1
|
Liu M, Gu Y, Su H, Liu X, Luo J, Tan P, Liu F, Pan J. Electron rearrangement at the crystalline-amorphous heterogeneous interface boosts alkaline hydrogen production. Chem Sci 2025:d5sc02271a. [PMID: 40342915 PMCID: PMC12056670 DOI: 10.1039/d5sc02271a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Accepted: 04/26/2025] [Indexed: 05/11/2025] Open
Abstract
Modifying the platinum (Pt) local reaction microenvironment is a critical and complex challenge in enhancing electrochemical performance. Herein, amorphous Co(OH)2 and crystalline Pt (labeled as ac-Pt@Co(OH)2) featuring abundant crystalline-amorphous (c-a) interfaces are designed to boost the hydrogen evolution reaction (HER). The engineered structure creates an advantageous chemical environment at the local level, enhancing hydrogen adsorption efficiency and resulting in exceptional HER performance. The ac-Pt@Co(OH)2 achieves a low Tafel slope of 28.5 mV dec-1 and requires merely 95 mV overpotential to reach 200 mA cm-2 in alkaline electrolyte (1 M KOH), surpassing those of conventional Pt/C catalysts (39.4 mV dec-1, 256 mV). In situ advanced characterization investigations reveal dynamic electron rearrangement at the c-a interface, where Co species initially accept electrons from Pt to optimize the adsorption of *H species and then donate electrons to Pt for accelerating reduction kinetics. Theoretical calculations reveal that amorphous Co(OH)2 promotes the dissociation of water molecules to produce active *H, and electron rearrangement at the c-a interface downshifts the d-band center, thereby optimizing the *H adsorption strength and enhancing HER activity. The ac-Pt@Co(OH)2-based alkaline anion-exchange membrane water electrolyzer (AEMWE) maintains a current density of 500 mA cm-2 over 500 h.
Collapse
Affiliation(s)
- Meihuan Liu
- State Key Laboratory for Powder Metallurgy, Central South University Changsha 410083 Hunan China
| | - Yuke Gu
- State Key Laboratory for Powder Metallurgy, Central South University Changsha 410083 Hunan China
| | - Hui Su
- Key Laboratory of Light Energy Conversion Materials of Hunan Province College, College of Chemistry and Chemical Engineering, Hunan Normal University Changsha 410081 Hunan China
| | - Xuanzhi Liu
- State Key Laboratory for Powder Metallurgy, Central South University Changsha 410083 Hunan China
| | - Juan Luo
- State Key Laboratory for Powder Metallurgy, Central South University Changsha 410083 Hunan China
| | - Pengfei Tan
- State Key Laboratory for Powder Metallurgy, Central South University Changsha 410083 Hunan China
| | - Feng Liu
- Yunnan Precious Metals Lab Co., Ltd Kunming Yunnan 650106 China
| | - Jun Pan
- State Key Laboratory for Powder Metallurgy, Central South University Changsha 410083 Hunan China
- Yunnan Precious Metals Lab Co., Ltd Kunming Yunnan 650106 China
| |
Collapse
|
2
|
Li M, Yu Z, Sun Z, Liu Y, Sha S, Li J, Ge R, Dai L, Liu B, Fu Q, Li W. An efficient hydrogen evolution catalyst constructed using Pt-modified Ni 3S 2/MoS 2 with optimized kinetics across the full pH range. NANOSCALE 2025; 17:3189-3202. [PMID: 39718342 DOI: 10.1039/d4nr03811h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Electrocatalyst materials play a crucial role in determining the efficiency of the hydrogen evolution reaction (HER), directly influencing the overall effectiveness of energy conversion technologies. Ni3S2/MoS2 heterostructures hold substantial promise as bifunctional catalysts, owing to their synergistic electronic characteristics and plentiful active sites. However, their catalytic efficacy is impeded by the relatively elevated chemisorption energy of hydrogen-containing intermediates, which constrains their functionality in different pH environments. In order to mitigate this limitation, trace amounts of Pt are introduced into the heterostructure, intending to enhance electronic transport and refining chemisorption energies, thereby facilitating significant enhancements in both HER and oxygen evolution reaction (OER) activities over a wide pH range. It is revealed that the Pt-modified catalyst achieves exceptional HER performance, requiring merely 64 mV and 83 mV overpotentials to attain a current density of 100 mA cm-2 in acidic and alkaline media, respectively. Furthermore, theoretical simulations corroborate that Pt modification optimizes local electronic configurations and augments electronic transfer, contributing to its superior catalytic performance. This investigation underscores the pivotal role of Pt modification in propelling the practical application of Ni3S2/MoS2 heterostructures as highly efficient and pH-universal bifunctional catalysts.
Collapse
Affiliation(s)
- Maoyuan Li
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China.
| | - Zhongrui Yu
- Shanghai Electric Hency Solar Technology Co., Ltd, Shanghai Electric Power Generation Group, Shanghai, 201199, China
| | - Zulin Sun
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China.
| | - Yuchen Liu
- College of Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Simiao Sha
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China.
| | - Jiancheng Li
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China.
| | - Riyue Ge
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong
| | - Liming Dai
- School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia.
- Australian Research Council Centre of Excellence for Carbon Science and Innovation, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Bin Liu
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China.
| | - Qingqiao Fu
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China.
| | - Wenxian Li
- School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia.
- Australian Research Council Centre of Excellence for Carbon Science and Innovation, The University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
3
|
Li M, Min J, Huang Y, Meng L, Dong Z, Wang S, Wan T, Guan P, Hu L, Zhou Y, Han Z, Ni B, Chu D. Space-Confinement and in Situ Reduction of Pt with 1T-MoS 2 for Exceptional Hydrogen Evolution Reaction in Simulated Seawater. ACS APPLIED MATERIALS & INTERFACES 2024; 16:69199-69209. [PMID: 39653014 DOI: 10.1021/acsami.4c13270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Efficient catalysts for hydrogen generation from seawater are essential for advancing clean energy technologies. In this study, we present a straightforward method for producing Pt nanoparticles enclosed within metallic 1T-phase MoS2 nanosheets on graphite paper as a promising catalyst for the hydrogen evolution reaction (HER). The resulting 14.3 wt % Pt-MoS2 nanosheets demonstrate an ultralow onset potential of 65.6 mV vs the reversible hydrogen electrode (RHE) and a minimal Tafel slope of 64 mV/dec with remarkable stability and durability in simulated seawater, offering comparable catalytic performance to the 40 wt % Pt/C commercial catalyst at a lower cost. This exceptional hydrogen production is attributed to the robust reducing ability of 1T-phase MoS2 and the confinement of Pt nanoparticles within the MoS2 interlayers and nanosheets. Our findings highlight the significance of this approach in developing practical and sustainable electrocatalysts for seawater splitting. This research represents a crucial step toward a greener and more sustainable future, leveraging innovative catalyst design strategies for clean energy production.
Collapse
Affiliation(s)
- Mengyao Li
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jie Min
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Yixuan Huang
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Linghui Meng
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Zekun Dong
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Shuangyue Wang
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Tao Wan
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Peiyuan Guan
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Long Hu
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Yingze Zhou
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Zhaojun Han
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Bingjie Ni
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Dewei Chu
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
4
|
Huang Q, Yang M, Rani KK, Wang L, Wang R, Liu X, Huang D, Yang Z, Devasenathipathy R, Chen DH, Fan Y, Chen W. Sheet-Isolated MoS 2 Used for Dispersing Pt Nanoparticles and its Application in Methanol Fuel Cells. Chemistry 2024; 30:e202302934. [PMID: 37842799 DOI: 10.1002/chem.202302934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
It is highly challenging to activate the basal plane and minimize the π-π stacking of MoS2 sheets, thus enhancing its catalytic performance. Here, we display an approach for making well-dispersed MoS2 . By using the N-doped multi-walled carbon nanotubes (NMWCNTs) as an isolation unit, the aggregation of MoS2 sheets was effectively reduced, favoring the dispersion of Pt nanoparticles (noted as Pt/NMWCNTs-isolated-MoS2 ). Excellent bifunctional catalytic performance for methanol oxidation and oxygen reduction reaction (MOR/ORR) were demonstrated by the produced Pt/NMWCNTs-isolated-MoS2 . In comparison to Pt nanoparticles supported on MoS2 (Pt/MoS2 ), the MOR activity (2314.14 mA mgpt -1 ) and stability (317.69 mA mgpt -1 after 2 h of operation) on Pt/NMWCNTs-isolatedMoS2 were 24 and 232 times higher, respectively. As for ORR, Pt/NMWCNTs-isolated-MoS2 holds large half-wave potential (0.88 V) and high stability (92.71 % after 22 h of operation). This work presents a tactic for activating the basal planes and reducing the π-π stacking of 2D materials to satisfy their applications in electrocatalysis. In addition, the proposed sheet-isolation method can be used for fabricating other 2D materials to promote the dispersion of nanoparticles, which assist its application in other fields of energy as well as the environment.
Collapse
Affiliation(s)
- Qiulan Huang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Mengping Yang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Karuppasamy Kohila Rani
- Key Laboratory of Flexible Electronics (KLOFE) and, Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Limin Wang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Ruixiang Wang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Xiaotian Liu
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Dujuan Huang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Zhongyun Yang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Rajkumar Devasenathipathy
- Key Laboratory of Flexible Electronics (KLOFE) and, Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Du-Hong Chen
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Youjun Fan
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Wei Chen
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| |
Collapse
|
5
|
Peng K, Wang Y, Liu F, Wan P, Wang H, Niu M, Su L, Zhuang L, Qin Y. Hierarchical SiC-Graphene Composite Aerogel-Supported Ni-Mo-S Nanosheets for Efficient pH-Universal Electrocatalytic Hydrogen Evolution. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37257120 DOI: 10.1021/acsami.3c02802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
MoS2 exhibits good prospects in electrocatalytic hydrogen evolution. Whereas, the electrocatalytic property of MoS2 is restrained by its insufficient active sites, low electrical conductivity, and slow water dissociation processes. Herein, an aerogel composed of silicon carbide (SiC) and graphene (SiCnw-RGO) was constructed by growing SiC nanowires (SiCnw) in the graphene aerogel (RGO) via the CVD method, and then Ni-Mo-S nanosheets were hydrothermally synthesized on the SiCnw-RGO composite aerogel to develop an efficient pH-universal electrocatalyst. Ni-Mo-S nanosheets supported on SiCnw-RGO (Ni-Mo-S@SiCnw-RGO) exhibit an interesting hierarchical three-dimensional interconnected structure of composite aerogel. The optimal Ni-Mo-S@SiCnw-RGO electrocatalyst exhibits excellent catalytic performance with low Tafel slopes of 60 mV/dec under acidic conditions and 90 mV/dec under alkaline conditions. Density functional theory calculations demonstrate a composite catalyst exhibits advantageous hydrogen adsorption free energy and water dissociation energy barrier. This study provides a reference to design an efficient hierarchical aerogel electrocatalyst.
Collapse
Affiliation(s)
- Kang Peng
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yihan Wang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Fuzhu Liu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Pengfei Wan
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hongjie Wang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Min Niu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lei Su
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lei Zhuang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yuanbin Qin
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
6
|
Yang M, Guo YX, Liu Z, Li XY, Huang Q, Yang XY, Ye CF, Li Y, Liu JP, Chen LH, Su BL, Wang YL. Engineering Rich Active Sites and Efficient Water Dissociation for Ni-Doped MoS 2/CoS 2 Hierarchical Structures toward Excellent Alkaline Hydrogen Evolution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:236-248. [PMID: 36525334 DOI: 10.1021/acs.langmuir.2c02435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Besides improving charge transfer, there are two key factors, such as increasing active sites and promoting water dissociation, to be deeply investigated to realize high-performance MoS2-based electrocatalysts in alkaline hydrogen evolution reaction (HER). Herein, we have demonstrated the synergistic engineering to realize rich unsaturated sulfur atoms and activated O-H bonds toward the water for Ni-doped MoS2/CoS2 hierarchical structures by an approach to Ni doping coupled with in situ sulfurizing for excellent alkaline HER. In this work, the Ni-doped atoms are evolved into Ni(OH)2 during alkaline HER. Interestingly, the extra unsaturated sulfur atoms will be modulated into MoS2 nanosheets by breaking Ni-S bonds during the formation of Ni(OH)2. On the other hand, the higher the mass of the Ni precursor (mNi) for the fabrication of our samples, the more Ni(OH)2 is evolved, indicating a stronger ability for water dissociation of our samples during alkaline HER. Our results further reveal that regulating mNi is crucial to the HER activity of the as-synthesized samples. By regulating mNi to 0.300 g, a balance between increasing active sites and promoting water dissociation is achieved for the Ni-doped MoS2/CoS2 samples to boost alkaline HER. Consequently, the optimal samples present the highest HER activity among all counterparts, accompanied by reliable long-term stability. This work will promise important applications in the field of electrocatalytic hydrogen evolution in alkaline environments.
Collapse
Affiliation(s)
- Mian Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Yu-Xin Guo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Zhan Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Xiao-Yun Li
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Qing Huang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Xiao-Yu Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Cui-Fang Ye
- Department of Histology and Embryology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yu Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Jin-Ping Liu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Li-Hua Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Bao-Lian Su
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Yi-Long Wang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, Hubei 430070, China
| |
Collapse
|
7
|
Approaching well-dispersed MoS2 assisted with cellulose nanofiber for highly durable hydrogen evolution reaction. Carbohydr Polym 2022; 294:119754. [DOI: 10.1016/j.carbpol.2022.119754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 11/18/2022]
|
8
|
Xiao X, Yang L, Sun W, Chen Y, Yu H, Li K, Jia B, Zhang L, Ma T. Electrocatalytic Water Splitting: From Harsh and Mild Conditions to Natural Seawater. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105830. [PMID: 34878210 DOI: 10.1002/smll.202105830] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Electrocatalytic water splitting is regarded as the most effective pathway to generate green energy-hydrogen-which is considered as one of the most promising clean energy solutions to the world's energy crisis and climate change mitigation. Although electrocatalytic water splitting has been proposed for decades, large-scale industrial hydrogen production is hindered by high electricity cost, capital investment, and electrolysis media. Harsh conditions (strong acid/alkaline) are widely used in electrocatalytic mechanism studies, and excellent catalytic activities and efficiencies have been achieved. However, the practical application of electrocatalytic water splitting in harsh conditions encounters several obstacles, such as corrosion issues, catalyst stability, and membrane technical difficulties. Thus, the research on water splitting in mild conditions (neutral/near neutral), even in natural seawater, has aroused increasing attention. However, the mechanism in mild conditions or natural seawater is not clear. Herein, different conditions in electrocatalytic water splitting are reviewed and the effects and proposed mechanisms in the three conditions are summarized. Then, a comparison of the reaction process and the effects of the ions in different electrolytes are presented. Finally, the challenges and opportunities associated with direct electrocatalytic natural seawater splitting and the perspective are presented to promote the progress of hydrogen production by water splitting.
Collapse
Affiliation(s)
- Xue Xiao
- Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Lijun Yang
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang, 110036, China
| | - Wenping Sun
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China
| | - Yu Chen
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China
| | - Hai Yu
- CSIRO Energy, 10 Murray Dwyer Circuit, Mayfield West, NSW, 2304, Australia
| | - Kangkang Li
- CSIRO Energy, 10 Murray Dwyer Circuit, Mayfield West, NSW, 2304, Australia
| | - Baohua Jia
- Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Lei Zhang
- College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang, 110036, China
| | - Tianyi Ma
- Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| |
Collapse
|
9
|
Facile Synthesis of 1T-Phase MoS 2 Nanosheets on N-Doped Carbon Nanotubes towards Highly Efficient Hydrogen Evolution. NANOMATERIALS 2021; 11:nano11123273. [PMID: 34947622 PMCID: PMC8704595 DOI: 10.3390/nano11123273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 11/24/2022]
Abstract
1T-phase molybdenum disulfide is supposed to be one of the non-precious metal-based electrocatalysts for the hydrogen evolution reaction with the highest potential. Herein, 1T-MoS2 nanosheets were anchored on N-doped carbon nanotubes by a simple hydrothermal process with the assistance of urea promotion transition of the 1T phase. Based on the 1T-MoS2 nanosheets anchored on the N-doped carbon nanotubes structures, 1T-MoS2 nanosheets can be said to have highly exposed active sites from edges and the basal plane, and the dopant N in carbon nanotubes can promote electron transfer between N-doped carbon nanotubes and 1T-MoS2 nanosheets. With the synergistic effects of this structure, the excellent 1T-MoS2/ N-doped carbon nanotubes catalyst has a small overpotential of 150 mV at 10 mA cm−2, a relatively low Tafel slope of 63 mV dec−1, and superior stability. This work proposes a new strategy to design high-performance hydrogen evolution reaction catalysts.
Collapse
|