1
|
Sultanov F, Tatykayev B, Bakenov Z, Mentbayeva A. The role of graphene aerogels in rechargeable batteries. Adv Colloid Interface Sci 2024; 331:103249. [PMID: 39032342 DOI: 10.1016/j.cis.2024.103249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/12/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Energy storage systems, particularly rechargeable batteries, play a crucial role in establishing a sustainable energy infrastructure. Today, researchers focus on improving battery energy density, cycling stability, and rate performance. This involves enhancing existing materials or creating new ones with advanced properties for cathodes and anodes to achieve peak battery performance. Graphene aerogels (GAs) possess extraordinary attributes, including a hierarchical porous and lightweight structure, high electrical conductivity, and robust mechanical stability. These qualities facilitate the uniform distribution of active sites within electrodes, mitigate volume changes during repeated cycling, and enhance overall conductivity. When integrated into batteries, GAs expedite electron/ion transport, offer exceptional structural stability, and deliver outstanding cycling performance. This review offers a comprehensive survey of the advancements in the preparation, functionalization, and modification of GAs in the context of battery research. It explores their application as electrodes and hosts for the dispersion of active material nanoparticles, resulting in the creation of hybrid electrodes for a wide range of rechargeable batteries including lithium-ion batteries (LIBs), Li-metal-air batteries, sodium-ion batteries (SIBs), zinc-ion batteries (AZIBs) and zinc-air batteries (ZABs), aluminum-ion batteries (AIBs) and aluminum-air batteries and other.
Collapse
Affiliation(s)
- Fail Sultanov
- National Laboratory Astana, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan
| | - Batukhan Tatykayev
- National Laboratory Astana, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan
| | - Zhumabay Bakenov
- National Laboratory Astana, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan; Department of Chemical and Materials Engineering, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan
| | - Almagul Mentbayeva
- National Laboratory Astana, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan; Department of Chemical and Materials Engineering, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan.
| |
Collapse
|
2
|
Duan YK, Li ZW, Zhang SC, Su T, Zhang ZH, Jiao AJ, Fu ZH. Stannate-Based Materials as Anodes in Lithium-Ion and Sodium-Ion Batteries: A Review. Molecules 2023; 28:5037. [PMID: 37446697 DOI: 10.3390/molecules28135037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/19/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Binary metal oxide stannate (M2SnO4; M = Zn, Mn, Co, etc.) structures, with their high theoretical capacity, superior lithium storage mechanism and suitable operating voltage, as well as their dual suitability for lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs), are strong candidates for next-generation anode materials. However, the capacity deterioration caused by the severe volume expansion problem during the insertion/extraction of lithium or sodium ions during cycling of M2SnO4-based anode materials is difficult to avoid, which greatly affects their practical applications. Strategies often employed by researchers to address this problem include nanosizing the material size, designing suitable structures, doping with carbon materials and heteroatoms, metal-organic framework (MOF) derivation and constructing heterostructures. In this paper, the advantages and issues of M2SnO4-based materials are analyzed, and the strategies to solve the issues are discussed in order to promote the theoretical work and practical application of M2SnO4-based anode materials.
Collapse
Affiliation(s)
- You-Kang Duan
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China
- Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Xining 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Wei Li
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China
- Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Xining 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shi-Chun Zhang
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China
- Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Xining 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Su
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China
- Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Xining 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Hong Zhang
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China
- Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Xining 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ai-Jun Jiao
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China
- Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Xining 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen-Hai Fu
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China
- Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Xining 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Venegas CJ, Gutierrez FA, Reeves-McLaren N, Rivas GA, Ruiz-León D, Bollo S. In situ or Ex situ Synthesis for Electrochemical Detection of Hydrogen Peroxide-An Evaluation of Co 2SnO 4/RGO Nanohybrids. MICROMACHINES 2023; 14:mi14051059. [PMID: 37241682 DOI: 10.3390/mi14051059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/04/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023]
Abstract
Nowadays, there is no doubt about the high electrocatalytic efficiency that is obtained when using hybrid materials between carbonaceous nanomaterials and transition metal oxides. However, the method to prepare them may involve differences in the observed analytical responses, making it necessary to evaluate them for each new material. The goal of this work was to obtain for the first time Co2SnO4 (CSO)/RGO nanohybrids via in situ and ex situ methods and to evaluate their performance in the amperometric detection of hydrogen peroxide. The electroanalytical response was evaluated in NaOH pH 12 solution using detection potentials of -0.400 V or 0.300 V for the reduction or oxidation of H2O2. The results show that for CSO there were no differences between the nanohybrids either by oxidation or by reduction, unlike what we previously observed with cobalt titanate hybrids, in which the in situ nanohybrid clearly had the best performance. On the other hand, no influence in the study of interferents and more stable signals were obtained when the reduction mode was used. In conclusion, for detecting hydrogen peroxide, any of the nanohybrids studied, i.e., in situ or ex situ, are suitable to be used, and more efficiency is obtained using the reduction mode.
Collapse
Affiliation(s)
- Constanza J Venegas
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, P.O. Box 8940577, San Joaquín 8320000, Santiago, Chile
| | - Fabiana A Gutierrez
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe 3000, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz CP C1425FQB, Buenos Aires 2290, Argentina
| | - Nik Reeves-McLaren
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Gustavo A Rivas
- Instituto de Investigaciones en Físico-Química de Córdoba (INFIQC), Departamento de Físicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
| | - Domingo Ruiz-León
- Laboratorio de Fisicoquímica y Electroquímica del Estado Sólido, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador Bernardo O'Higgins n◦ 3363, Estación Central 9160000, Santiago, Chile
| | - Soledad Bollo
- Centro de Investigación de Procesos Redox (CiPRex), Universidad de Chile, Sergio Livingstone Polhammer 1007, Independencia 8330015, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Sergio Livingstone Polhammer 1007, Independencia 8330015, Santiago, Chile
| |
Collapse
|
4
|
Wang W, Song F, Du C, Su Y. Durable and eco-friendly peroxymonosulfate activation over cobalt/tin oxides-based heterostructures for antibiotics removal: Insight to mechanism, degradation pathway. J Colloid Interface Sci 2022; 625:479-492. [PMID: 35738045 DOI: 10.1016/j.jcis.2022.06.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/05/2022] [Accepted: 06/12/2022] [Indexed: 02/06/2023]
Abstract
Potential leaching of Co ions could decrease the catalytic activity and cause secondary pollution of water, thereby threatening ecological safety and human health. In response, the in-situ generation of well-dispersed Co2SnO4 and SnO2 with fine interfacial feature was constructed for PMS activation toward efficient tetracycline degradation and lower cobalt ion leaching feature. The synergistic effect of Co2SnO4 and SnO2 endowed Co2SnO4-SnO2 an outstanding catalytic performance for tetracycline degradation in alkaline condition. Meanwhile, the catalysts can effectively degrade the quinolones, dyes and mixture pollutant solution. The excellent performance can attributed to the in-situ introduction of SnO2, which stabilizes the microstructure and provides an effective electronic pathway to enhance the activity of Co2SnO4 in the Co2SnO4-SnO2. In optimized condition, the tetracycline degradation efficiency was enhanced to 94.9% within 20 min and maintained the stability at least four cycles. The degradation rate constant of Co2SnO4-SnO2 was 0.149 min-1, which was about 1.93, 2.98, 11.5 times higher than of Co2SnO4, Co3O4 and SnO2, respectively. Notably, the leaching performance of Co2SnO4-SnO2 was greatly suppressed to be 7.45 ug/L, which was lower than that of Co2SnO4 (6.41 mg/L) and Co3O4 (1.12 mg/L). Radical quenching and EPR experiments showed that singlet oxygen (1O2), rather than hydroxyl active species and sulfate radicals, played a predominating role for PMS activation in the Co2SnO4-SnO2/PMS system. The intermediates and degradation routes for tetracycline degradation were characterized by liquid chromatograph-tandem mass spectrometry. This study expected to provide a novel strategy to construct heterostructural catalysts with lower cobalt ion leaching for the activation of PMS.
Collapse
Affiliation(s)
- Weihong Wang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Fanyue Song
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Chunfang Du
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| | - Yiguo Su
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
5
|
Construction of Macroporous Co 2SnO 4 with Hollow Skeletons as Anodes for Lithium-Ion Batteries. Gels 2022; 8:gels8050257. [PMID: 35621555 PMCID: PMC9140520 DOI: 10.3390/gels8050257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 02/04/2023] Open
Abstract
Increasing the energy density of lithium-ion batteries (LIBs) can broaden their applications in energy storage but remains a formidable challenge. Herein, with polyacrylic acid (PAA) as phase separation agent, macroporous Co2SnO4 with hollow skeletons was prepared by sol-gel method combined with phase separation. As the anode of LIBs, the macroporous Co2SnO4 demonstrates high capacity retention (115.5% at 200 mA·g−1 after 300 cycles), affording an ultrahigh specific capacity (921.8 mA h·g−1 at 1 A·g−1). The present contribution provides insight into engineering porous tin-based materials for energy storage.
Collapse
|
6
|
Wen Z, Rong Z, Yin Y, Ren H, Woo Joo S, Huang J. N-doped carbon coated SnO2 nanospheres as Li-ion battery anode with high capacity and good cycling stability. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Zhao W, Yuan Y, Du P, Zhu M, Yin S, Guo S. Multi‐shelled Hollow Nanospheres of SnO
2
/Sn@TiO
2
@C Composite as High‐performance Anode for Lithium‐Ion Batteries. ChemElectroChem 2021. [DOI: 10.1002/celc.202100613] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Wencai Zhao
- College of Machinery and Automation Zhejiang Sci-Tech University 310018 Hangzhou China
| | - Yongfeng Yuan
- College of Machinery and Automation Zhejiang Sci-Tech University 310018 Hangzhou China
| | - Pingfan Du
- College of Textile Science and Engineering Zhejiang Sci-Tech University 310018 Hangzhou China
| | - Min Zhu
- College of Machinery and Automation Zhejiang Sci-Tech University 310018 Hangzhou China
| | - Simin Yin
- College of Machinery and Automation Zhejiang Sci-Tech University 310018 Hangzhou China
| | - Shaoyi Guo
- College of Machinery and Automation Zhejiang Sci-Tech University 310018 Hangzhou China
| |
Collapse
|
8
|
Yan W, Liu Y, Shao G, Zhu K, Cui S, Wang W, Shen X. Chemical Surface Adsorption and Trace Detection of Alcohol Gas in Graphene Oxide-Based Acid-Etched SnO 2 Aerogels. ACS APPLIED MATERIALS & INTERFACES 2021; 13:20467-20478. [PMID: 33880925 DOI: 10.1021/acsami.1c00302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
An acidified SnO2/rGO aerogel (ASGA) is an attractive contributor in ethanol gas sensing under ultralow concentration because of the sufficient active sites and adsorption pores in SnO2 and the rGA, respectively. Furthermore, a p-n heterojunction is successfully constructed by the high electron mobility between ASP and rGA to establish a brand-new bandgap of 2.72 eV, where more electrons are released and the surface energy is decreased, to improve the gas sensitivity. The ASGA owns a specific surface area of 256.1 m2/g, far higher than SnO2 powder (68.7 m2/g), indicating an excellent adsorption performance, so it can acquire more ethanol gas for a redox reaction. For gas-sensing ability, the ASGA exhibits an excellent response of Ra/Rg = 137.4 to 20 ppm of ethanol at the optimum temperature of 210 °C and can reach a response of 1.2 even at the limit detection concentration of 0.25 ppm. After the concentration gradient change test, a nonlinear increase between concentration and sensitivity (S-C curve) is observed, and it indirectly proves the chemical adsorption between ethanol and ASGA, which exhibits charge transfer and improves electron mobility. In addition, a detailed energy band diagram and sensor response diagram jointly depict the gas-sensitive mechanism. Finally, a conversed calculation explains the feasibility of the nonlinear S-C curve from the atomic level, which further verifies the chemical adsorption during the sensing process.
Collapse
Affiliation(s)
- Wenqian Yan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 210009, China
| | - Yiming Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 210009, China
| | - Gaofeng Shao
- Institute of Advanced Materials and Flexible Electronics, School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Kunmeng Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 210009, China
| | - Sheng Cui
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 210009, China
| | - Wei Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 210009, China
| | - Xiaodong Shen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 210009, China
| |
Collapse
|