1
|
Shao Y, Mei Y, Liu T, Li Z, Zhang Y, Liu S, Liu Y. Enhanced electrochemical stability and ion transfer rate: A polymer/ceramic composite electrolyte for high-performance all-solid-state lithium-sulfur batteries. J Colloid Interface Sci 2025; 678:682-689. [PMID: 39307057 DOI: 10.1016/j.jcis.2024.09.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/01/2024] [Accepted: 09/09/2024] [Indexed: 10/27/2024]
Abstract
All-solid-state (ASS) lithium-sulfur (LiS) batteries utilizing composite polymer electrolytes (CPEs) represent a promising avenue in the domain of electric vehicles and large-scale energy storage systems, leveraging the combined benefits of polymer electrolytes (PEs) and ceramic electrolytes (CEs). However, the inherent weak interface compatibility between PEs and CEs often leads to phase separation, thereby impeding the transposition of Li+. In this study, the trimethoxy-[3-(2-methoxyethoxy)propyl]silane (TM-MES) is introduced as a chemical agent to form bonds with polyethylene oxide (PEO) and Li10GeP2S12 (LGPS), resulting in the development of a novel composite polymer electrolyte (CPETM-MES). This innovative approach mitigates phase separation between PEs and CEs while concurrently enhancing the protective capabilities of LGPS against decomposition at the interfaces of both the Li anode and sulfur cathode. Moreover, the CPETM-MES exhibits superior mechanical toughness, an expanded electrochemical window, and elevated ionic conductivity. In the symmetric cell, it demonstrates an extended operational lifespan exceeding 1800 h, and the current density can reach up to 1.05 mA/cm2. Furthermore, the initial discharge capacity of ASS LiS batteries utilizing CPETM-MES attains 1227 mAh/g and maintains a capacity of 904 mAh/g after 100 cycles. Notably, a high-energy-density of 2454 Wh/kg is achieved based on the sulfur cathode.
Collapse
Affiliation(s)
- Yaxin Shao
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, PR China; University of Chinese Academy of Sciences, Beijing 10049, PR China
| | - Yuhan Mei
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, PR China; University of Chinese Academy of Sciences, Beijing 10049, PR China
| | - Tao Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, PR China; University of Chinese Academy of Sciences, Beijing 10049, PR China
| | - Zhenhu Li
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, PR China; University of Chinese Academy of Sciences, Beijing 10049, PR China
| | - Yulin Zhang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, PR China; University of Chinese Academy of Sciences, Beijing 10049, PR China
| | - Shuangyi Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, PR China; University of Chinese Academy of Sciences, Beijing 10049, PR China
| | - Yuping Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, PR China; University of Chinese Academy of Sciences, Beijing 10049, PR China.
| |
Collapse
|
2
|
Wu H, Lu Y, Han H, Yan Z, Chen J. Solid-State Electrolytes by Electrospinning Techniques for Lithium Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309801. [PMID: 38528431 DOI: 10.1002/smll.202309801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/08/2024] [Indexed: 03/27/2024]
Abstract
Solid-state lithium batteries (SSLBs) are regarded as next-generation energy storage devices because of their advantages in terms of safety and energy density. However, the poor interfacial compatibility and low ionic conductivity seriously hinder their development. Electrospinning is considered as a promising method for fabricating solid-state electrolytes (SSEs) with controllable nanofiber structures, scalability, and cost-effectiveness. Numerous efforts are dedicated to electrospinning SSEs with high ionic conductivity and strong interfacial compatibility, but a comprehensive summary is lacking. Here, the history of electrospinning SSEs is overeviewed and introduce the electrospinning mechanism, followed by the manipulation of electrospun nanofibers and their utilization in SSEs, as well as various methods to improve the ionic conductivity of SSEs. Finally, new perspectives aimed at enhancing the performance of SSEs membranes and facilitating their industrialization are proposed. This review aims to provide a comprehensive overview and future perspective on electrospinning technology in SSEs, with the goal of guiding the further development of SSLBs.
Collapse
Affiliation(s)
- Hao Wu
- State Key Laboratory of Advanced Chemical Power Sources, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yong Lu
- State Key Laboratory of Advanced Chemical Power Sources, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Haoqin Han
- State Key Laboratory of Advanced Chemical Power Sources, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Zhenhua Yan
- State Key Laboratory of Advanced Chemical Power Sources, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Jun Chen
- State Key Laboratory of Advanced Chemical Power Sources, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
3
|
Khan IA, Alzahrani AS, Ali S, Mansha M, Tahir MN, Khan M, Qayyum HA, Khan SA. Development of Membranes and Separators to Inhibit Cross-Shuttling of Sulfur in Polysulfide-Based Redox Flow Batteries: A Review. CHEM REC 2024; 24:e202300171. [PMID: 37606899 DOI: 10.1002/tcr.202300171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/08/2023] [Indexed: 08/23/2023]
Abstract
The global rapid transition from fossil fuels to renewable energy resources necessitates the implementation of long-duration energy storage technologies owing to the intermittent nature of renewable energy sources. Therefore, the deployment of grid-scale energy storage systems is inevitable. Sulfur-based batteries can be exploited as excellent energy storage devices owing to their intrinsic safety, low cost of raw materials, low risk of environmental hazards, and highest theoretical capacities (gravimetric: 2600 Wh/kg and volumetric: 2800 Wh/L). However, sulfur-based batteries exhibit certain scientific limitations, such as polysulfide crossover, which causes rapid capacity decay and low Coulombic efficiency, thereby hindering their implementation at a commercial scale. In this review article, we focus on the latest research developments between 2012-2023 to improve the separators/membranes and overcome the shuttle effect associated with them. Various categories of ion exchange membranes (IEMs) used in redox batteries, particularly polysulfide redox flow batteries and lithium-sulfur batteries, are discussed in detail. Furthermore, advances in IEM constituents are summarized to gain insights into different fundamental strategies for attaining targeted characteristics, and a critical analysis is proposed to highlight their efficiency in mitigating sulfur cross-shuttling issues. Finally, future prospects and recommendations are suggested for future research toward the fabrication of more effective membranes with desired properties.
Collapse
Affiliation(s)
- Ibad Ali Khan
- Department of Materials Science and Engineering, College of Chemical Sciences, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Atif Saeed Alzahrani
- Department of Materials Science and Engineering, College of Chemical Sciences, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Shahid Ali
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Muhammad Mansha
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Muhammad Nawaz Tahir
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Majad Khan
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Hafiz Adil Qayyum
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
- Department of Physics, College of General Studies, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabi
| | - Safyan Akram Khan
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
4
|
Liang X, Wang Y, Liang Z, Yan G, Lan L, Wang Y, Shi X, Yun S, Huang M. Long-Cycle Stability of In Situ Ultraviolet Curable Organic/Inorganic Composite Electrolyte for Solid-State Batteries. Polymers (Basel) 2023; 16:55. [PMID: 38201720 PMCID: PMC10780976 DOI: 10.3390/polym16010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Lithium-ion solid-state batteries with spinel Li4Ti5O12 (LTO) electrodes have significant advantages, such as stability, long life, and good multiplication performance. In this work, the LTO electrode was obtained by the atmospheric plasma spraying method, and a composite solid electrolyte was prepared by in situ ultraviolet (UV) curing on the LTO electrode. The composite solid electrolyte was designed using a soft-hard combination strategy, and the electrolyte was prepared into a composite of a poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) flexible structure and high-conductivity Li1.3Al0.3Ti1.7(PO4)3 (LATP) hard particles. The composite electrolyte exhibited a good ionic conductivity up to 0.35 mS cm-1 at 30 °C and an electrochemical window above 4.0 V. In situ and ex situ electrolytes were assembled into LTO//electrolyte//Li solid-state batteries to investigate their impact on the electrochemical performance of the batteries. As a result, the assembled Li4Ti5O12//in situ electrolytes//Li batteries exhibited excellent rate of performance, and their capacity retention rate was 90% at 0.2 mA/cm2 after 300 cycles. This work provides a new method for the fabrication of novel advanced solid-state electrolytes and electrodes for applications in solid-state batteries.
Collapse
Affiliation(s)
- Xinghua Liang
- Guangxi Key Laboratory of Automobile Components and Vehicle Technology, Guangxi University of Science & Technology, Liuzhou 545006, China; (X.L.); (Y.W.); (L.L.); (Y.W.); (X.S.); (S.Y.)
| | - Yuying Wang
- Guangxi Key Laboratory of Automobile Components and Vehicle Technology, Guangxi University of Science & Technology, Liuzhou 545006, China; (X.L.); (Y.W.); (L.L.); (Y.W.); (X.S.); (S.Y.)
| | - Zhida Liang
- Guangxi Key Laboratory of Automobile Components and Vehicle Technology, Guangxi University of Science & Technology, Liuzhou 545006, China; (X.L.); (Y.W.); (L.L.); (Y.W.); (X.S.); (S.Y.)
| | - Ge Yan
- Guangxi Automobile Group Co., Ltd., Liuzhou 545006, China
| | - Lingxiao Lan
- Guangxi Key Laboratory of Automobile Components and Vehicle Technology, Guangxi University of Science & Technology, Liuzhou 545006, China; (X.L.); (Y.W.); (L.L.); (Y.W.); (X.S.); (S.Y.)
| | - Yujiang Wang
- Guangxi Key Laboratory of Automobile Components and Vehicle Technology, Guangxi University of Science & Technology, Liuzhou 545006, China; (X.L.); (Y.W.); (L.L.); (Y.W.); (X.S.); (S.Y.)
| | - Xueli Shi
- Guangxi Key Laboratory of Automobile Components and Vehicle Technology, Guangxi University of Science & Technology, Liuzhou 545006, China; (X.L.); (Y.W.); (L.L.); (Y.W.); (X.S.); (S.Y.)
| | - Shuhong Yun
- Guangxi Key Laboratory of Automobile Components and Vehicle Technology, Guangxi University of Science & Technology, Liuzhou 545006, China; (X.L.); (Y.W.); (L.L.); (Y.W.); (X.S.); (S.Y.)
| | - Meihong Huang
- School of Automotive Engineering, Guangdong Polytechnic of Industry and Commerce, Guangzhou 510510, China;
| |
Collapse
|
5
|
Li X, Deng Y, Li K, Yang Z, Hu X, Liu Y, Zhang Z. Advancements in Performance Optimization of Electrospun Polyethylene Oxide-Based Solid-State Electrolytes for Lithium-Ion Batteries. Polymers (Basel) 2023; 15:3727. [PMID: 37765580 PMCID: PMC10536473 DOI: 10.3390/polym15183727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Polyethylene oxide (PEO)-based solid-state electrolytes for lithium-ion batteries have garnered significant interest due to their enhanced potential window, high energy density, and improved safety features. However, the issues such as low ionic conductivity at ambient temperature, substantial ionic conductivity fluctuations with temperature changes, and inadequate electrolyte interfacial compatibility hinder their widespread applications. Electrospinning is a popular approach for fabricating solid-state electrolytes owing to its superior advantages of adjustable component constitution and the unique internal fiber structure of the resultant electrolytes. Thus, this technique has been extensively adopted in related studies. This review provides an overview of recent advancements in optimizing the performance of PEO solid-state electrolytes via electrospinning technology. Initially, the impacts of different lithium salts and their concentrations on the performance of electrospun PEO-based solid-state electrolytes were compared. Subsequently, research pertaining to the effects of various additives on these electrolytes was reviewed. Furthermore, investigations concerning the enhancement of electrospun solid-state electrolytes via modifications of PEO molecular chains are herein detailed, and lastly, the prevalent challenges and future directions of PEO-based solid-state electrolytes for lithium-ion batteries are summarized.
Collapse
Affiliation(s)
- Xiuhong Li
- School of Mechanical Engineering, Hubei University of Technology, Wuhan 430000, China; (X.L.); (Y.D.); (K.L.); (Z.Y.); (X.H.)
| | - Yichen Deng
- School of Mechanical Engineering, Hubei University of Technology, Wuhan 430000, China; (X.L.); (Y.D.); (K.L.); (Z.Y.); (X.H.)
| | - Kai Li
- School of Mechanical Engineering, Hubei University of Technology, Wuhan 430000, China; (X.L.); (Y.D.); (K.L.); (Z.Y.); (X.H.)
| | - Zhiyong Yang
- School of Mechanical Engineering, Hubei University of Technology, Wuhan 430000, China; (X.L.); (Y.D.); (K.L.); (Z.Y.); (X.H.)
| | - Xinyu Hu
- School of Mechanical Engineering, Hubei University of Technology, Wuhan 430000, China; (X.L.); (Y.D.); (K.L.); (Z.Y.); (X.H.)
| | - Yong Liu
- School of Materials Science and Engineering, Beijing University of Chemical Technology, Chaoyang District, Beijing 100000, China
| | - Zheng Zhang
- School of Mechanical Engineering, Hubei University of Technology, Wuhan 430000, China; (X.L.); (Y.D.); (K.L.); (Z.Y.); (X.H.)
| |
Collapse
|
6
|
Desoky MMH, Caldera F, Brunella V, Ferrero R, Hoti G, Trotta F. Cyclodextrins for Lithium Batteries Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5540. [PMID: 37629831 PMCID: PMC10456351 DOI: 10.3390/ma16165540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023]
Abstract
Due to their high energy and power density, lithium-ion batteries (LIBs) have gained popularity in response to the demand for effective energy storage solutions. The importance of the electrode architecture in determining battery performance highlights the demand for optimization. By developing useful organic polymers, cyclodextrin architectures have been investigated to improve the performance of Li-based batteries. The macrocyclic oligosaccharides known as cyclodextrins (CDs) have relatively hydrophobic cavities that can enclose other molecules. There are many industries where this "host-guest" relationship has been found useful. The hydrogen bonding and suitable inner cavity diameter of CD have led to its selection as a lithium-ion diffusion channel. CDs have also been used as solid electrolytes for solid-state batteries and as separators and binders to ensure adhesion between electrode components. This review gives a general overview of CD-based materials and how they are used in battery components, highlighting their advantages.
Collapse
Affiliation(s)
- Mohamed M. H. Desoky
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy; (F.C.); (V.B.); (R.F.); (G.H.)
| | | | | | | | | | - Francesco Trotta
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy; (F.C.); (V.B.); (R.F.); (G.H.)
| |
Collapse
|
7
|
Yan K, Shen C, Wang H, Tao F, Zhou C, Dong C, Zhang G, Chen X, Zhang L, Luo Y, Xu X. Monodispersed MOF-Modified Nanofibers as Versatile Building Blocks for the Ion Regulations in Safe Lithium-Sulfur Batteries. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37302151 DOI: 10.1021/acsami.3c03055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lithium-sulfur battery is the most promising candidate for the next generation of rechargeable batteries because of the high energy density. However, the severe shuttle effect of lithium polysulfides (LiPSs) and degradation of the lithium anode during cycling are significant issues that hinder the practical application of lithium-sulfur batteries. Herein, monodispersed metal-organic framework (MOF)-modified nanofibers are prepared as building blocks to construct both a separator and a composite polymer electrolyte in lithium-sulfur systems. This building block possesses the intrinsic advantages of good mechanical properties, thermal stability, and good electrolyte affinity. MOFs, grown continuously on the monodispersed nanofibers, can effectively adsorb LiPSs and play a key role in regulating the nucleation and stripping/plating process of the lithium anode. When assembled into the separator, the symmetric battery remains stable for 2500 h at a current density of 1 mA cm-2, and the lithium-sulfur full cell shows improved electrochemical performance. In order to improve the safety property, the composite polymer electrolyte is prepared with the MOF-modified nanofiber as the filler. The quasi-solid-state symmetric battery remains stable for 3000 h at a current density of 0.1 mA cm-2, and the corresponding lithium-sulfur cell can cycle 800 times at 1 C with a capacity decay rate of only 0.038% per cycle.
Collapse
Affiliation(s)
- Kaijian Yan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Chunli Shen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Hanxiao Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Feng Tao
- Hainan Institute, Wuhan University of Technology, Sanya 572000, P. R. China
| | - Cheng Zhou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Chenxu Dong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Ge Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Xinhui Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Lei Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
- Hainan Institute, Wuhan University of Technology, Sanya 572000, P. R. China
| | - Yanzhu Luo
- College of Science, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Xu Xu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
- Hainan Institute, Wuhan University of Technology, Sanya 572000, P. R. China
| |
Collapse
|
8
|
Chiu LL, Chung SH. Electrochemically Stable Rechargeable Lithium–Sulfur Batteries Equipped with an Electrospun Polyacrylonitrile Nanofiber Film. Polymers (Basel) 2023; 15:polym15061460. [PMID: 36987242 PMCID: PMC10057069 DOI: 10.3390/polym15061460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023] Open
Abstract
The high theoretical charge-storage capacity and energy density of lithium–sulfur batteries make them a promising next-generation energy-storage system. However, liquid polysulfides are highly soluble in the electrolytes used in lithium–sulfur batteries, which results in irreversible loss of their active materials and rapid capacity degradation. In this study, we adopt the widely applied electrospinning method to fabricate an electrospun polyacrylonitrile film containing non-nanoporous fibers bearing continuous electrolyte tunnels and demonstrate that this serves as an effective separator in lithium–sulfur batteries. This polyacrylonitrile film exhibits high mechanical strength and supports a stable lithium stripping and plating reaction that persists for 1000 h, thereby protecting a lithium-metal electrode. The polyacrylonitrile film also enables a polysulfide cathode to attain high sulfur loadings (4–16 mg cm−2) and superior performance from C/20 to 1C with a long cycle life (200 cycles). The high reaction capability and stability of the polysulfide cathode result from the high polysulfide retention and smooth lithium-ion diffusion of the polyacrylonitrile film, which endows the lithium–sulfur cells with high areal capacities (7.0–8.6 mA·h cm−2) and energy densities (14.7–18.1 mW·h cm−2).
Collapse
Affiliation(s)
- Li-Ling Chiu
- Department of Materials Science and Engineering, National Cheng Kung University, No. 1, University Road, Tainan City 70101, Taiwan
| | - Sheng-Heng Chung
- Department of Materials Science and Engineering, National Cheng Kung University, No. 1, University Road, Tainan City 70101, Taiwan
- Hierarchical Green-Energy Materials Research Center, National Cheng Kung University, No. 1, University Road, Tainan City 70101, Taiwan
- Correspondence:
| |
Collapse
|
9
|
Jung JH, Vijayakumar V, Haridas AK, Ahn JH, Nam SY. Effect of Cross-Linking and Surface Treatment on the Functional Properties of Electrospun Polybenzimidazole Separators for Lithium Metal Batteries. ACS OMEGA 2022; 7:47784-47795. [PMID: 36591163 PMCID: PMC9798493 DOI: 10.1021/acsomega.2c05472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
In this work, electrospun PBI separators with a highly porous structure and nanofiber diameter of about 90-150 nm are prepared using a multi-nozzle under controlled conditions for lithium metal batteries. Cross-linking with α, α-dibromo-p-xylene and surface treatment using 4-(chloromethyl) benzoic acid successfully improve the electrochemical as well as mechanical properties of the separators. The resulting separator is endowed with high thermal stability and excellent wettability (1080 to 1150%) with commercial liquid electrolyte than PE and PP (Celgard 2400) separators. Besides, attractive cycling stability and rate capability in LiFePO4/Li cells are attained with the modified separators. Prominently, CROSSLINK PBI exhibits a stable Coulombic efficiency of more than 99% over 100 charge-discharge cycles at 0.5 C, which is superior to the value of cells using commercial PE and PP (Celgard 2400) separators. The half cells assembled using the CROSSLINK PBI separator can deliver a discharge capacity of 150.3 mAh g-1 at 0.2 C after 50 cycles corresponding to 88.4% of the theoretical value of LiFePO4 (170 mAh g-1). This work offers a worthwhile method to produce thermally stable separators with noteworthy electrochemical performances which opens new possibilities to improve the safe operation of batteries.
Collapse
Affiliation(s)
- Ji Hye Jung
- Department
of Materials Engineering and Convergence Technology, Gyeongsang National University, Jinju52828, Republic
of Korea
| | - Vijayalekshmi Vijayakumar
- Research
Institute for Green Energy Convergence Technology, Gyeongsang National University, Jinju52828, Republic
of Korea
| | - Anupriya K. Haridas
- Department
of Materials Engineering and Convergence Technology, Gyeongsang National University, Jinju52828, Republic
of Korea
| | - Jou-Hyeon Ahn
- Department
of Materials Engineering and Convergence Technology, Gyeongsang National University, Jinju52828, Republic
of Korea
- Department
of Chemical Engineering, Gyeongsang National
University, Jinju52828, Republic of Korea
| | - Sang Yong Nam
- Department
of Materials Engineering and Convergence Technology, Gyeongsang National University, Jinju52828, Republic
of Korea
- Research
Institute for Green Energy Convergence Technology, Gyeongsang National University, Jinju52828, Republic
of Korea
| |
Collapse
|
10
|
Zhu Q, Ye C, Mao D. Solid-State Electrolytes for Lithium-Sulfur Batteries: Challenges, Progress, and Strategies. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12203612. [PMID: 36296802 PMCID: PMC9609870 DOI: 10.3390/nano12203612] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 05/12/2023]
Abstract
Lithium-sulfur batteries (LSBs) represent a promising next-generation energy storage system, with advantages such as high specific capacity (1675 mAh g-1), abundant resources, low price, and ecological friendliness. During the application of liquid electrolytes, the flammability of organic electrolytes, and the dissolution/shuttle of polysulfide seriously damage the safety and the cycle life of lithium-sulfur batteries. Replacing a liquid electrolyte with a solid one is a good solution, while the higher mechanical strength of solid-state electrolytes (SSEs) has an inhibitory effect on the growth of lithium dendrites. However, the lower ionic conductivity, poor interfacial contact, and relatively narrow electrochemical window of solid-state electrolytes limit the commercialization of solid-state lithium-sulfur batteries (SSLSBs). This review describes the research progress in LSBs and the challenges faced by SSEs, which are classified as polymer electrolytes, inorganic solid electrolytes, and composite electrolytes. The advantages, as well as the disadvantages of various types of electrolytes, the common coping strategies to improve performance, and future development trends, are systematically described.
Collapse
|
11
|
Cui Y, Li J, Yuan X, Liu J, Zhang H, Wu H, Cai Y. Emerging Strategies for Gel Polymer Electrolytes with Improved Dual-electrode Side Regulation Mechanisms for Lithium-sulfur Batteries. Chem Asian J 2022; 17:e202200746. [PMID: 36031710 DOI: 10.1002/asia.202200746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/27/2022] [Indexed: 11/12/2022]
Abstract
Lithium-sulfur (Li-S) batteries, known for its high energy density, are limited in practical application by lithium dendrite growth, polysulfide "shuttle effect", and safety issues. Gel polymer electrolytes that combine high ionic conductivity and safety are the key to solving these problems. Based on the special reaction mechanism of Li-S batteries, this paper summarizes in detail the GPE types for different key problems existing in cathodes and anodes, and discusses their corresponding action mechanisms and improvement methods. Finally, the current challenges and future development direction of GPEs for Li-S batteries are summarized and prospected.
Collapse
Affiliation(s)
- Yingyue Cui
- Institute of Process Engineering Chinese Academy of Sciences, Beijing Key Laboratory of Ionic Liquids Clean Process, CHINA
| | - Jin Li
- Institute of Process Engineering Chinese Academy of Sciences, Beijing Key Laboratory of Ionic Liquids Clean Process, CHINA
| | - Xuedi Yuan
- Zhengzhou University, Henan Institute of Advanced Technology, CHINA
| | - Jiaxin Liu
- Shenyang University of Chemical Technology, College of Chemical Engineering, CHINA
| | - Haitao Zhang
- Institute of Process Engineering Chinese Academy of Sciences, Beijing Key Laboratory of Ionic Liquids Clean Process, CHINA
| | - Hui Wu
- Institute of Process Engineering Chinese Academy of Sciences, Beijing Key Laboratory of Ionic Liquids Clean Process, CHINA
| | - Yingjun Cai
- Institute of Process Engineering Chinese Academy of Sciences, No. 1, North Er Tiao, Zhongguancun Street, Beijing, CHINA
| |
Collapse
|
12
|
A liquid cathode/anode based solid-state lithium-sulfur battery. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Porosity Tunable Poly(Lactic Acid)-Based Composite Gel Polymer Electrolyte with High Electrolyte Uptake for Quasi-Solid-State Supercapacitors. Polymers (Basel) 2022; 14:polym14091881. [PMID: 35567050 PMCID: PMC9105037 DOI: 10.3390/polym14091881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/17/2022] Open
Abstract
The growing popularity of quasi-solid-state supercapacitors inevitably leads to the unrestricted consumption of commonly used petroleum-derived polymer electrolytes, causing excessive carbon emissions and resulting in global warming. Also, the porosity and liquid electrolyte uptake of existing polymer membranes are insufficient for well-performed supercapacitors under high current and long cycles. To address these issues, poly(lactic acid) (PLA), a widely applied polymers in biodegradable plastics is employed to fabricate a renewable biocomposite membrane with tunable pores with the help of non-solvent phase inversion method, and a small amount of poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) is introduced as a modifier to interconnect with PLA skeleton for stabilizing the porous structure and optimizing the aperture of the membrane. Owing to easy film-forming and tunable non-solvent ratio, the porous membrane possesses high porosity (ca. 71%), liquid electrolyte uptake (366%), and preferable flexibility endowing the GPE with satisfactory electrochemical stability in coin and flexible supercapacitors after long cycles. This work effectively relieves the environmental stress resulted from undegradable polymers and reveals the promising potential and prospects of the environmentally friendly membrane in the application of wearable devices.
Collapse
|
14
|
Huang Y, Lin L, Zhang C, Liu L, Li Y, Qiao Z, Lin J, Wei Q, Wang L, Xie Q, Peng D. Recent Advances and Strategies toward Polysulfides Shuttle Inhibition for High-Performance Li-S Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2106004. [PMID: 35233996 PMCID: PMC9036004 DOI: 10.1002/advs.202106004] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/29/2022] [Indexed: 05/19/2023]
Abstract
Lithium-sulfur (Li-S) batteries are regarded as the most promising next-generation energy storage systems due to their high energy density and cost-effectiveness. However, their practical applications are seriously hindered by several inevitable drawbacks, especially the shuttle effects of soluble lithium polysulfides (LiPSs) which lead to rapid capacity decay and short cycling lifespan. This review specifically concentrates on the shuttle path of LiPSs and their interaction with the corresponding cell components along the moving way, systematically retrospect the recent advances and strategies toward polysulfides diffusion suppression. Overall, the strategies for the shuttle effect inhibition can be classified into four parts, including capturing the LiPSs in the sulfur cathode, reducing the dissolution in electrolytes, blocking the shuttle channels by functional separators, and preventing the chemical reaction between LiPSs and Li metal anode. Herein, the fundamental aspect of Li-S batteries is introduced first to give an in-deep understanding of the generation and shuttle effect of LiPSs. Then, the corresponding strategies toward LiPSs shuttle inhibition along the diffusion path are discussed step by step. Finally, general conclusions and perspectives for future research on shuttle issues and practical application of Li-S batteries are proposed.
Collapse
Affiliation(s)
- Youzhang Huang
- State Key Lab for Physical Chemistry of Solid SurfacesFujian Key Laboratory of Materials GenomeCollaborative Innovation Center of Chemistry for Energy MaterialsCollege of MaterialsXiamen UniversityXiamen361005P. R. China
| | - Liang Lin
- State Key Lab for Physical Chemistry of Solid SurfacesFujian Key Laboratory of Materials GenomeCollaborative Innovation Center of Chemistry for Energy MaterialsCollege of MaterialsXiamen UniversityXiamen361005P. R. China
| | - Chengkun Zhang
- State Key Lab for Physical Chemistry of Solid SurfacesFujian Key Laboratory of Materials GenomeCollaborative Innovation Center of Chemistry for Energy MaterialsCollege of MaterialsXiamen UniversityXiamen361005P. R. China
| | - Lie Liu
- State Key Lab for Physical Chemistry of Solid SurfacesFujian Key Laboratory of Materials GenomeCollaborative Innovation Center of Chemistry for Energy MaterialsCollege of MaterialsXiamen UniversityXiamen361005P. R. China
| | - Yikai Li
- State Key Lab for Physical Chemistry of Solid SurfacesFujian Key Laboratory of Materials GenomeCollaborative Innovation Center of Chemistry for Energy MaterialsCollege of MaterialsXiamen UniversityXiamen361005P. R. China
| | - Zhensong Qiao
- State Key Lab for Physical Chemistry of Solid SurfacesFujian Key Laboratory of Materials GenomeCollaborative Innovation Center of Chemistry for Energy MaterialsCollege of MaterialsXiamen UniversityXiamen361005P. R. China
| | - Jie Lin
- State Key Lab for Physical Chemistry of Solid SurfacesFujian Key Laboratory of Materials GenomeCollaborative Innovation Center of Chemistry for Energy MaterialsCollege of MaterialsXiamen UniversityXiamen361005P. R. China
| | - Qiulong Wei
- State Key Lab for Physical Chemistry of Solid SurfacesFujian Key Laboratory of Materials GenomeCollaborative Innovation Center of Chemistry for Energy MaterialsCollege of MaterialsXiamen UniversityXiamen361005P. R. China
| | - Laisen Wang
- State Key Lab for Physical Chemistry of Solid SurfacesFujian Key Laboratory of Materials GenomeCollaborative Innovation Center of Chemistry for Energy MaterialsCollege of MaterialsXiamen UniversityXiamen361005P. R. China
| | - Qingshui Xie
- State Key Lab for Physical Chemistry of Solid SurfacesFujian Key Laboratory of Materials GenomeCollaborative Innovation Center of Chemistry for Energy MaterialsCollege of MaterialsXiamen UniversityXiamen361005P. R. China
- Shenzhen Research Institute of Xiamen UniversityShenzhen518000P. R. China
| | - Dong‐Liang Peng
- State Key Lab for Physical Chemistry of Solid SurfacesFujian Key Laboratory of Materials GenomeCollaborative Innovation Center of Chemistry for Energy MaterialsCollege of MaterialsXiamen UniversityXiamen361005P. R. China
| |
Collapse
|
15
|
Gan H, Li S, Zhang Y, Wang J, Xue Z. Electrospun Composite Polymer Electrolyte Membrane Enabled with Silica‐Coated Silver Nanowires. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Huihui Gan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 China
| | - Shaoqiao Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 China
| | - Yong Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 China
| | - Jirong Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 China
| | - Zhigang Xue
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 China
| |
Collapse
|
16
|
Enhancing Lithium ion conductivity and all-solid-state secondary battery performance in polymer composite electrolyte membranes with β-Crystalline-rich Poly(vinylidene fluoride) Nanofibers. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139114] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
17
|
Zhang Q, Wang Q, Huang S, Jiang Y, Chen Z. Preparation and electrochemical study of PVDF-HFP/LATP/g-C3N4 composite polymer electrolyte membrane. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Gan H, Li S, Zhang Y, Yu L, Wang J, Xue Z. Mechanically Strong and Electrochemically Stable Single-Ion Conducting Polymer Electrolytes Constructed from Hydrogen Bonding. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8270-8280. [PMID: 34210143 DOI: 10.1021/acs.langmuir.1c01035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Herein, composite membranes based on a single-ion conducting polymer electrolyte (SIPE) and poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) were prepared by an electrospinning technology. The SIPE with hydrogen bonding was obtained via reversible addition-fragmentation chain transfer (RAFT) copolymerization of 2-(3-(6-methyl-4-oxo-1,4-dihydropyrimidin-2-yl)ureido)ethyl methacrylate (UPyMA), poly(ethylene glycol) methyl ether methacrylate (PEGMA), and lithium 4-styrenesulfonyl (phenylsulfonyl) imide (SSPSILi). The obtained composite membrane exhibited a highly porous network structure, superior thermal stability (>300 °C), and high mechanical strength (17.3 MPa). The fabricated SIPE/PVDF-HFP composite membrane without lithium salts possessed a high ionic conductivity of 2.78 × 10-5 S cm-1 at 30 °C, excellent compatibility with the lithium metal electrode, and high lithium-ion transference number (0.89). The symmetric Li//Li cell exhibited a superior cycle performance without short circuit, indicating the generation of a stable interface between SIPE and the lithium metal electrode during the process of lithium plating/stripping, which could inhibit lithium dendrite growth in lithium metal batteries (LMBs). The Li//LiFePO4 cell also exhibited superior cycle life and excellent rate capability at 60 or 25 °C. In consequence, the composite membrane exhibits a considerable future prospect for advanced LMBs.
Collapse
Affiliation(s)
- Huihui Gan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shaoqiao Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yong Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Liping Yu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jirong Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhigang Xue
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
19
|
Yuan Y, Li Z, Peng X, Xue K, Zheng D, Lu H. Advanced sulfur cathode with polymer gel coating absorbing ionic liquid-containing electrolyte. J Solid State Electrochem 2021. [DOI: 10.1007/s10008-021-04917-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
20
|
Saminathan A, Krishnasamy S, Venkatachalam G. Enhanced Electrochemical Performance of a Silica Bead-Embedded Porous Fluoropolymer Composite Matrix for Li-Ion Batteries. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Ganesh Venkatachalam
- Electrodics and Electrocatalysis Division (EEC), CSIR-Central Electrochemical Research Institute (CSIR-CECRI), Karaikudi 630003, Tamilnadu, India
| |
Collapse
|
21
|
Dielectric polarization and relaxation processes of the lithium-ion conducting PEO/PVDF blend matrix-based electrolytes: effect of TiO2 nanofiller. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2656-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
22
|
Sengwa R, Dhatarwal P. Predominantly chain segmental relaxation dependent ionic conductivity of multiphase semicrystalline PVDF/PEO/LiClO4 solid polymer electrolytes. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135890] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|