost-effectiveness, accuracy, and ability to improve treatment efficiency.
Collapse
Affiliation(s)
- Arif Reza
- Department of Soil and Water Systems, Twin Falls Research and Extension Center, University of Idaho, 315 Falls Avenue, Twin Falls, ID, 83303-1827, USA
- New York State Center for Clean Water Technology, Stony Brook University, Stony Brook, 11794-5000, USA
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-5000, USA
| | - Lide Chen
- Department of Soil and Water Systems, Twin Falls Research and Extension Center, University of Idaho, 315 Falls Avenue, Twin Falls, ID, 83303-1827, USA
| | - Xinwei Mao
- New York State Center for Clean Water Technology, Stony Brook University, Stony Brook, 11794-5000, USA
- Department of Civil Engineering, Stony Brook University, Stony Brook, NY, 11794-4424, USA
| |
Collapse
|
3
|
Li Y, Xu Y, Zhou X, Huang L, Wang G, Liao J, Dai R. From "resistance genes expression" to "horizontal migration" as well as over secretion of Extracellular Polymeric Substances: Sludge microorganism's response to the increasing of long-term disinfectant stress. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133940. [PMID: 38457979 DOI: 10.1016/j.jhazmat.2024.133940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/16/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
Glutaraldehyde-Didecyldimethylammonium bromides (GDs) has been frequently and widely employed in livestock and poultry breeding farms to avoid epidemics such as African swine fever, but its long-term effect on the active sludge microorganisms of the receiving wastewater treatment plant was keep unclear. Four simulation systems were built here to explore the performance of aerobic activated sludge with the long-term exposure of GDs and its mechanism by analyzing water qualities, resistance genes, extracellular polymeric substances and microbial community structure. The results showed that the removal rates of CODCr and ammonia nitrogen decreased with the exposure concentration of GDs increasing. It is worth noting that long-term exposure to GDs can induce the horizontal transfer and coordinated expression of a large number of resistance genes, such as qacE, sul1, tetx, and int1, in drug-resistant microorganisms. Additionally, it promotes the secretion of more extracellular proteins, including arginine, forming a "barrier-like" protection. Therefore, long-term exposure to disinfectants can alter the treatment capacity of activated sludge receiving systems, and the abundance of resistance genes generated through horizontal transfer and coordinated expression by drug-resistant microorganisms does pose a significant threat to ecosystems and health. It is recommended to develop effective pretreatment methods to eliminate disinfectants.
Collapse
Affiliation(s)
- Yuxin Li
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanbin Xu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Xiao Zhou
- Analysis and Test Center, Guangdong University of Technology, Guangzhou 510006, China
| | - Lu Huang
- Analysis and Test Center, Guangdong University of Technology, Guangzhou 510006, China
| | - Guan Wang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jingsong Liao
- Yikangsheng Environmental Science and Technology Limited Company of Guangdong, Yunfu 527400, China
| | - Ruizhi Dai
- Yikangsheng Environmental Science and Technology Limited Company of Guangdong, Yunfu 527400, China
| |
Collapse
|
4
|
Kuang C, Zeng G, Zhou Y, Wu Y, Li D, Wang Y, Li C. Integrating anodic sulfate activation with cathodic H 2O 2 production/activation to generate the sulfate and hydroxyl radicals for the degradation of emerging organic contaminants. WATER RESEARCH 2023; 229:119464. [PMID: 36509034 DOI: 10.1016/j.watres.2022.119464] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/29/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Conventional electrocatalytic degradation of pollutants involves either cathodic reduction or anodic oxidation process, which caused the low energy utilization efficiency. In this study, we successfully couple the anodic activation of sulfates with the cathodic H2O2 production/activation to boost the generation of sulfate radical (SO4·-) and hydroxyl radical (·OH) for the efficient degradation of emerging contaminants. The electrocatalysis reactor is composed of a modified-graphite-felt (GF) cathode, in-situ prepared by the carbonization of polyaniline (PANI) electrodeposited on a GF substrate, and a boron-doped diamond (BDD) anode. In the presence of sulfates, the electrocatalysis system shows superior activities towards the degradation of pharmaceutical and personal care products (PPCPs), with the optimal performance of completely degrading the representative pollutant carbamazepine (CBZ, 0.2 mg L-1) within 150 s. Radicals quenching experiments indicated that ·OH and SO4·- act as the main reactive oxygen species for CBZ decomposition. Results from the electron paramagnetic resonance (EPR) and chronoamperometry studies verified that the sulfate ions were oxidized to SO4·-radicals at the anode, while the dissolve oxygen molecules were reduced to H2O2 molecules which were further activated to produce ·OH radicals at the cathode. It was also found that during the catalytic reactions SO4·-radicals could spontaneously convert into peroxydisulfate (PDS) which were subsequently reduced back to SO4·-at the cathodes. The quasi-steady-state concentrations of ·OH and SO4·-were estimated to be 0.51×10-12 M and 0.56×10-12 M, respectively. This study provides insight into the synergistic generation of ·OH/SO4·- from the integrated electrochemical anode oxidation of sulfate and cathode reduction of dissolved oxygen, which indicates a potential practical approach to efficiently degrade the emerging organic water contaminants.
Collapse
Affiliation(s)
- Chaozhi Kuang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Guoshen Zeng
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yangjian Zhou
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yaoyao Wu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Dexuan Li
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yingfei Wang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Chuanhao Li
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
5
|
Yang F, Wang X, Tian X, Zhang Z, Zhang K, Zhang K. Cow manure simultaneously reshaped antibiotic and metal resistome in the earthworm gut tract by metagenomic analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159010. [PMID: 36174681 DOI: 10.1016/j.scitotenv.2022.159010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Earthworm conversion is an eco-friendly biological process that converts livestock waste into a benign nutrient-rich organic fertilizer. However, little is known about the impacts of earthworm-converted livestock manure on the antibiotic resistome in the earthworm gut microbiota. Herein, lab-scale vermicomposting was performed to comprehensively evaluate the shift of antibiotic resistance genes (ARGs) in the earthworm gut-feeding on cow manure (CM)-by metagenomic analysis. The effects of copper (Cu) as a food addictive were also evaluated. CM substantially enriched the antibiotic resistome in the foregut and midgut, while it decreased in the hindgut. A similar trend was observed for metal resistance genes (MRGs). Notably, Cu in the CM had little effect on composition of ARGs and MRGs in earthworm gut. The earthworm gut microbiome altered by CM was responsible for the shift of ARGs and MRGs. In wormcast, Cu (100 and 300 mg/kg) significantly increased the abundance of ARGs and MRGs. Our study provides valuable insight into the response of ARGs and MRGs to CM in earthworm gut, and underscores the need for the judicious use of heavy metals as feed additives in livestock and poultry farming.
Collapse
Affiliation(s)
- Fengxia Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Xiaolong Wang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Xueli Tian
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Zulin Zhang
- The James Hutton Institute, Aberdeen AB158QH, UK
| | - Kai Zhang
- School of Geographic Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Keqiang Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| |
Collapse
|
6
|
Wang X, Wang L, Wu D, Yuan D, Ge H, Wu X. PbO 2 materials for electrochemical environmental engineering: A review on synthesis and applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158880. [PMID: 36130629 DOI: 10.1016/j.scitotenv.2022.158880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/21/2022] [Accepted: 09/16/2022] [Indexed: 06/15/2023]
Abstract
Lead dioxide (PbO2) materials have been widely employed in various fields such as batteries, electrochemical engineering, and more recently environmental engineering as anode materials, due to their unique physicochemical properties. Key performances of PbO2 electrodes, such as energy efficiency and space-time yield, are influenced by morphological as well as compositional factors. Micro-nano structure regulation and decoration of metal/non-metal on PbO2 is an outstanding technique to revamp its electrocatalytic activities and enhance environmental engineering efficiency. The aim of this review is to comprehensively summarize the recent research progress in the morphology control, the structure constructions, and the element doping of PbO2 materials, further with many environmental application cases evaluated. Concerning electrochemical environmental engineering, the lead dioxide employed in chemical oxygen demand detection, ozone generators, and wastewater treatment has been comprehensively reviewed. In addition, the future research perspectives, challenges and the opportunities on PbO2 materials for environmental applications are proposed.
Collapse
Affiliation(s)
- Xi Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Luyang Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Dandan Wu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Du Yuan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hang Ge
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xu Wu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
7
|
Sodium-ion batteries: Chemistry of biomass derived disordered carbon in carbonate and ether-based electrolytes. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Ge X, Sarkar A, Ruishi S, Rahman MA, Azim JA, Zhang S, Qian L. Determinants of Sick and Dead Pig Waste Recycling-A Case Study of Hebei, Shandong, and Henan Provinces in China. Animals (Basel) 2022; 12:775. [PMID: 35327172 PMCID: PMC8944600 DOI: 10.3390/ani12060775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 12/22/2022] Open
Abstract
Improper handling of sick and dead pigs may seriously affect public health, socio-economic conditions, and eventually cause environmental pollution. However, effective promotion of sick and dead pig (SDP) waste recycling has become the prime focus of current rural governance. Therefore, the study explores the impact of commitment, rewards, and punishments to capture the recycling behavior of farmers' sick and dead pig waste management. The study employs factor analysis, the probit model, and the moderating effect model to craft the findings. The study's empirical setup comprises the survey data collected from the Hebei, Shandong, and Henan provinces, representing the major pig-producing provinces in China. The study found that the commitment, reward, and punishment mechanisms are essential factors affecting the farmers' decision-making on recycling sick and dead pig waste. The marginal effect analysis found that the reward and punishment mechanism is more effective than the farmers' commitment. The study confirmed that in the recycling treatment of sick and dead pig waste, the farmers' commitment and the government's reward and punishment policy are the main factors that influence farmers to manage sick and dead pig waste properly. Therefore, the government should highlight the importance of effective waste management, and training facilities should also be extended firmly. The government should impose strict rules and regulations to restrict the irresponsible dumping of farm waste. Monitoring mechanisms should be put in place promptly.
Collapse
Affiliation(s)
- Xu Ge
- College of Economics and Management, Northwest A&F University, Yangling 712100, China; (X.G.); (A.S.)
| | - Apurbo Sarkar
- College of Economics and Management, Northwest A&F University, Yangling 712100, China; (X.G.); (A.S.)
| | - Si Ruishi
- School of Public Administration, Xi’an University of Architecture and Technology, Xi’an 710018, China;
| | - Md Ashfikur Rahman
- Development Studies Discipline, Social Science School, Khulna University, Khulna 751013, Bangladesh;
| | - Jony Abdul Azim
- School of International Education, Xidian University, Xi’an 710071, China;
| | - Shuxia Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Lu Qian
- College of Economics and Management, Northwest A&F University, Yangling 712100, China; (X.G.); (A.S.)
| |
Collapse
|
9
|
Li S, Liu C, Liu H, Lv W, Liu G. Effective stabilization of atomic hydrogen by Pd nanoparticles for rapid hexavalent chromium reduction and synchronous bisphenol A oxidation during the photoelectrocatalytic process. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126974. [PMID: 34449332 DOI: 10.1016/j.jhazmat.2021.126974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/09/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Atomic hydrogen (H*) plays a vital role in the synchronous redox of metallic ions and organic molecules. However, H* is extremely unstable as it is easily converted to hydrogen. Herein, we designed a novel strategy for the effective stabilization of H* to enhance its utility. The synthesized Pd nanoparticles grown on the defective MoS2 (DMS) of TiO2 nanowire arrays (TNA) (TNA/DMS/Pd) photocathode exhibited rapid Cr(VI) reduction (~95% in 10 min) and bisphenol A (BPA) oxidation (~97% in 30 min), with the kinetic constants almost 24- and 6-fold higher than those of the TNA photocathode, respectively. This superior performances could be attributed to: (i) the generated interface heterojunctions between TNA and DMS boosted the separation efficiencies of photogenerated electrons, thereby supplying abundant valance electrons to lower the overpotential to create a suitable microenvironment for H* generation; (ii) the stabilization of H* by Pd nanoparticles resulted in a significant increase in the yield of hydroxyl radical (•OH). This research provides a new strategy for the effective utilization of H* toward rapid reduction of heavy metals and synchronous oxidation of the refractory organics.
Collapse
Affiliation(s)
- Shanpeng Li
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Chunlei Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Haijin Liu
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huaihe River Water Environment and Pollution Control, Xinxiang 453007, China
| | - Wenying Lv
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guoguang Liu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
10
|
Ma WJ, Zhang JT, Wang Y, Li GF, Wu XX, Yao YX, Cheng YF, Huang BC, Jin RC. Extracellular polymeric substances excreted by anammox sludge act as a barrier for As(III) invasion: Binding property and interaction mechanism. CHEMOSPHERE 2021; 278:130414. [PMID: 33819887 DOI: 10.1016/j.chemosphere.2021.130414] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/12/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
The arsenic in livestock wastewater would induce adverse impact on the biological treatment technology such as anaerobic ammonium oxidation (anammox) process. Extracellular polymeric substances (EPS) play an important role in resisting such toxicity. Unfortunately, the role of EPS in protecting anammox from As(III) and the mechanisms underlying the protection still remains unclear. This work comprehensively evaluated the acute toxicity of arsenic on anammox sludge and investigated the binding property and interaction mechanism. The results revealed that the half maximal inhibitory concentration (IC50) of As(III) on anammox sludge was estimated to be 408 mg L-1, which decreased to 41.97 mg L-1 when EPS was exfoliated. Complexation and hydrophobic interactions were the leading forces in preventing arsenic invasion. Protein was the main component that complexes with As(III), and O-H, -NH, -CO were binding sites. The response sequence of organic component in EPS to As(III) was ordered as hydrocarbons-proteins-polysaccharides-aliphatic amines.
Collapse
Affiliation(s)
- Wen-Jie Ma
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Jiang-Tao Zhang
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Ye Wang
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Gui-Feng Li
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Xin-Xin Wu
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yu-Xi Yao
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Ya-Fei Cheng
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Bao-Cheng Huang
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Ren-Cun Jin
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
11
|
Chen Z, Lai W, Xu Y, Xie G, Hou W, Zhanchang P, Kuang C, Li Y. Anodic oxidation of ciprofloxacin using different graphite felt anodes: Kinetics and degradation pathways. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124262. [PMID: 33213981 DOI: 10.1016/j.jhazmat.2020.124262] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/26/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
Ciprofloxacin (CIP) is ubiquitous in the environment which poses a certain threat to human and ecology. In this investigation, the physical and electrochemical properties of graphite felt (GF) anodes which affected the anodic oxidation (AO) performance, and the CIP removal effect of GF were evaluated. The GFs were used as anodes for detection of ·OH with coumarin (COU) as molecule probe and removal of CIP in a 150 mL electrolytic cell with Pt cathode (AO-GF/Pt system). The results showed that hydrophilic GF (B-GF) owned higher sp3/sp2 and more oxygen-containing and nitrogen-containing functional groups than the hydrophobic GF (A-GF). Moreover, B-GF possessed higher oxygen evolution potential (1.12 V), more active sites and stronger ·OH generation capacity. Above mentioned caused that B-GF exhibited more superior properties for CIP removal. The best efficiencies (96.95%, 99.83%) were obtained in the AO-B-GF/Pt system at 6.25 mAcm-2 after 10 min (k1, 0.356 min-1) and 60 min (k2, 0.224 min-1), respectively. Furthermore, nine degradation pathways of CIP in AO-B-GF/Pt system were summarized as the cleavage of the piperazine ring, cyclopropyl group, quinolone ring and F atom by ·OH. It provides new insights into the removal and degradation pathways of CIP with GF in AO system.
Collapse
Affiliation(s)
- Zhuoyao Chen
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Weikang Lai
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanbin Xu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Guangyan Xie
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Waner Hou
- Analysis and Test Center, Guangdong University of Technology, Guangzhou 510006, China
| | - Pan Zhanchang
- School of Chemical Engineering & Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Chaozhi Kuang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuxin Li
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
12
|
Li J, Ma J, Dai R, Wang X, Chen M, Waite TD, Wang Z. Self-Enhanced Decomplexation of Cu-Organic Complexes and Cu Recovery from Wastewaters Using an Electrochemical Membrane Filtration System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:655-664. [PMID: 33103901 DOI: 10.1021/acs.est.0c05554] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Heavy metals in industrial wastewaters are typically present as stable metal-organic complexes with their cost-effective treatment remaining a significant challenge. Herein, a self-enhanced decomplexation scenario is developed using an electrochemical membrane filtration (EMF) system for efficient decomplexation and Cu recovery. Using Cu-EDTA as a model pollutant, the EMF system achieved 81.5% decomplexation of the Cu-EDTA complex and 72.4% recovery of Cu at a cell voltage of 3 V. The •OH produced at the anode first attacked Cu-EDTA to produce intermediate Cu-organic complexes that reacted catalytically with the H2O2 generated from the reduction of dissolved oxygen at the cathode to initiate chainlike self-enhanced decomplexation in the EMF system. The decomplexed Cu products were further reduced or precipitated at the cathodic membrane surface thereby achieving efficient Cu recovery. By scavenging H2O2 (excluding self-enhanced decomplexation), the rate of decomplexation decreased from 8.8 × 10-1 to 4.1 × 10-1 h-1, confirming the important role of self-enhanced decomplexation in this system. The energy efficiency of this system is 93.5 g kWh-1 for Cu-EDTA decomplexation and 15.0 g kWh-1 for Cu recovery, which is much higher than that reported in the previous literature (i.e., 7.5 g kWh-1 for decomplexation and 1.2 g kWh-1 for recovery). Our results highlight the potential of using EMF for the cost-effective treatment of industrial wastewaters containing heavy metals.
Collapse
Affiliation(s)
- Jiayi Li
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jinxing Ma
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Ruobin Dai
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xueye Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Mei Chen
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - T David Waite
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
13
|
Lai W, Xie G, Dai R, Kuang C, Xu Y, Pan Z, Zheng L, Yu L, Ye S, Chen Z, Li H. Kinetics and mechanisms of oxytetracycline degradation in an electro-Fenton system with a modified graphite felt cathode. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 257:109968. [PMID: 31868637 DOI: 10.1016/j.jenvman.2019.109968] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 11/09/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
The removal of trace antibiotics from the aquatic environment has received great interest. In this investigation, NaOH activated graphite felt (NaOH-GF) was characterized by multiple-methods, including scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), contact angle, linear sweep voltammetry (LSV) and electron paramagnetic resonance (EPR). The NaOH-GF was then used as the cathode in the electro-Fenton process for oxytetracycline (OTC) degradation, the experiment was carried out in an undivided and light-proof beaker with a Pt anode and a NaOH-GF cathode at pH 3. The results showed that the modification with NaOH enhanced the antibiotics degradation efficiency of graphite felt by increasing the oxygen reduction capacity and hydroxyl radicals yielding rate. Complete OTC removal was achieved at 5.17 mA cm-2 after 40, 60 and 90 s with initial OTC concentration of 22, 44, and 66 μM, respectively. With an initial OTC concentration of 44 μM, after 30 min the removal rates of chemical oxygen demand (COD) by Raw-GF and NaOH-GF were 59.18% and 83.75%, respectively. The proposed degradation mechanism of OTC was an EF process, which consisted of hydroxylation, secondary alcohol oxidation, demethylation, decarbonylation, dehydration and deamination. This study demonstrates that NaOH activated GF cathode possesses high degradation capacity and good stability. It provides insight into the removal of non-biodegradable antibiotics and may shed light on future to its practical application.
Collapse
Affiliation(s)
- Weikang Lai
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Guangyan Xie
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ruizhi Dai
- Guangdong Yikangsheng Environmental Science and Technology Limited Company, Yunfu, 527400, China
| | - Chaozhi Kuang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yanbin Xu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Zhanchang Pan
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Li Zheng
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ling Yu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shengjun Ye
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhuoyao Chen
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Hang Li
- Analysis and Test Center, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
14
|
Preparation of the Mn-Fe-Ce/γ-Al2O3 ternary catalyst and its catalytic performance in ozone treatment of dairy farming wastewater. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|