1
|
Lymperi A, Chatzilias C, Xydas F, Martino E, Kyriakou G, Katsaounis A. Electrochemical Promotion of CO 2 Hydrogenation Using a Pt/YSZ Fuel Cell Type Reactor. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1930. [PMID: 37446446 DOI: 10.3390/nano13131930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023]
Abstract
The hydrogenation of CO2 is a reaction of key technological and environmental importance, as it contributes to the sustainable production of fuels while assisting in the reduction of a major greenhouse gas. The reaction has received substantial attention over the years within the catalysis and electrocatalysis communities. In this respect, the electrochemical promotion of catalysis (EPOC) has been applied successfully to the CO2 hydrogenation reaction to improve the catalytic activity and selectivity of conductive films supported on solid electrolytes. However, designing an effective electrocatalytic reactor remains a challenge due to the connections required between the electrodes and the external potentiostat/galvanostat. This drawback could be alleviated if the catalytic reaction occurs in a reactor that simultaneously operates as a power generator. In this work, the Electrochemical Promotion of the CO2 hydrogenation reaction in a low-temperature solid oxide electrolyte fuel cell (SOFC) reactor is studied using yttria-stabilized zirconia (YSZ) and a platinum (Pt) electrode catalyst. The system has been studied in two distinct operation modes: (i) when the necessary energy for the electrochemical promotion is produced through the parallel reaction of H2 oxidation (galvanic operation) and (ii) when a galvanostat/potentiostat is used to impose the necessary potential (electrolytic operation). The performance of the fuel cell declines less than 15% in the presence of the reactant mixture (CO2 and H2) while producing enough current to conduct EPOC experiments. During the electrolytic operation of the electrochemical cell, the CO production rate is significantly increased by up to 50%.
Collapse
Affiliation(s)
- Andriana Lymperi
- Department of Chemical Engineering, University of Patras, 26504 Patras, Greece
| | - Christos Chatzilias
- Department of Chemical Engineering, University of Patras, 26504 Patras, Greece
- School of Sciences and Engineering, University of Nicosia, Nicosia 2417, Cyprus
| | - Fotios Xydas
- Department of Chemical Engineering, University of Patras, 26504 Patras, Greece
| | - Eftychia Martino
- Department of Chemical Engineering, University of Patras, 26504 Patras, Greece
| | - Georgios Kyriakou
- Department of Chemical Engineering, University of Patras, 26504 Patras, Greece
| | | |
Collapse
|
2
|
Pahija E, Panaritis C, Gusarov S, Shadbahr J, Bensebaa F, Patience G, Boffito DC. Experimental and Computational Synergistic Design of Cu and Fe Catalysts for the Reverse Water–Gas Shift: A Review. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Ergys Pahija
- Department of Chemical Engineering, Polytechnique Montréal, P.O. Box 6079, Station Centre-Ville, Montréal, Québec H3C 3A7, Canada
| | - Christopher Panaritis
- Department of Chemical Engineering, Polytechnique Montréal, P.O. Box 6079, Station Centre-Ville, Montréal, Québec H3C 3A7, Canada
| | - Sergey Gusarov
- Nanotechnology Research Center, National Research Council of Canada, 11421 Saskatchewan Drive, Edmonton, Alberta T6G 2M9, Canada
| | - Jalil Shadbahr
- Energy, Mining and Environment Research Centre, National Research Council Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Farid Bensebaa
- Energy, Mining and Environment Research Centre, National Research Council Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Gregory Patience
- Department of Chemical Engineering, Polytechnique Montréal, P.O. Box 6079, Station Centre-Ville, Montréal, Québec H3C 3A7, Canada
| | - Daria Camilla Boffito
- Department of Chemical Engineering, Polytechnique Montréal, P.O. Box 6079, Station Centre-Ville, Montréal, Québec H3C 3A7, Canada
| |
Collapse
|
3
|
State-of-art modifications of heterogeneous catalysts for CO2 methanation - active sites, surface basicity and oxygen defects. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.03.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Panaritis C, Yan S, Couillard M, Baranova EA. Electrochemical study of the metal-support interaction between FeOx nanoparticles and cobalt oxide support for the reverse water gas shift reaction. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2021.101824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Zagoraios D, Kokkinou N, Kyriakou G, Katsaounis A. Electrochemical control of the RWGS reaction over Ni nanoparticles deposited on yttria stabilized zirconia. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02140k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transition metal oxides are promising candidates for the activation of the reverse water gas shift (RWGS) reaction. The in-situ formation and stabilization of these oxides appears to be a key...
Collapse
|
6
|
Wang J, Couillard M, Baranova E. Electrochemical Promotion of Copper Nanoparticles for the Reverse Water Gas Shift Reaction. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02315b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrochemical promotion of catalysis (EPOC) is one of the promising ways to in-situ control and enhance catalytic processes of the reverse water gas shift reaction (RWGS), which recycles carbon dioxide...
Collapse
|
7
|
Panaritis C, Zgheib J, Couillard M, Baranova EA. The role of Ru clusters in Fe carbide suppression for the reverse water gas shift reaction over electropromoted Ru/FeO catalysts. Electrochem commun 2020. [DOI: 10.1016/j.elecom.2020.106824] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
8
|
Panaritis C, Hajar YM, Treps L, Michel C, Baranova EA, Steinmann SN. Demystifying the Atomistic Origin of the Electric Field Effect on Methane Oxidation. J Phys Chem Lett 2020; 11:6976-6981. [PMID: 32787193 DOI: 10.1021/acs.jpclett.0c01485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Understanding the role of an electric field on the surface of a catalyst is crucial in tuning and promoting the catalytic activity of metals. Herein, we evaluate the oxidation of methane over a Pt surface with varying oxygen coverage using density functional theory. The latter is controlled by the electrode polarization, giving rise to the non-Faradaic modification of catalytic activity phenomenon. At -1 V, the Pt(111) surface is present, while at 1 V, α-PtO2 on Pt(111) takes over. Our results demonstrate that the alteration of the platinum oxide surface under the influence of an electrochemical potential promotes the catalytic activity of the metal oxides by lowering the activation energy barrier of the reaction.
Collapse
Affiliation(s)
- Christopher Panaritis
- Department of Chemical and Biological Engineering, Centre for Catalysis Research and Innovation (CCRI), University of Ottawa, 161 Louis-Pasteur, Ottawa, Ontario K1N 6N5, Canada
| | - Yasmine M Hajar
- Department of Chemical and Biological Engineering, Centre for Catalysis Research and Innovation (CCRI), University of Ottawa, 161 Louis-Pasteur, Ottawa, Ontario K1N 6N5, Canada
| | - Laureline Treps
- Université Lyon, ENS de Lyon, CNRS, Université Lyon 1, Laboratoire de Chimie UMR 5182, F-69342, Lyon, France
| | - Carine Michel
- Université Lyon, ENS de Lyon, CNRS, Université Lyon 1, Laboratoire de Chimie UMR 5182, F-69342, Lyon, France
| | - Elena A Baranova
- Department of Chemical and Biological Engineering, Centre for Catalysis Research and Innovation (CCRI), University of Ottawa, 161 Louis-Pasteur, Ottawa, Ontario K1N 6N5, Canada
| | - Stephan N Steinmann
- Université Lyon, ENS de Lyon, CNRS, Université Lyon 1, Laboratoire de Chimie UMR 5182, F-69342, Lyon, France
| |
Collapse
|
9
|
Abidi N, Lim KRG, Seh ZW, Steinmann SN. Atomistic modeling of electrocatalysis: Are we there yet? WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2020. [DOI: 10.1002/wcms.1499] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Nawras Abidi
- Univ Lyon, Ens de Lyon, CNRS UMR 5182 Université Claude Bernard Lyon 1, Laboratoire de Chimie, F69342, Lyon France
| | - Kang Rui Garrick Lim
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR) Singapore
| | - Zhi Wei Seh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR) Singapore
| | - Stephan N. Steinmann
- Univ Lyon, Ens de Lyon, CNRS UMR 5182 Université Claude Bernard Lyon 1, Laboratoire de Chimie, F69342, Lyon France
| |
Collapse
|
10
|
Abidi N, Bonduelle-Skrzypczak A, Steinmann SN. Revisiting the Active Sites at the MoS 2/H 2O Interface via Grand-Canonical DFT: The Role of Water Dissociation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:31401-31410. [PMID: 32551477 DOI: 10.1021/acsami.0c06489] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
MoS2 is a promising low-cost catalyst for the hydrogen evolution reaction (HER). However, the nature of the active sites remains a subject of debate. By taking the electrochemcal potential explicitly into account using grand-canonical density functional theory (DFT) in combination with the linearized Poisson-Boltzmann equation, we herein revisit the active sites of 2H-MoS2. In addition to the well-known catalytically active edge sites, also specific point defects on the otherwise inert basal plane provide highly active sites for HER. Given that HER takes place in water, we also assess the reactivity of these active sites with respect to H2O. The thermodynamics of proton reduction as a function of the electrochemical potential reveals that four edge sites and three basal plane defects feature thermodynamic overpotentials below 0.2 V. In contrast to current proposals, many of these active sites involve adsorbed OH. The results demonstrate that even though H2O and OH block "active" sites, HER can also occur on these "blocked" sites, reducing protons on surface OH/H2O entities. As a consequence, our results revise the active sites, highlighting the so far overlooked need to take the liquid component (H2O) of the functional interface into account when considering the stability and activity of the various active sites.
Collapse
Affiliation(s)
- Nawras Abidi
- Univ Lyon, Ens de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F69342 Lyon, France
| | | | - Stephan N Steinmann
- Univ Lyon, Ens de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F69342 Lyon, France
| |
Collapse
|