1
|
Li Q, Fang X, Jin L, Sun X, Huang H, Ma R, Zhao H, Ren H. Scientometric analysis of electrocatalysis in wastewater treatment: today and tomorrow. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:19025-19046. [PMID: 38374500 DOI: 10.1007/s11356-024-32472-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/09/2024] [Indexed: 02/21/2024]
Abstract
Electrocatalytic methods are valuable tools for addressing water pollution and scarcity, offering effective pollutant removal and resource recovery. To investigate the current status and future trends of electrocatalysis in wastewater treatment, a detailed analysis of 9417 papers and 4061 patents was conducted using scientometric methods. China emerged as the leading contributor to publications, and collaborations between China and the USA have emerged as the most frequent partnerships. Primary article co-citation clusters focused on oxygen evolution reaction and electrochemical oxidation, transitioning towards advanced oxidation processes ("persulfate activation"), and electrocatalytic reduction processes ("nitrate reduction"). Bifunctional catalysts, theoretical calculations, electrocatalytic combination technologies, and emerging contaminants were identified as current research hotspots. Patent analysis revealed seven types of electrochemical technologies, which were compared using SWOT analysis, highlighting electrochemical oxidation as prominent. The technological evolution presented the pathway of electro-Fenton to combined electrocatalytic technologies with biochemical processes, and finally to coupling with electrocoagulation. Standardized evaluation systems, waste resource utilization, and energy conservation were important directions of innovation in electrocatalytic technologies. Overall, this study provided a reference for researchers to understand the framework of electrocatalysis in wastewater treatment and also shed light on potential avenues for further innovation in the field.
Collapse
Affiliation(s)
- Qianqian Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163, Xianlin Avenue, Qixia District, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Xiaoya Fang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163, Xianlin Avenue, Qixia District, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Lili Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163, Xianlin Avenue, Qixia District, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Xiangzhou Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163, Xianlin Avenue, Qixia District, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Hui Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163, Xianlin Avenue, Qixia District, Nanjing, 210023, Jiangsu, People's Republic of China.
| | - Rui Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163, Xianlin Avenue, Qixia District, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Han Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163, Xianlin Avenue, Qixia District, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163, Xianlin Avenue, Qixia District, Nanjing, 210023, Jiangsu, People's Republic of China
| |
Collapse
|
2
|
Rai D, Sinha S. Characterization and electrochemical properties of TiO 2-rNTs/SnO 2-Sb/PbO 2 electrodes for the mineralization of persistent organic pollutants using anodic oxidation coupled Electro-Fenton treatment: Effect of precursor selection. CHEMOSPHERE 2024; 352:141307. [PMID: 38307338 DOI: 10.1016/j.chemosphere.2024.141307] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
The present study compares the effect of using different solvents on the electrochemical properties of the reduced TiO2 nanotubes (TiO2-rNTs) layered Ti/TiO2-rNTs/SnO2-Sb/PbO2 anodes. The electrodes are prepared using three different solvent-based precursors: (i) isopropanol, (ii) ethylene glycol and citric acid (Pechini method), and (iii) 2-hydroxyethylammonium acetate (2HEAA) ionic liquid (IL) via the thermal decomposition route. The decomposition mechanism of precursor solutions was explored using the thermogravimetric (TGA) analysis. Further, the physicochemical properties of the electrodes are examined using Field emission Scanning Electron microscopy (FE-SEM), X-ray diffraction spectroscopy (XRD), and X-ray photoelectron emission spectroscopy (XPS). The results revealed that solvents with higher viscosity and slower decomposition rates support better film uniformity and higher stability of the electrode. The TiO2 -rNTs bottom layer and PbO2 top layer helped obtain higher film stability, increased working potential window (2.2 V vs. SHE) of the electrode, and the repeatability of the results. The performance of different electrodes based on the precursor solution is found as IL ≫ Pechini > Isopropanol. 4-chlorophenol (4-CP) is used as a model pollutant to test the performance of IL-Ti/TiO2-rNTs/SnO2-Sb/PbO2 anode in an anodic oxidation (AO) coupled electro-Fenton (EF) treatment. Further, the reliability of the electrode is evaluated by mineralizing other persistent organic pollutants (POPs) like tetracyclin, phenol, 2-chlorophenol (2-CP), and 2,4-dichlorophenol (2,4-DCP). Under the optimized conditions, the proposed system was able to mineralize the tetracyclin, phenol, 2-CP, 2,4-DCP, and 4-CP up to 78.91, 82.07, 74.96, 78.78, and 69.3 %, respectively. Moreover, the degradation mechanism of chlorophenols is proposed.
Collapse
Affiliation(s)
- Devendra Rai
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| | - Shishir Sinha
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
3
|
de Oliveira Santiago Santos G, Athie Goulart L, Sánchez-Montes I, Santos da Silva R, de Vasconcelos Lanza MR. Electrochemically enhanced iron oxide-modified carbon cathode toward improved heterogeneous electro-Fenton reaction for the degradation of norfloxacin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:118736-118753. [PMID: 37917268 DOI: 10.1007/s11356-023-30536-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/13/2023] [Indexed: 11/04/2023]
Abstract
In this work, different iron-based cathode materials were prepared using two different approaches: a novel one-step approach, which involved the incorporation of iron oxide with Printex® L6 carbon/PTFE (PL6C/PTFE) on bare carbon felt (CF) and a two-step approach, where iron oxide is deposited onto CF previously modified with PL6C/PTFE. The results obtained from the physical characterization indicated that the presence of iron oxide homogeneously dispersed on the felt fibers with the CF 3-D network kept intact in the one-step approach; whereas the formation of iron oxide aggregates between the felt fibers for material obtained using the two-step approach. Among the iron oxide-based cathodes investigated, the iron-incorporated electrode exhibited the greatest efficiency in terms of the removal and mineralization of norfloxacin (NOR) under neutral pH (complete NOR removal in less than 30 min with around 50% mineralization after 90 min). The findings of this study show that the low cost and simple-to-prepare iron-modified carbon-based materials in HEF process led to the enhanced degradation of organic contaminants in aqueous solutions.
Collapse
Affiliation(s)
| | - Lorena Athie Goulart
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, 13560-970, Brazil
| | - Isaac Sánchez-Montes
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, 13560-970, Brazil
| | | | | |
Collapse
|
4
|
Li C, Yi P, Sun J, Wang XA, Liu R, Sun J. Robust Self-Supported SnO 2-Mn 2O 3@CC Electrode for Efficient Electrochemical Degradation of Cationic Blue X-GRRL Dye. Molecules 2023; 28:molecules28093957. [PMID: 37175367 PMCID: PMC10180115 DOI: 10.3390/molecules28093957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/23/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Exploration of highly efficient and robust catalyst is pivotal for electrocatalytic degradation of dye wastewater, but it still is a challenge. Here, we develop a three-dimensional self-supported SnO2-Mn2O3 hybrid nanosheets grown on carbon cloth (noted by SnO2-Mn2O3@CC) electrode via a simple hydrothermal method and annealing treatment. Benefitting from the interlaced nanosheets architecture that enlarges the surface area and the synergetic component effect that accelerates the interfacial electronic transfer, SnO2-Mn2O3@CC electrode exhibits a superior electrocatalytic degradation efficiency for cationic blue X-GRRL dye in comparison with the single metal oxide electrode containing SnO2@CC and Mn2O3@CC. The degradation efficiency of cationic blue X-GRRL on SnO2-Mn2O3@CC electrode can reach up to 97.55% within 50 min. Furthermore, self-supported architecture of nanosheets on carbon cloth framework contributes to a robust stability compared with the traditional electrode via the multiple dip/brush coating accompanied by the thermal decomposition method. SnO2-Mn2O3@CC electrode exhibits excellent recyclability, which can still retain a degradation efficiency of 94.12% after six cycles. This work may provide a new pathway for the design and exploration of highly efficient and robust electrooxidation catalysts for dye degradation.
Collapse
Affiliation(s)
- Caiyun Li
- College of Textiles and Clothing, Qingdao University, Qingdao 266071, China
| | - Peng Yi
- College of Textiles and Clothing, Qingdao University, Qingdao 266071, China
| | - Junwei Sun
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Xi-Ao Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Rongzhan Liu
- College of Textiles and Clothing, Qingdao University, Qingdao 266071, China
- Collaborative Innovation Center for Eco-Textiles of Shandong Province and the Ministry of Education, 308 Ningxia Road, Qingdao 266071, China
| | - Jiankun Sun
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
- Collaborative Innovation Center for Eco-Textiles of Shandong Province and the Ministry of Education, 308 Ningxia Road, Qingdao 266071, China
| |
Collapse
|
5
|
Ren Q, Yang R, Li J, Yan W, Wang Z, Wu A. Fabrication of Ru/Ir doped TiO
2
electrode for electrocatalytic degradation of phenol. ASIA-PAC J CHEM ENG 2022. [DOI: 10.1002/apj.2840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Qiaolin Ren
- College of Chemical Engineering and Technology Taiyuan University of Technology Taiyuan China
| | - Ruirui Yang
- College of Chemical Engineering and Technology Taiyuan University of Technology Taiyuan China
| | - Junying Li
- College of Chemical Engineering and Technology Taiyuan University of Technology Taiyuan China
| | - Wenjun Yan
- Analytical Instrumentation Center, Institute of Coal Chemistry Chinese Academy of Sciences Taiyuan China
| | - Zhongde Wang
- College of Chemical Engineering and Technology Taiyuan University of Technology Taiyuan China
| | - Ailian Wu
- College of Chemical Engineering and Technology Taiyuan University of Technology Taiyuan China
| |
Collapse
|
6
|
Fabrication of a novel Ti3C2-modified Sb-SnO2 porous electrode for electrochemical oxidation of organic pollutants. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
7
|
Hu Z, Guo C, Wang P, Guo R, Liu X, Tian Y. Electrochemical degradation of methylene blue by Pb modified porous SnO 2 anode. CHEMOSPHERE 2022; 305:135447. [PMID: 35753421 DOI: 10.1016/j.chemosphere.2022.135447] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
A significant number of pollutants in wastewater can be electrocatalytically oxidized by SnO2-Sb, a relatively inactive electrode. However, the arduous process of environmental remediation due to poor electrochemical performance and short service life of the traditional Ti/SnO2-Sb electrode. In this work the SnO2 electrode with a micron-sized sphere structure was prepared by in-situ hydrothermal. The results of the study that the electrode (Pb-10%) synthesized from the precursor solution in which the Pb:Sn molar ratio is 10% exhibits excellent electrooxidation properties. Impressiveing, the Pb-10% electrode displayed the small charge transfer resistance (10.71 Ω) and the high oxygen evolution potential (2.26 V vs. SCE). Thus, the electrochemical degradation experiment demonstrates that 100 mg L-1 MB was degraded by Pb-10% electrode under the condition of initial pH = 5, and the decolorization rate reached 94.6%. Moreover, the influence of different parameters such as Pb doping amount, initial pH value of solution, initial concentration of MB and inorganic ions on degradation efficiency were also explored, in turn the practical application of electrodes in the field of purifying water resources is optimized. It is worth noting that the service life of the optimized electrode (100 mA cm-2, 0.5 M H2SO4, 90 h) is about 12 times longer than that of the bare electrode (Sn-Sb). Therefore, the high-performance Ti/SnO2-Sb electrode prepared in this work possesses vast application prospects in the electrocatalytic oxidation.
Collapse
Affiliation(s)
- Zhenyu Hu
- School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Chao Guo
- School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Peng Wang
- School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Rui Guo
- School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China.
| | - Xuanwen Liu
- School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China.
| | - Ye Tian
- The First Hospital of Qinhuangdao, 066099, China
| |
Collapse
|
8
|
Rai D, Sinha S. Research trends in the development of anodes for electrochemical oxidation of wastewater. REV CHEM ENG 2022. [DOI: 10.1515/revce-2021-0067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Abstract
The review focuses on the recent development in anode materials and their synthesis approach, focusing on their compatibility for treating actual industrial wastewater, improving selectivity, electrocatalytic activity, stability at higher concentration, and thereby reducing the mineralization cost for organic pollutant degradation. The advancement in sol–gel technique, including the Pechini method, is discussed in the first section. A separate discussion related to the selection of the electrodeposition method and its deciding parameters is also included. Furthermore, the effect of using advanced heating approaches, including microwave and laser deposition synthesis, is also discussed. Next, a separate discussion is provided on using different types of anode materials and their effect on active •OH radical generation, activity, and electrode stability in direct and indirect oxidation and future aspects. The effect of using different synthesis approaches, additives, and doping is discussed separately for each anode. Graphene, carbon nanotubes (CNTs), and metal doping enhance the number of active sites, electrochemical activity, and mineralization current efficiency (MCE) of the anode. While, microwave or laser heating approaches were proved to be an effective, cheaper, and fast alternative to conventional heating. The electrodeposition and nonaqueous solvent synthesis were convenient and environment-friendly techniques for conductive metallic and polymeric film deposition.
Collapse
Affiliation(s)
- Devendra Rai
- Department of Chemical Engineering , Indian Institute of Technology Roorkee , Roorkee , Uttarakhand 247667 , India
| | - Shishir Sinha
- Department of Chemical Engineering , Indian Institute of Technology Roorkee , Roorkee , Uttarakhand 247667 , India
| |
Collapse
|
9
|
Eguiluz KI, Hernandez-Sanchez NK, Doria AR, O. S. Santos G, Salazar-Banda GR, Ponce de Leon C. Template-made tailored mesoporous Ti/SnO2-Sb2O5-IrO2 anodes with enhanced activity towards dye removal. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
de Santana Mota WJ, de Oliveira Santiago Santos G, Resende Dória A, Rubens Dos Reis Souza M, Krause LC, Salazar-Banda GR, Barrios Eguiluz KI, López JA, Hernández-Macedo ML. Enhanced HCB removal using bacteria from mangrove as post-treatment after electrochemical oxidation using a laser-prepared Ti/RuO 2-IrO 2-TiO 2 anode. CHEMOSPHERE 2021; 279:130875. [PMID: 34134435 DOI: 10.1016/j.chemosphere.2021.130875] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 04/29/2021] [Accepted: 05/08/2021] [Indexed: 06/12/2023]
Abstract
The environmental persistence of hexachlorobenzene (HCB) is a challenge that promotes studies for efficient treatment alternatives to minimize its environmental impact. Here, we evaluated the HCB removal by electrochemical, biological, and combined approaches. The electrochemical treatment of 4 μM HCB solutions was performed using a synthesized Ti/RuO2-IrO2-TiO2 anode, while the biological treatment using mangrove-isolated bacteria was at 24, 48, and 72 h. The HCB degradability was assessed by analyzing chemical oxygen demand (COD), microbial growth capacity in media supplemented with HCB as the only carbon source, gas chromatography, and ecotoxicity assay after treatments. The synthesized anode showed a high voltammetric charge and catalytic activity, favoring the HCB biodegradability. All bacterial isolates exhibited the ability to metabolize HCB, especially Bacillus sp. and Micrococcus luteus. The HCB degradation efficiency of the combined electrochemical-biological treatment was evidenced by a high COD removal percentage, the non-HCB detection by gas chromatography, and a decrease in ecotoxicity tested with lettuce seeds. The combination of electrochemical pretreatment with microorganism degradation was efficient to remove HCB, thereby opening up prospects for in situ studies of areas contaminated by this recalcitrant compound.
Collapse
Affiliation(s)
- Wanessa Jeane de Santana Mota
- Molecular Biology Laboratory, Research and Technology Institute - ITP, Aracaju, SE, Brazil; Industrial Biotechnology Graduation, Universidade Tiradentes, 49032-490, Aracaju, Brazil
| | - Gessica de Oliveira Santiago Santos
- Electrochemistry and Nanotechnology Laboratory, Research and Technology Institute - ITP, Aracaju, SE, Brazil; Processes Engineering Graduation - PEP, Universidade Tiradentes, 49032-490, Aracaju, SE, Brazil
| | - Aline Resende Dória
- Electrochemistry and Nanotechnology Laboratory, Research and Technology Institute - ITP, Aracaju, SE, Brazil; Processes Engineering Graduation - PEP, Universidade Tiradentes, 49032-490, Aracaju, SE, Brazil
| | - Michel Rubens Dos Reis Souza
- Materials Synthesis and Chromatography Laboratory, Research and Technology Institute - ITP, Aracaju, SE, Brazil; Industrial Biotechnology Graduation, Universidade Tiradentes, 49032-490, Aracaju, Brazil
| | - Laiza Canielas Krause
- Materials Synthesis and Chromatography Laboratory, Research and Technology Institute - ITP, Aracaju, SE, Brazil; Industrial Biotechnology Graduation, Universidade Tiradentes, 49032-490, Aracaju, Brazil
| | - Giancarlo Richard Salazar-Banda
- Electrochemistry and Nanotechnology Laboratory, Research and Technology Institute - ITP, Aracaju, SE, Brazil; Processes Engineering Graduation - PEP, Universidade Tiradentes, 49032-490, Aracaju, SE, Brazil
| | - Katlin Ivon Barrios Eguiluz
- Electrochemistry and Nanotechnology Laboratory, Research and Technology Institute - ITP, Aracaju, SE, Brazil; Processes Engineering Graduation - PEP, Universidade Tiradentes, 49032-490, Aracaju, SE, Brazil.
| | - Jorge A López
- Molecular Biology Laboratory, Research and Technology Institute - ITP, Aracaju, SE, Brazil; Industrial Biotechnology Graduation, Universidade Tiradentes, 49032-490, Aracaju, Brazil
| | - María Lucila Hernández-Macedo
- Molecular Biology Laboratory, Research and Technology Institute - ITP, Aracaju, SE, Brazil; Industrial Biotechnology Graduation, Universidade Tiradentes, 49032-490, Aracaju, Brazil
| |
Collapse
|
11
|
Chen S, He P, Zhou P, Wang X, Xiao F, He Q, Li J, Jia L, Zhang H, Jia B, Tang B. Development of a novel graphitic carbon nitride and multiwall carbon nanotube co-doped Ti/PbO 2 anode for electrocatalytic degradation of acetaminophen. CHEMOSPHERE 2021; 271:129830. [PMID: 33556630 DOI: 10.1016/j.chemosphere.2021.129830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
In this work, we have constructed a novel graphitic carbon nitride/multiwall carbon nanotube (GCN/CNT) doped Ti/PbO2 as anode for highly effective degradation of acetaminophen (ACE) wastewater. The ACE removal efficiency of 83.2% and chemical oxygen demand removal efficiency of 76.3% are achieved under the optimal condition of temperature 25 °C, initial pH 7, current density 15 mA cm-2 and Na2SO4 concentration 6.0 g L-1. The excellent electrocatalytic activity of Ti/PbO2-GCN-CNT anode for ACE oxidation is ascribed to the effective suppression of oxygen evolution and the enhanced electron transfer after introducing GCN and CNT. Furthermore, Ti/PbO2-GCN-CNT electrode displays excellent stability and reusability. ACE degradation is accomplished by direct oxidation and indirect oxidation, and ∙OH radical plays primary role in the indirect oxidation of ACE wastewater. The intermediates of ACE degradation are detailly investigated using LC-MS analysis and a possible degradation mechanism is proposed.
Collapse
Affiliation(s)
- Shouxian Chen
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Ping He
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China; International Science and Technology Cooperation Laboratory of Micro-nanoparticle Application Research, Southwest University of Science and Technology, Mianyang, 621010, PR China.
| | - Pengcheng Zhou
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Xuejiao Wang
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Feng Xiao
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Qihang He
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Jing Li
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Lingpu Jia
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Hui Zhang
- International Science and Technology Cooperation Laboratory of Micro-nanoparticle Application Research, Southwest University of Science and Technology, Mianyang, 621010, PR China; Department of Chemical and Biochemical Engineering, Western University, London, Ontario N6A 5B9, Canada
| | - Bin Jia
- International Science and Technology Cooperation Laboratory of Micro-nanoparticle Application Research, Southwest University of Science and Technology, Mianyang, 621010, PR China; Key Laboratory of Shock and Vibration of Engineering Materials and Structures of Sichuan Province, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Bin Tang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, PR China.
| |
Collapse
|
12
|
Dória AR, Santos GOS, Pelegrinelli MMS, Silva DC, de Matos DB, Cavalcanti EB, Silva RS, Salazar-Banda GR, Eguiluz KIB. Improved 4-nitrophenol removal at Ti/RuO 2-Sb 2O 4-TiO 2 laser-made anodes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:23634-23646. [PMID: 32812159 DOI: 10.1007/s11356-020-10451-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/09/2020] [Indexed: 06/11/2023]
Abstract
In this study, binary and ternary mixed metal oxide anodes of Ti/RuO2-Sb2O4 and Ti/RuO2-Sb2O4-TiO2 were prepared using two different heating methods: conventional furnace and alternative CO2 laser heating. The produced anodes were physically and electrochemically characterized by using different techniques. The main difference found in the laser-made anodes was their more compact morphology, without the common deep cracks found in anodes made by typical thermal decomposition, which showed an important correlation with the prolonged accelerated service life. The correlation between the physicochemical properties of the anodes with their performance towards the 4-nitrophenol oxidations is discussed. The results demonstrated that the ternary anode (Ti/RuO2-Sb2O4-TiO2) is very promising, presenting a kinetic 5.7 times faster than the respective binary anode and the highest removal efficiency when compared with conventionally made anodes. Also, the lowest energy consumption per unit of mass of contaminant removed is seen for the laser-made Ti/RuO2-Sb2O4-TiO2 anode, which evidences the excellent cost-benefit of this anode material. Finally, some by-products were identified, and a degradation route is proposed. Graphical abstract.
Collapse
Affiliation(s)
- Aline R Dória
- Electrochemistry and Nanotechnology Laboratory, Institute of Technology and Research (ITP), Aracaju, SE, Brazil
- Postgraduate Program in Process Engineering (PEP), Tiradentes University, Aracaju, SE, Brazil
| | - Géssica O S Santos
- Electrochemistry and Nanotechnology Laboratory, Institute of Technology and Research (ITP), Aracaju, SE, Brazil.
- Postgraduate Program in Process Engineering (PEP), Tiradentes University, Aracaju, SE, Brazil.
| | - Mariane M S Pelegrinelli
- Electrochemistry and Nanotechnology Laboratory, Institute of Technology and Research (ITP), Aracaju, SE, Brazil
| | - Deyvid C Silva
- Functional Nanomaterials Group, Department of Physics, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Danielle B de Matos
- Postgraduate Program in Process Engineering (PEP), Tiradentes University, Aracaju, SE, Brazil
- Waste and Sewage Treatment Laboratory, Institute of Technology and Research (ITP), Aracaju, SE, Brazil
| | - Eliane Bezerra Cavalcanti
- Postgraduate Program in Process Engineering (PEP), Tiradentes University, Aracaju, SE, Brazil
- Waste and Sewage Treatment Laboratory, Institute of Technology and Research (ITP), Aracaju, SE, Brazil
| | - Ronaldo S Silva
- Functional Nanomaterials Group, Department of Physics, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Giancarlo R Salazar-Banda
- Electrochemistry and Nanotechnology Laboratory, Institute of Technology and Research (ITP), Aracaju, SE, Brazil
- Postgraduate Program in Process Engineering (PEP), Tiradentes University, Aracaju, SE, Brazil
| | - Katlin I B Eguiluz
- Electrochemistry and Nanotechnology Laboratory, Institute of Technology and Research (ITP), Aracaju, SE, Brazil
- Postgraduate Program in Process Engineering (PEP), Tiradentes University, Aracaju, SE, Brazil
| |
Collapse
|
13
|
Abstract
Ti/SnO2-Sb electrode, which is one of the dimensionally stable anode (DSA) electrodes, offers high specific conductivity, excellent electrocatalytic performance, and great chemical stability. For these reasons, Ti/SnO2-Sb electrode has been extensively studied in the fields of wastewater treatment. This review covers essential research work about the advanced oxidation technology and related DSA electrodes. It gives an overview of preparation methods of SnO2 electrodes, including sol-gel method, dip-coating method, electrodeposition method, chemical vapor deposition method, thermal decomposition method, magnetron sputtering method, and hydrothermal method. To extend service life and improve electrocatalytic efficiency, the review provides comprehensive details about the modification technologies of Ti/SnO2-Sb electrode, such as doping modification, composite modification, and structural modification. In addition, the review discusses common problems in industrial applications of Ti/SnO2-Sb electrode and highlights the promising outlook of Ti/SnO2-Sb electrode.
Collapse
|
14
|
Chen S, Zhou L, Yang T, He Q, Zhou P, He P, Dong F, Zhang H, Jia B. Thermal decomposition based fabrication of dimensionally stable Ti/SnO 2-RuO 2 anode for highly efficient electrocatalytic degradation of alizarin cyanin green. CHEMOSPHERE 2020; 261:128201. [PMID: 33113663 DOI: 10.1016/j.chemosphere.2020.128201] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
In this work, Ti/SnO2-RuO2 dimensionally stable anode has been successfully fabricated via thermal decomposition method and further used for highly efficient electrocatalytic degradation of alizarin cyanin green (ACG) dye wastewater. The morphology, crystal structure and composition of Ti/SnO2-RuO2 electrode are characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray fluorescence spectroscopy (XRF), respectively. The result of accelerated life test suggests that as-prepared Ti/SnO2-RuO2 anode exhibits excellent electrochemical stability. Some parameters, such as reaction temperature, initial pH, electrode spacing and current density, have been investigated in detail to optimize the degradation condition of ACG. The results show that the decolorization efficiency and chemical oxygen demand removal efficiency of ACG reach up to 80.4% and 51.3% after only 40 min, respectively, under the optimal condition (reaction temperature 25 °C, pH 5, electrode spacing 1.0 cm and current density 3 mA cm-2). Furthermore, the kinetics analysis reveals that the process of electrocatalytic degradation of ACG follows the law of quasi-first-order kinetics. The excellent electrochemical activity demonstrates that the Ti/SnO2-RuO2 electrode presents a favorable application prospect in the electrochemical treatment of anthraquinone dye wastewater.
Collapse
Affiliation(s)
- Shouxian Chen
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Lianhong Zhou
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Tiantian Yang
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Qihang He
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Pengcheng Zhou
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Ping He
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China.
| | - Faqin Dong
- Key Laboratory of Solid Waste Treatment and Resource Recycle of Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Hui Zhang
- International Science and Technology Cooperation Laboratory of Micro-nanoparticle Application Research, Mianyang, 621010, Sichuan, PR China; Department of Chemical and Biochemical Engineering, Western University, London, Ontario, N6A 5B9, Canada
| | - Bin Jia
- Key Laboratory of Shock and Vibration of Engineering Materials and Structures of Sichuan Province, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, PR China
| |
Collapse
|
15
|
Espinoza LC, Sepúlveda P, García A, Martins de Godoi D, Salazar R. Degradation of oxamic acid using dimensionally stable anodes (DSA) based on a mixture of RuO 2 and IrO 2 nanoparticles. CHEMOSPHERE 2020; 251:126674. [PMID: 32359720 DOI: 10.1016/j.chemosphere.2020.126674] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
Dimensionally stable anodes (DSA) have been widely used to degrade organic compounds because these surfaces promote the electrogeneration of active chlorine species in the bulk of the solution, as well as in the vicinity of the anode when NaCl is used as supporting electrolyte. In this work, the nanoparticles synthesis of IrO2 and RuO2 was performed to obtain two types of DSA electrodes named Class I and II to degrade oxamic acid. For Class I and II DSA, the nanoparticles used were synthesized separately and in the same reaction medium, respectively. Electrolysis were carried out in an open cylindrical cell without division at 25 °C, DSAs were used as anodes and a stainless-steel electrode as cathode, both elements have a geometric area of 2.8 cm2 immersed in 0.05 mol L-1 of NaCl or Na2SO4 and a current density of 3 mA cm-2 was applied for 6 h. Active chlorine species generated in the absence of oxamic acid in NaCl were also detected and quantified through ion chromatography. In Na2SO4 there was no degradation of the compound, but in NaCl the oxamic acid concentration reaching 85% with Class I DSA. The same tendency is observed in mineralization, in which Class I DSA allowed reaching a CO2 transformation close to 73%. The difference in the results occurs because with Class I DSA, more hypochlorite is generated than with Class II and therefore there is a larger amount of oxidizing species in the solution that enables the degradation and mineralization of oxamic acid.
Collapse
Affiliation(s)
- L Carolina Espinoza
- Laboratorio de Electroquímica Del Medio Ambiente, LEQMA. Departamento de Química de los Materiales, Facultad de Química y Biología.Universidad de Santiago de Chile, USACH, Santiago, Chile.
| | - Pamela Sepúlveda
- Facultad de Química and Biología, CEDENNA, Universidad de Santiago de Chile, USACH, Santiago, Chile
| | - Alejandra García
- Laboratorio de síntesis y Modificación de Nanoestructuras y Materiales Bidimensionales. Centro de Investigación en Materiales Avanzados S.C. (CIMAV), Mexico
| | - Denis Martins de Godoi
- Laboratorio de Materiais Magneticos e Coloides, Departamento de Fisicoquímica, São Paulo State University,UNESP, Araraquara, Brazil
| | - Ricardo Salazar
- Laboratorio de Electroquímica Del Medio Ambiente, LEQMA. Departamento de Química de los Materiales, Facultad de Química y Biología.Universidad de Santiago de Chile, USACH, Santiago, Chile.
| |
Collapse
|