1
|
Liu G, Yu X, Zhou F, Yan K, Yin L, Zhuang C, Wang Y, Tian D. Hierarchical 2D/1D MOFs/electrospun ZIF-67 modified carbon nanofibers heterostructure electrode for high-performance asymmetric supercapacitor. J Colloid Interface Sci 2025; 678:120-133. [PMID: 39288573 DOI: 10.1016/j.jcis.2024.09.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/10/2024] [Accepted: 09/07/2024] [Indexed: 09/19/2024]
Abstract
In this paper, a 2 dimensional (2D) metal-organic frameworks (MOFs) nanosheets grown on 1D ZIF-67 modified carbon nanofibers (CNFs) was designed and fabricated with a hierarchical heterostructure. The hierarchical 2D/1D MOFs/CCNF offers rich electrochemical active sites and favorable ion/electron diffusion pathways. The synergistic effect of Co, CNFs and MOFs from heterostructures contributes to superb electrochemical activities. Benefiting from the hierarchical heterostructures optimized by the mass ratio of ZIF-67/PAN and CCNF/NiMOF as well as the type of substrates, CCNF-20@MOF showed a specific capacity of 361.50 C g-1 at 0.5 A g-1, whose charge storage mechanism is dominated by diffusion control. Meanwhile, a bamboo-derived carbon material (BBC) was designed in the solid-state asymmetric supercapacitor (CCNF-20@MOF//BBC). The device exhibited an energy density of 38.89 Wh kg-1 at the power density of 800.02 W kg-1 and excellent cycling stability, that exceed many MOFs based devices. Moreover, it could be successfully used for LED light-emitting, demonstrating a good application prospect. This work provides a feasible strategy for the improved performance of MOFs and CNFs based materials in the field of energy storage.
Collapse
Affiliation(s)
- Guangjun Liu
- Key Laboratory of National Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest, Southwest Forestry University, Kunming 650024, P. R. China
| | - Xiaoyang Yu
- Key Laboratory of National Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest, Southwest Forestry University, Kunming 650024, P. R. China
| | - Fei Zhou
- Key Laboratory of National Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest, Southwest Forestry University, Kunming 650024, P. R. China
| | - Keling Yan
- Key Laboratory of National Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest, Southwest Forestry University, Kunming 650024, P. R. China
| | - Lanrui Yin
- Key Laboratory of National Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest, Southwest Forestry University, Kunming 650024, P. R. China
| | - Changfu Zhuang
- Key Laboratory of National Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest, Southwest Forestry University, Kunming 650024, P. R. China
| | - Ying Wang
- Key Laboratory of National Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest, Southwest Forestry University, Kunming 650024, P. R. China
| | - Di Tian
- Key Laboratory of National Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest, Southwest Forestry University, Kunming 650024, P. R. China.
| |
Collapse
|
2
|
Yue L, Tao M, Xu L, Wang C, Xu Y, Liu Y, Cao X, White JC, Wang Z. Size-dependent photocatalytic inactivation of Microcystis aeruginosa and degradation of microcystin by a copper metal organic framework. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132799. [PMID: 37865071 DOI: 10.1016/j.jhazmat.2023.132799] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/03/2023] [Accepted: 10/15/2023] [Indexed: 10/23/2023]
Abstract
Water eutrophication has led to increasingly serious algal blooms (HABs) that pose significant threats to aquatic environmental and human health. Differently sized copper metal organic frameworks (Cu-MOFs), including Cu-MOF-1 (30 nm), Cu-MOF-2, (40 nm), Cu-MOF-3 (50 nm), and Cu-MOF-4 (1 µm×100 nm), were synthesized. Their performance in inactivating Microcystis aeruginosa and degrading microcystin was assessed at the concentration of 0-60 mg/L under visible light irradiation for 6 h. The photocatalytic antialgal activity of Cu-MOF-4 was 10.5%, 14.2%, and 31.2% higher than that of Cu-MOF-3, Cu-MOF-2, and Cu-MOF-1; the efficacy in photocatalytic degradation of microcystin induced by Cu-MOFs also exhibited significant size-dependent efficiency, where Cu-MOF-4 was 2.6-, 1.8-, and 2.0-fold of Cu-MOF-3, Cu-MOF-2, and Cu-MOF-1, respectively. Cu-MOF-4 had greater performance than other Cu-MOFs could attributed to: 1) Cu-MOF-4 is easier to interact with algal cells due to its lower surface negative charge and higher hydrophobicity, resulting in more photocatalyst-algae heteroaggregates formation; 2) Cu-MOF-4 had greater electron-hole pairs separation ability, thus exhibiting higher reactive oxygen species (ROS) production; 3) Cu-MOF-4 had greater hydrostability than other Cu-MOFs, leading to more sustained ROS generation. Additionally, the reusability of Cu-MOF-4 was also greater than other Cu-MOFs.
Collapse
Affiliation(s)
- Le Yue
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Mengna Tao
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Lanqing Xu
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yuao Xu
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yinglin Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT 06511, United States
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
3
|
Huang Q, Yang Y, Qian J. Structure-directed growth and morphology of multifunctional metal-organic frameworks. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
4
|
Cong C, Ma H. Advances of Electroactive Metal-Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207547. [PMID: 36631286 DOI: 10.1002/smll.202207547] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/02/2023] [Indexed: 06/17/2023]
Abstract
The preparation of electroactive metal-organic frameworks (MOFs) for applications of supercapacitors and batteries has received much attention and remarkable progress during the past few years. MOF-based materials including pristine MOFs, hybrid MOFs or MOF composites, and MOF derivatives are well designed by a combination of organic linkers (e.g., carboxylic acids, conjugated aromatic phenols/thiols, conjugated aromatic amines, and N-heterocyclic donors) and metal salts to construct predictable structures with appropriate properties. This review will focus on construction strategies of pristine MOFs and hybrid MOFs as anodes, cathodes, separators, and electrolytes in supercapacitors and batteries. Descriptions and discussions follow categories of electrochemical double-layer capacitors (EDLCs), pseudocapacitors (PSCs), and hybrid supercapacitors (HSCs) for supercapacitors. In contrast, Li-ion batteries (LIBs), Lithium-sulfur batteries (LSBs), Lithium-oxygen batteries (LOBs), Sodium-ion batteries (SIBs), Sodium-sulfur batteries (SSBs), Zinc-ion batteries (ZIBs), Zinc-air batteries (ZABs), Aluminum-sulfur batteries (ASBs), and others (e.g., LiSe, NiZn, H+ , alkaline, organic, and redox flow batteries) are categorized for batteries.
Collapse
Affiliation(s)
- Cong Cong
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 21186, China
| | - Huaibo Ma
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 21186, China
| |
Collapse
|
5
|
Anwar MI, Asad M, Ma L, Zhang W, Abbas A, Khan MY, Zeeshan M, Khatoon A, Gao R, Manzoor S, Naeem Ashiq M, Hussain S, Shahid M, Yang G. Nitrogenous MOFs and their composites as high-performance electrode material for supercapacitors: Recent advances and perspectives. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
6
|
Gittins JW, Balhatchet CJ, Fairclough SM, Forse AC. Enhancing the energy storage performances of metal-organic frameworks by controlling microstructure. Chem Sci 2022; 13:9210-9219. [PMID: 36092998 PMCID: PMC9384154 DOI: 10.1039/d2sc03389e] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/17/2022] [Indexed: 11/28/2022] Open
Abstract
Metal-organic frameworks (MOFs) are among the most promising materials for next-generation energy storage systems. However, the impact of particle morphology on the energy storage performances of these frameworks is poorly understood. To address this, here we use coordination modulation to synthesise three samples of the conductive MOF Cu3(HHTP)2 (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene) with distinct microstructures. Supercapacitors assembled with these samples conclusively demonstrate that sample microstructure and particle morphology have a significant impact on the energy storage performances of MOFs. Samples with 'flake-like' particles, with a pore network comprised of many short pores, display superior capacitive performances than samples with either 'rod-like' or strongly agglomerated particles. The results of this study provide a target microstructure for conductive MOFs for energy storage applications.
Collapse
Affiliation(s)
- Jamie W Gittins
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Chloe J Balhatchet
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Simon M Fairclough
- Department of Materials Science & Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge CB3 0FS UK
| | - Alexander C Forse
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
7
|
Andikaey Z, Ensafi AA, Rezaei B, Hu JS. Nickel/cobalt/copper sulfide dodecahedral hollow multi-shelled structures, characterization, and application as a suitable nanomaterial for high-performance supercapacitors. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
8
|
Andreo J, Ettlinger R, Zaremba O, Peña Q, Lächelt U, de Luis RF, Freund R, Canossa S, Ploetz E, Zhu W, Diercks CS, Gröger H, Wuttke S. Reticular Nanoscience: Bottom-Up Assembly Nanotechnology. J Am Chem Soc 2022; 144:7531-7550. [PMID: 35389641 DOI: 10.1021/jacs.1c11507] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The chemistry of metal-organic and covalent organic frameworks (MOFs and COFs) is perhaps the most diverse and inclusive among the chemical sciences, and yet it can be radically expanded by blending it with nanotechnology. The result is reticular nanoscience, an area of reticular chemistry that has an immense potential in virtually any technological field. In this perspective, we explore the extension of such an interdisciplinary reach by surveying the explored and unexplored possibilities that framework nanoparticles can offer. We localize these unique nanosized reticular materials at the juncture between the molecular and the macroscopic worlds, and describe the resulting synthetic and analytical chemistry, which is fundamentally different from conventional frameworks. Such differences are mirrored in the properties that reticular nanoparticles exhibit, which we described while referring to the present state-of-the-art and future promising applications in medicine, catalysis, energy-related applications, and sensors. Finally, the bottom-up approach of reticular nanoscience, inspired by nature, is brought to its full extension by introducing the concept of augmented reticular chemistry. Its approach departs from a single-particle scale to reach higher mesoscopic and even macroscopic dimensions, where framework nanoparticles become building units themselves and the resulting supermaterials approach new levels of sophistication of structures and properties.
Collapse
Affiliation(s)
- Jacopo Andreo
- Basque Center for Materials, UPV/EHU Science Park, Leioa, 48940, Spain
| | - Romy Ettlinger
- School of Chemistry, University of St. Andrews, St. Andrews, KY16 9ST, United Kingdom
| | - Orysia Zaremba
- Basque Center for Materials, UPV/EHU Science Park, Leioa, 48940, Spain
| | - Quim Peña
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, 52074, Germany
| | - Ulrich Lächelt
- Division of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, 1090, Austria
| | | | - Ralph Freund
- Institute of Physics, Chair of Solid State and Materials Chemistry, Augsburg University, Augsburg, 86150, Germany
| | - Stefano Canossa
- Department of Nanochemistry, Max Planck Institute for Solid State Research, Stuttgart, 70569, Germany
| | - Evelyn Ploetz
- Department of Chemisrty and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München (LMU), Munich, 81377, Germany
| | - Wei Zhu
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Christian S Diercks
- The Scripps Research Institute, SR202, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Harald Gröger
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Bielefeld University, Bielefeld, 33615, Germany
| | - Stefan Wuttke
- Basque Center for Materials, UPV/EHU Science Park, Leioa, 48940, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, 48009, Spain
| |
Collapse
|
9
|
Hu N, Liao J, Liu X, Wei J, Wang L, Li M, Zong N, Xu R, Yang L, Wang J. CNTs support 2D NiMOF nanosheets for asymmetric supercapacitors with high energy density. Dalton Trans 2022; 51:16344-16353. [DOI: 10.1039/d2dt02055f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The NiMOF/CNTs composite with NiMOF nanosheets grows along the CNTs is synthesized with a one-step solvothermal method, and the NiMOF/CNTs//AC asymmetric supercapacitors provide a high energy density of 113.8 Wh kg−1 at 800.0 W kg−1.
Collapse
Affiliation(s)
- Nianxiang Hu
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, P. R. China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, P. R. China
| | - Jiang Liao
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, P. R. China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, P. R. China
| | - Xueliang Liu
- Research Center for Analysis and Measurement, Kunming University of Science and Technology, Kunming 650093, P. R. China
| | - Jinlong Wei
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, P. R. China
| | - Li Wang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, P. R. China
| | - Min Li
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, P. R. China
| | - Naixuan Zong
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, P. R. China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, P. R. China
| | - Ruidong Xu
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, P. R. China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, P. R. China
| | - Linjing Yang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, P. R. China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, P. R. China
| | - Junli Wang
- Research Center for Analysis and Measurement, Kunming University of Science and Technology, Kunming 650093, P. R. China
| |
Collapse
|
10
|
Zeeshan M, Shahid M. State of the art developments and prospects of metal-organic frameworks for energy applications. Dalton Trans 2021; 51:1675-1723. [PMID: 34919099 DOI: 10.1039/d1dt03113a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The progress on technologies for the cleaner and ecological transformation and storage of energy to combat effluence or pollution and the impending energy dilemma has recently attracted interest from energy research groups, particularly in the field of coordination chemistry, among inorganic chemists. Carriers for storing energy or facilitating mass and e- transport are considered significant for energy conversion. Accordingly, considering their properties such as large surface area, low cost, customizable pore diameter, tunable topologies, low densities, and variable frameworks, MOFs (metal-organic frameworks) and their derivatives are well-suited for this purpose. MOFs are an innovative category of porous and crystalline materials, which have gained significant interest in recent years. Thus, herein, we highlight the state of the art progress on MOFs for energy-based applications, as perfect compounds and elements in compound assemblies for converting solar energy, lithium-ion arrays, fuel devices, hydrogen production, photocatalytic CO2 reduction, proton conduction, etc. In addition, the substantial progress achieved in the production of various composites and derivatives containing MOFs with particular focus on supercapacitors and gas adsorption and storage is summarized, concentrating on the correlation between their coordination structural frameworks and applications in the field of energy. The current improved strategies, challenges, and future prospects are also presented in view of the coordination chemistry governing the structural modification of MOFs for energy applications.
Collapse
Affiliation(s)
- Mohd Zeeshan
- Functional Inorganic Materials Lab (FIML), Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - M Shahid
- Functional Inorganic Materials Lab (FIML), Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
11
|
Yang M, Wang X, Chen Y, Du Y, Zou S, Emin A, Song X, Fu Y, Li Y, Li J, He D. NiCo2O4 nanowire-supported NiCoMnS4 nanosheets on carbon cloth as a flexible cathode for high-performance aqueous supercapacitors. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139324] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Ashourdan M, Semnani A, Hasanpour F, Moosavifard SE. Synthesis of nickel cobalt manganese metal organic framework@high quality graphene composites as novel electrode materials for high performance supercapacitors. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115452] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Metal-organic frameworks based on Schiff base condensation reaction as battery-type electrodes for supercapattery. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138434] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Huang S, Shi XR, Sun C, Duan Z, Ma P, Xu S. The Application of Metal-Organic Frameworks and Their Derivatives for Supercapacitors. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2268. [PMID: 33207732 PMCID: PMC7696577 DOI: 10.3390/nano10112268] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/03/2020] [Accepted: 11/12/2020] [Indexed: 02/03/2023]
Abstract
Supercapacitors (SCs), one of the most popular types of energy-storage devices, present lots of advantages, such as large power density and fast charge/discharge capability. Being the promising SCs electrode materials, metal-organic frameworks (MOFs) and their derivatives have gained ever-increasing attention due to their large specific surface area, controllable porous structure and rich diversity. Herein, the recent development of MOFs-based materials and their application in SCs as the electrode are reviewed and summarized. The preparation method, the morphology of the materials and the electrical performance of various MOFs and their derivatives (such as carbon, metal oxide/hydroxide and metal sulfide) are briefly discussed. Most of recent works concentrate on Ni-, Co- and Mn-MOFs and their composites/derivatives. Conclusions and our outlook for the researches are also given, which would be a valuable guideline for the rational design of MOFs materials for SCs in the near future.
Collapse
Affiliation(s)
- Simin Huang
- School of Material Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Songjiang District, Shanghai 201620, China; (S.H.); (C.S.); (Z.D.); (P.M.)
| | - Xue-Rong Shi
- School of Material Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Songjiang District, Shanghai 201620, China; (S.H.); (C.S.); (Z.D.); (P.M.)
- Institute of Physical Chemistry, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Chunyan Sun
- School of Material Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Songjiang District, Shanghai 201620, China; (S.H.); (C.S.); (Z.D.); (P.M.)
| | - Zhichang Duan
- School of Material Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Songjiang District, Shanghai 201620, China; (S.H.); (C.S.); (Z.D.); (P.M.)
| | - Pan Ma
- School of Material Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Songjiang District, Shanghai 201620, China; (S.H.); (C.S.); (Z.D.); (P.M.)
| | - Shusheng Xu
- School of Material Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Songjiang District, Shanghai 201620, China; (S.H.); (C.S.); (Z.D.); (P.M.)
| |
Collapse
|