1
|
Li J, Wang C, Wang R, Zhang C, Li G, Davey K, Zhang S, Guo Z. Progress and perspectives on iron-based electrode materials for alkali metal-ion batteries: a critical review. Chem Soc Rev 2024; 53:4154-4229. [PMID: 38470073 DOI: 10.1039/d3cs00819c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Iron-based materials with significant physicochemical properties, including high theoretical capacity, low cost and mechanical and thermal stability, have attracted research attention as electrode materials for alkali metal-ion batteries (AMIBs). However, practical implementation of some iron-based materials is impeded by their poor conductivity, large volume change, and irreversible phase transition during electrochemical reactions. In this review we critically assess advances in the chemical synthesis and structural design, together with modification strategies, of iron-based compounds for AMIBs, to obviate these issues. We assess and categorize structural and compositional regulation and its effects on the working mechanisms and electrochemical performances of AMIBs. We establish insight into their applications and determine practical challenges in their development. We provide perspectives on future directions and likely outcomes. We conclude that for boosted electrochemical performance there is a need for better design of structures and compositions to increase ionic/electronic conductivity and the contact area between active materials and electrolytes and to obviate the large volume change and low conductivity. Findings will be of interest and benefit to researchers and manufacturers for sustainable development of advanced rechargeable ion batteries using iron-based electrode materials.
Collapse
Affiliation(s)
- Junzhe Li
- Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials (Ministry of Education), School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Chao Wang
- Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials (Ministry of Education), School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Rui Wang
- Institutes of Physical Science and Information Technology Leibniz International Joint Research Center of Materials Sciences of Anhui Province Anhui Province, Key Laboratory of Environment-Friendly Polymer Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui University, Hefei 230601, China.
| | - Chaofeng Zhang
- Institutes of Physical Science and Information Technology Leibniz International Joint Research Center of Materials Sciences of Anhui Province Anhui Province, Key Laboratory of Environment-Friendly Polymer Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui University, Hefei 230601, China.
| | - Guanjie Li
- School of Chemical Engineering, The University of Adelaide, Adelaide 5005, Australia.
| | - Kenneth Davey
- School of Chemical Engineering, The University of Adelaide, Adelaide 5005, Australia.
| | - Shilin Zhang
- School of Chemical Engineering, The University of Adelaide, Adelaide 5005, Australia.
| | - Zaiping Guo
- School of Chemical Engineering, The University of Adelaide, Adelaide 5005, Australia.
| |
Collapse
|
2
|
Shi B, Li H, Fu X, Zhao C, Li M, Liu M, Yan W, Yang H. Fe Single-Atom Catalyst for Cost-Effective yet Highly Efficient Heterogeneous Fenton Catalysis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:53767-53776. [PMID: 36409839 DOI: 10.1021/acsami.2c15232] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
High energy consumption in pyrolyzing precursors for catalyst preparation would limit the application of nitrogen-doped carbon-based single-atom catalysts in actual pollutant remediation. Herein, we report an Fe single atom (7.67 wt %) loaded polyaniline catalyst (Fe-PANI) prepared via a simple impregnation process without pyrolysis. Both experimental characterizations and density functional theory calculations demonstrated that isolated -N═ group sites can fasten Fe atoms through Fe-N coordination in PANI, leading to a high stability of Fe atoms in a heterogeneous Fenton reaction. Highly dispersive yet dense -N═ groups in PANI can be protonated to be adsorption sites, which largely reduce the migration distance between reactive radicals and organics. More significantly, frontier molecular orbitals and spin-density distributions reveal that electrons can transfer from reduction groups of PANI to an Fe(III) site to accelerate its reduction. As a result, a remarkably boosted degradation behavior of organics under near-neutral conditions (pH 6), with low H2O2 concentration, was achieved. This cost-effective Fe-PANI catalyst with high catalytic activity, stability, and adsorption performance has great potential for industrial-level wastewater treatment.
Collapse
Affiliation(s)
- Bofang Shi
- State Key Laboratory of Multiphase Flow in Power Engineering, Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an710049, China
| | - Hang Li
- State Key Laboratory of Multiphase Flow in Power Engineering, Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an710049, China
| | - Xiaojie Fu
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Department of Applied Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an710049, China
| | - Chengcheng Zhao
- State Key Laboratory of Multiphase Flow in Power Engineering, Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an710049, China
| | - Mingtao Li
- State Key Laboratory of Multiphase Flow in Power Engineering, Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an710049, China
| | - Maochang Liu
- State Key Laboratory of Multiphase Flow in Power Engineering, Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an710049, China
| | - Wei Yan
- State Key Laboratory of Multiphase Flow in Power Engineering, Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an710049, China
| | - Honghui Yang
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Department of Applied Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an710049, China
| |
Collapse
|
3
|
Wang D, Li L, Liu Z, Gao S, Zhang G, Hou Y, Wen G, Zhang L, Gu H, Zhang R. A unique two-phase heterostructure with cubic NiSe 2 and orthorhombic NiSe 2 for enhanced lithium ion storage and electrocatalysis. Dalton Trans 2022; 51:12829-12838. [PMID: 35959790 DOI: 10.1039/d2dt01948e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two-phase heterostructures have received tremendous attention in energy-related fields as high-performance electrode materials. However, heterogeneous interfaces are usually constructed by introducing foreign elements, which disturbs the investigation of the intrinsic effect of the two-phase heterostructure. Herein, unique heterostructures constructed with orthorhombic NiSe2 and cubic NiSe2 phases are developed, which are embedded in in situ formed porous carbon from metal-organic frameworks (MOFs) (O/C-NiSe2@C). Precisely-controlled selenylation of MOFs is crucial for the formation of the O/C-NiSe2 heterostructure. The heterogeneous interfaces with lattice dislocations and charge distribution are conducive to the high-speed transfer of electrons and ions during electrochemical processes, so as to improve the electrochemical reaction kinetics for lithium-ion storage and the hydrogen evolution reaction (HER). When used as the anode of lithium-ion batteries (LIBs), O/C-NiSe2@C shows a superior electrochemical performance to the counterparts with only the cubic phase (C-NiSe2@C), in view of the cycling performance (719.3 mA h g-1 at 0.1 A g-1 for 100 cycles; 456.3 mA h g-1 at 1 A g-1 for 1000 cycles) and rate capabilities (344.8 mA h g-1 at 4 A g-1). Furthermore, O/C-NiSe2@C also exhibits better HER properties than C-NiSe2@C, that is, much lower overpotentials of 154 mV and 205 mV in 0.5 M H2SO4 and 1 M KOH, respectively, at 10 mA cm-2, a smaller Tafel slope as well as stable electrocatalytic activities for 2000 cycles/10 h. Preliminary observations indicate that the unique orthorhombic/cubic two-phase heterostructure could significantly improve the electrochemical performance of NiSe2 without additional modifications such as doping, suggesting the O/C-NiSe2 heterostructure as a promising bifunctional electrode for energy conversion and storage applications.
Collapse
Affiliation(s)
- Dong Wang
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, P. R. China. .,State Key Laboratory of Advanced Technology for Float Glass, Bengbu 233000, P. R. China.,Shangdong Si-Nano Materials Technology Co., Ltd., Zibo 255000, P. R. China
| | - Li Li
- Shangdong Si-Nano Materials Technology Co., Ltd., Zibo 255000, P. R. China
| | - Zhichao Liu
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Shanshan Gao
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Guangshuai Zhang
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Yongzhao Hou
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Guangwu Wen
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, P. R. China. .,Shangdong Si-Nano Materials Technology Co., Ltd., Zibo 255000, P. R. China
| | - Lijuan Zhang
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Hao Gu
- Shanghai Radio Equipment Research Institute, Shanghai 200000, P. R. China
| | - Rui Zhang
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| |
Collapse
|
4
|
Liang T, Mao Z, Li L, Wang R, He B, Gong Y, Jin J, Yan C, Wang H. A Mechanically Flexible Necklace-Like Architecture for Achieving Fast Charging and High Capacity in Advanced Lithium-Ion Capacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201792. [PMID: 35661404 DOI: 10.1002/smll.202201792] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Integration of fast charging, high capacity, and mechanical flexibility into one electrode is highly desired for portable energy-storage devices. However, a high charging rate is always accompanied by capacity decay and cycling instability. Here, a necklace-structured composite membrane consisting of micron-sized FeSe2 cubes uniformly threaded by carbon nanofibers (CNF) is reported. This unique electrode configuration can not only accommodate the volumetric expansion of FeSe2 during the lithiation/delithiation processes for structural robustness but also guarantee ultrafast kinetics for Li+ entry. At a high mass loading of 6.2 mg cm-2 , the necklace-like FeSe2 @CNF electrode exhibits exceptional rate capability (80.7% capacity retention from 0.1 to 10 A g-1 ) and long-term cycling stability (no capacity decay after 1100 charge-discharge cycles at 2 A g-1 ). The flexible lithium-ion capacitor (LIC) fabricated by coupling a pre-lithiated FeSe2 @CNF anode with a porous carbon cathode delivers impressive volumetric energy//power densities (98.4 Wh L-1 at 157.1 W L-1 , and 58.9 Wh L-1 at 15714.3 W L-1 ). The top performance, long-term cycling stability, low self-discharge rate, and high mechanical flexibility make it among the best LICs ever reported.
Collapse
Affiliation(s)
- Tian Liang
- Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Zhifei Mao
- Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Lingyao Li
- Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Rui Wang
- Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Beibei He
- Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Yansheng Gong
- Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Jun Jin
- Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Chunjie Yan
- Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Huanwen Wang
- Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
5
|
A variety of carbon-coated FeS2 anodes: FeS2@CNT with excellent lithium-ion storage performance. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Wychowaniec JK, Saini H, Scheibe B, Dubal DP, Schneemann A, Jayaramulu K. Hierarchical porous metal–organic gels and derived materials: from fundamentals to potential applications. Chem Soc Rev 2022; 51:9068-9126. [DOI: 10.1039/d2cs00585a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review summarizes recent progress in the development and applications of metal–organic gels (MOGs) and their hybrids and derivatives dividing them into subclasses and discussing their synthesis, design and structure–property relationship.
Collapse
Affiliation(s)
- Jacek K. Wychowaniec
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland
| | - Haneesh Saini
- Department of Chemistry, Indian Institute of Technology Jammu, Nagrota Bypass Road, Jammu & Kashmir, 181221, India
| | - Błażej Scheibe
- Adam Mickiewicz University in Poznań, NanoBioMedical Centre, Wszechnicy Piastowskiej 3, PL61614 Poznań, Poland
| | - Deepak P. Dubal
- School of Chemistry and Physics, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4001, Australia
| | - Andreas Schneemann
- Lehrstuhl für Anorganische Chemie I, Technische Universität Dresden, Bergstr. 66, 01067 Dresden, Germany
| | - Kolleboyina Jayaramulu
- Department of Chemistry, Indian Institute of Technology Jammu, Nagrota Bypass Road, Jammu & Kashmir, 181221, India
| |
Collapse
|
7
|
Feng J, Luo SH, Zhan Y, Yan SX, Li PW, Zhang L, Wang Q, Zhang YH, Liu X. Ingeniously Designed Yolk-Shell-Structured FeSe 2@NDC Nanoboxes as an Excellent Long-Life and High-Rate Anode for Half/Full Na-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51095-51106. [PMID: 34672516 DOI: 10.1021/acsami.1c16957] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Thanks to their high conductivity and theoretical capacity, transition metal selenides have demanded significant research attention as prospective anodes for sodium-ion batteries. Nevertheless, their practical applications are hindered by finite cycle life and inferior rate performance because of large volume expansion, polyselenide dissolution, and sluggish dynamics. Herein, the nitrogen-doped carbon (NC)-coated FeSe2 nanoparticles encapsulated in NC nanoboxes (termed FeSe2@NDC NBs) are fabricated through the facile thermal selenization of polydopamine-wrapped Prussian blue precursors. In this composite, the existing nitrogen-doped dual carbon layer improves the intrinsic conductivity and structural integrity, while the unique porous yolk-shell architecture significantly mitigates the volume swelling during the sodium/desodium process. Moreover, the derived Fe-N-C bonds can effectively capture polyselenide, as well as promote Na+ transportation and good reversible conversion reaction. As expected, the FeSe2@NDC NBs deliver remarkable rate performance (374.9 mA h g-1 at 10.0 A g-1) and long-cycling stability (403.3 mA h g-1 over 2000 loops at 5.0 A g-1). When further coupled with a self-made Na3V2(PO4)3@C cathode in sodium-ion full cells, FeSe2@NDC NBs also exhibit considerably high and stable sodium-storage performance.
Collapse
Affiliation(s)
- Jian Feng
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China
| | - Shao-Hua Luo
- School of Materials Science and Engineering and State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, PR China
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Qinhuangdao 066004, PR China
| | - Yang Zhan
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China
| | - Sheng-Xue Yan
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China
| | - Peng-Wei Li
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China
| | - Lin Zhang
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China
| | - Qing Wang
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Qinhuangdao 066004, PR China
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China
| | - Ya-Hui Zhang
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China
| | - Xin Liu
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China
| |
Collapse
|
8
|
Liu C, Li Y, Feng Y, Zhang S, Lu D, Huang B, Peng T, Sun W. Engineering of yolk-shelled FeSe2@nitrogen-doped carbon as advanced cathode for potassium-ion batteries. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Nitrogen-doped carbon nanotube-buffered FeSe2 anodes for fast-charging and high-capacity lithium storage. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138686] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Deng X, Zhu M, Ke J, Yang S, Xiong D, Feng Z, He M. Macrophage-Like NiSe2–C@Ni Nanofoams As High-Performance Anode Material for Lithium-Ion Batteries. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2021. [DOI: 10.1134/s0036024421090314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
|
12
|
Synthesis of Fe3Se4/carbon composites from different metal–organic frameworks and their comparative lithium/sodium storage performances. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01524-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Tian Z, Zhao Z, Wang X, Chen Y, Li D, Linghu Y, Wang Y, Wang C. A high-performance asymmetric supercapacitor-based (CuCo)Se 2/GA cathode and FeSe 2/GA anode with enhanced kinetics matching. NANOSCALE 2021; 13:6489-6498. [PMID: 33885528 DOI: 10.1039/d1nr00288k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The performance of asymmetric supercapacitors (ASCs) is limited by the poorly matched electrochemical kinetics of available electrode materials, which generally results in reduced energy density and inadequate voltage utilization. Herein, a porous conductive graphene aerogel (GA) scaffold was decorated with copper cobalt selenide ((CuCo)Se2) or iron selenide (FeSe2) to construct positive and negative electrodes, respectively. The (CuCo)Se2/GA and FeSe2/GA electrodes exhibited high specific capacitances of 672 and 940 F g-1, respectively, at 1 A g-1. The capacitance contributions from the Co3+/Co2+ and Fe3+/Fe2+ redox couple for the positive and negative electrodes were determined to elucidate the energy storage mechanism. Furthermore, the kinetics study of the two electrodes was performed, revealing b values ranging between 0.7 and 1 at various scan rates and demonstrating that the surface-controlled processes played the dominant role, leading to fast charge storage capability for both electrodes. Fabrication of an ASC device with a configuration of (CuCo)Se2/GA//FeSe2/GA resulted in a voltage of 1.6 V, a high energy density of 39 W h kg-1, and a power density of 702 W kg-1. The excellent electrochemical performances of the (CuCo)Se2/GA and FeSe2/GA electrodes demonstrate their potential applications in energy storage devices.
Collapse
Affiliation(s)
- Zhen Tian
- School of Materials Science and Engineering, North University of China, 030051 Taiyuan, PR China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Zhang Y, Wu Y, Zhong W, Xiao F, Kashif Aslam M, Zhang X, Xu M. Highly Efficient Sodium-Ion Storage Enabled by an rGO-Wrapped FeSe 2 Composite. CHEMSUSCHEM 2021; 14:1336-1343. [PMID: 33289335 DOI: 10.1002/cssc.202002552] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/28/2020] [Indexed: 06/12/2023]
Abstract
Exploitation of superior anode materials is a key step to realize the pursuit of high-performance sodium-ion batteries. In this work, a reduced graphene oxide-wrapped FeSe2 (FeSe2 @rGO) composite derived from a metal-organic framework (MOF) was synthesized to act as the anode material of sodium-ion batteries. The MOF-derived carbon framework with high specific surface area could relieve the large volumetric change during cycling and ensure the structural stability of electrode materials. Besides, the rGO conductive network allowed to promote the electron transfer and accelerate reaction kinetics as well as to provide a protection role for the internal FeSe2 . As a result, the FeSe2 @rGO composite exhibited a high capacity of 350 mAh g-1 after 600 cycles at 5 A g-1 . Moreover, in situ XRD was conducted to explore the reaction mechanism of the FeSe2 @rGO composite upon sodiation/de-sodiation. Importantly, the presented method for the synthesis of MOF-derived materials wrapped by rGO could not only be used for FeSe2 @rGO-based sodium-ion batteries but also for the different transition metal-based composite materials for electrochemical devices, such as water splitting and sensors.
Collapse
Affiliation(s)
- Yawei Zhang
- School of Materials & Energy, Institute for Clean Energy & Advanced Materials, Southwest University, 400715, Chongqing, P. R. China
| | - Yuanke Wu
- School of Materials & Energy, Institute for Clean Energy & Advanced Materials, Southwest University, 400715, Chongqing, P. R. China
| | - Wei Zhong
- School of Materials & Energy, Institute for Clean Energy & Advanced Materials, Southwest University, 400715, Chongqing, P. R. China
| | - Fangyuan Xiao
- School of Materials & Energy, Institute for Clean Energy & Advanced Materials, Southwest University, 400715, Chongqing, P. R. China
| | - Muhammad Kashif Aslam
- School of Materials & Energy, Institute for Clean Energy & Advanced Materials, Southwest University, 400715, Chongqing, P. R. China
| | - Xuan Zhang
- School of Materials & Energy, Institute for Clean Energy & Advanced Materials, Southwest University, 400715, Chongqing, P. R. China
| | - Maowen Xu
- School of Materials & Energy, Institute for Clean Energy & Advanced Materials, Southwest University, 400715, Chongqing, P. R. China
| |
Collapse
|
15
|
Jiang S, Xiang M, Zhang J, Chu S, Marcelli A, Chu W, Wu D, Qian B, Tao S, Song L. Rational design of hierarchical FeSe 2 encapsulated with bifunctional carbon cuboids as an advanced anode for sodium-ion batteries. NANOSCALE 2020; 12:22210-22216. [PMID: 33140808 DOI: 10.1039/d0nr06359b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Earth-abundant transition-metal selenides (TMSs) have aroused great interest towards their application in sodium-ion batteries (SIBs). Herein, we present Fe-based Prussian blue analogs (PBA) modified by graphene oxide as precursors to synthesize FeSe2 nanoparticles within a nitrogen-doped carbon (NC) matrix and graphene layer (FeSe2/NC@G). The bifunctional carbon wrapped FeSe2/NC@G shows excellent sodium-storage performance with a large reversible capacity of 331 mA h g-1 at 5.0 A g-1 and a high cyclability of 323 mA h g-1 at the current density of 2.0 A g-1 after 1000 cycles (82% capacity retention). Furthermore, full SIBs are also fabricated and exhibit superior capacities and stabilities. The remarkable electrochemical properties result from the formation of an Fe-O-C chemical bond in the composite with enhanced electronic/ionic diffusion kinetics and structural integrity. This study paves the way for the successful synthesis of novel nanostructural TMSs which can be utilized in energy storage system application.
Collapse
Affiliation(s)
- Shikang Jiang
- School of Electronic and Information Engineering, Jiangsu Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu 215500, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kim JH, Park GD, Kang YC. Amorphous iron oxide-selenite composite microspheres with a yolk-shell structure as highly efficient anode materials for lithium-ion batteries. NANOSCALE 2020; 12:10790-10798. [PMID: 32391842 DOI: 10.1039/d0nr01905d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Yolk-shell structured transition metal compounds have intrinsic structural advantages as anode materials and have been synthesized in a highly crystalline form. Thus, development of a synthesis process for a yolk-shell structure with an amorphous state, that displays high structural stability and fast ionic diffusion, is a notable research subject, with wide applications in fields such as energy storage. Herein, a novel approach for synthesizing amorphous materials with a yolk-shell structure using several facile phase transformation processes is presented. Crystalline iron oxide microspheres with a yolk-shell structure were formed by oxidation of the spray-dried product at 400 °C. Using the pitch/tetrahydrofuran solution infiltration method, pitch-infiltrated iron oxide was selenized at 350 °C to form a crystalline iron selenide-C composite. The following partial oxidation process at 375 °C produced a yolk-shell structured amorphous iron oxide-selenite composite. The amorphous characteristics, the yolk-shell structure, and the formation of a heterostructured interface from iron selenite during the initial cycle contributed to high electrochemical kinetic properties and excellent cycling performance of the iron oxide-selenite composite. The amorphous iron oxide-iron selenite yolk-shell microspheres exhibited enhanced reversible capacities, cycling stability, and remarkable electrochemical kinetic properties when compared to crystalline iron oxide.
Collapse
Affiliation(s)
- Ju Hyeong Kim
- Department of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-713, Republic of Korea.
| | - Gi Dae Park
- Department of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-713, Republic of Korea.
| | - Yun Chan Kang
- Department of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-713, Republic of Korea.
| |
Collapse
|
17
|
Yang S, He M, Deng X, Feng Y, Huang X, Wu K, Bai C, Ke J, Xiong D. Wafer-like FeSe2-NiSe2/C nanosheets as efficient anode for high-performances lithium batteries. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137274] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|