1
|
Pham XM, Abdul Ahad S, Patil NN, Geaney H, Singh S, Ryan KM. Binder-free germanium nanoparticle decorated multi-wall carbon nanotube anodes prepared via two-step electrophoretic deposition for high capacity Li-ion batteries. NANOSCALE HORIZONS 2024; 9:637-645. [PMID: 38391139 DOI: 10.1039/d3nh00501a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Germanium (Ge) has a high theoretical specific capacity (1384 mA h g-1) and fast lithium-ion diffusivity, which makes it an attractive anode material for lithium-ion batteries (LIBs). However, large volume changes during lithiation can lead to poor capacity retention and rate capability. Here, electrophoretic deposition (EPD) is used as a facile strategy to prepare Ge nanoparticle carbon-nanotube (Ge/CNT) electrodes. The Ge and CNT mass ratio in the Ge/CNT nanocomposites can be controlled by varying the deposition time, voltage, and concentration of the Ge NP dispersion in the EPD process. The optimized Ge/CNT nanocomposite exhibited long-term cyclic stability, with a capacity of 819 mA h g-1 after 1000 cycles at C/5 and a reversible capacity of 686 mA h g-1 after 350 cycles (with a minuscule capacity loss of 0.07% per cycle) at 1C. The Ge/CNT nanocomposite electrodes delivered dramatically improved cycling stability compared to control Ge nanoparticles. This can be attributed to the synergistic effects of implanting Ge into a 3D interconnected CNT network which acts as a buffer layer to accommodate the volume expansion of Ge NPs during lithiation/delithiation, limiting cracking and/or crumbling, to retain the integrity of the Ge/CNT nanocomposite electrodes.
Collapse
Affiliation(s)
- Xuan-Manh Pham
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Ireland.
| | - Syed Abdul Ahad
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Ireland.
| | - Niraj Nitish Patil
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Ireland.
| | - Hugh Geaney
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Ireland.
| | - Shalini Singh
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Ireland.
| | - Kevin M Ryan
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Ireland.
| |
Collapse
|
2
|
Li L, Wang K, Wang K, Chen T, Wang J, Deng Z, Chen Q, Zhang W, Hu J. Amorphous TiO 2 shells: an Essential Elastic Buffer Layer for High-Performance Self-Healing Eutectic GaSn Nano-Droplet Room-Temperature Liquid Metal Battery. Chemistry 2023; 29:e202301774. [PMID: 37584257 DOI: 10.1002/chem.202301774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 08/17/2023]
Abstract
Gallium-based alloy liquid metal batteries currently face limitations such as volume expansion, unstable solid electrolyte interface (SEI) film and substantial capacity decay. In this study, amorphous titanium dioxide is used to coat eutectic GaSn nanodroplets (eGaSn NDs) to construct the core-shell structure of eGaSn@TiO2 nanodroplets (eGaSn@TiO2 NDs). The amorphous TiO2 shell (~6.5 nm) formed a stable SEI film, alleviated the volume expansion, and provided electron/ion transport channels to achieve excellent cycling performance and high specific capacity. The resulting eGaSn@TiO2 NDs exhibited high capacities of 580, 540, 515, 485, 456 and 426 mAh g-1 at 0.1, 0.2, 0.5, 1, 2 and 5 C, respectively. No significant decay was observed after more than 500 cycles with a capacity of 455 mAh g-1 at 1 C. In situ X-ray diffraction (in situ XRD) was used to explore the lithiation mechanism of the eGaSn negative electrode during discharge. This study elucidates the design of advanced liquid alloy-based negative electrode materials for high-performance liquid metal batteries (LMBs).
Collapse
Affiliation(s)
- Lian Li
- College of Materials Science and Engineering, Kunming University of Science and Technology, 121 Street, Wenchang Road 68, Kunming, 650093, China
| | - Kaizhao Wang
- College of Materials Science and Engineering, Kunming University of Science and Technology, 121 Street, Wenchang Road 68, Kunming, 650093, China
| | - Kaijun Wang
- College of Materials Science and Engineering, Kunming University of Science and Technology, 121 Street, Wenchang Road 68, Kunming, 650093, China
| | - Tianyou Chen
- College of Materials Science and Engineering, Kunming University of Science and Technology, 121 Street, Wenchang Road 68, Kunming, 650093, China
| | - Jing Wang
- College of Materials Science and Engineering, Kunming University of Science and Technology, 121 Street, Wenchang Road 68, Kunming, 650093, China
| | - Zhongshan Deng
- School of future technology, University of Chinese Academy of Sciences, Yuquan Road 19, Beijing, 100049, China
| | - Qingming Chen
- College of Materials Science and Engineering, Kunming University of Science and Technology, 121 Street, Wenchang Road 68, Kunming, 650093, China
| | - Weijun Zhang
- College of Materials Science and Engineering, Kunming University of Science and Technology, 121 Street, Wenchang Road 68, Kunming, 650093, China
| | - Jin Hu
- College of Materials Science and Engineering, Kunming University of Science and Technology, 121 Street, Wenchang Road 68, Kunming, 650093, China
| |
Collapse
|
3
|
Zhao J, Yang K, Wang J, Wei D, Liu Z, Zhang S, Ye W, Zhang C, Wang Z, Yang X. Expired milk powder emulsion-derived carbonaceous framework/Si composite as efficient anode for lithium-ion batteries. J Colloid Interface Sci 2023; 638:99-108. [PMID: 36736122 DOI: 10.1016/j.jcis.2023.01.106] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/06/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023]
Abstract
Anodes based on silicon/carbon composites promise their commercial prospects for next-generation lithium ion batteries owing to their merits of high specific capacity, enhanced ionic and electronic conductivity, and excellent compatibility. Herein, a series of carbonaceous framework/Si composites are designed and prepared by rational waste utilization. N, P codoped foam-like porous carbon/Si composites (FPC@Si) and N, P codoped carbon coated Si composites (NPC@Si) are fabricated by utilizing expired milk powder as a carbon source with facile treatment methods. The results indicate that the porous carbon skeleton and carbon shell can improve the conductivity of Si and stabilize the solid electrolyte interfaces to avoid direct contact between active material and electrolyte. Moreover, the influence of drastic volume expansion of Si on the anode can be efficiently alleviated during charge/discharge processes. Therefore, the Si/C composite electrodes present excellent long-term cycling stability and rate capability. The electrochemical performance shows that the reversible capacity of FPC@Si and NPC@Si can be respectively maintained at 587.3 and 731.2 mAh g-1 after 1000 charge/discharge cycles under 400 mA g-1. Most significantly, the optimized Si/C composite electrodes exhibit outstanding performance in the full cell tests, promising them great potential for practical applications. This study not only provides a valuable guidance for recycling of waste resources, but also supports a rational design strategy of advanced composite materials for high-performance energy storage devices.
Collapse
Affiliation(s)
- Junkai Zhao
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China; Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology (CAST), Beijing 100094, China
| | - Kaimeng Yang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China; Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology (CAST), Beijing 100094, China
| | - Jianjun Wang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Daina Wei
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Zhaoen Liu
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Shiguo Zhang
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Wen Ye
- Shanghai Xpt Technology Limited, Shanghai 200336, China
| | - Ce Zhang
- Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology (CAST), Beijing 100094, China.
| | - Zhaolong Wang
- Interdisciplinary Research Center of Low-carbon Technology and Equipment, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China.
| | - Xiaojing Yang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
4
|
Chen K, Xiong J, Yu H, Wang L, Song Y. Si@nitrogen-doped porous carbon derived from covalent organic framework for enhanced Li-storage. J Colloid Interface Sci 2023; 634:176-184. [PMID: 36535157 DOI: 10.1016/j.jcis.2022.12.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/05/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
Due to ultra-high theoretical capacity (4200 mAh g-1), silicon (Si) is an excellent candidate for the anode of lithium-ion batteries (LIBs). However, the application of Si is severely limited by its volume expansion of approximately 300% during the charge/discharge process. Herein, nitrogen-doped porous carbon (NC) capped nano-Si particles (Si@NC) composites with a core-shell structure were obtained by calcination of covalent organic frameworks (COFs) encapsulated nano-Si. COFs is a crystalline material with well-ordered structures, adjustable and ordered pores and abundant N atoms. After carbonization, the well-ordered pores and frameworks were kept well. Compared with other Si@NC composites, the well-ordered NC framework shell derived from COFs possesses high elasticity and well-ordered pores, which provides space for the volume expansion of nano-Si, and a channel to transfer Li+. The core-shell Si@NC composite exhibited good performances when applied as the anode of LIBs. At a current density of 100 mA g-1, it exhibited a discharge-specific capacity of 1534.8 mAh g-1 after 100 cycles with a first-coulomb efficiency of 69.7%. The combination of COFs with nano-Si is a better strategy for the preparation of anode materials of LIBs.
Collapse
Affiliation(s)
- Kaixiang Chen
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China
| | - Jinyong Xiong
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China
| | - Hao Yu
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China
| | - Li Wang
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China
| | - Yonghai Song
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China.
| |
Collapse
|
5
|
Ou J, Li B, Deng H, Li K, Wang H. A carbon-covered silicon material modified by phytic acid with 3D conductive network as anode for lithium-ion batteries. ADV POWDER TECHNOL 2023. [DOI: 10.1016/j.apt.2022.103891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
6
|
Inorganic crosslinked supramolecular binder with fast Self-Healing for high performance silicon based anodes in Lithium-Ion batteries. J Colloid Interface Sci 2022; 625:373-382. [PMID: 35717851 DOI: 10.1016/j.jcis.2022.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/11/2022] [Accepted: 06/01/2022] [Indexed: 11/21/2022]
Abstract
Capacity retention is one of the key factors affecting the performance of silicon (Si)-based lithium-ion batteries and other energy storage devices. Herein, a three dimension (3D) network self-healing binder (denoted as PVA + LB) consisting of polyvinyl alcohol (PVA) and lithium metaborate (LiBO2) solution is proposed to improve the cycle stability of Si-based lithium-ion batteries. The reversible capacity of the silicon electrode is maintained at 1767.3 mAh g-1 after 180 cycles when employing PVA + LB as the binder, exhibiting excellent cycling stability. In addition, the silicon/carbon (Si/C) anode with the PVA + LB binder presents superior electrochemical performance, achieving a stable cycle life with a capacity retention of 73.7% (858.3 mAh g-1) after 800 cycles at a current density of 1 A g-1. The high viscosity and flexibility, 3D network structure, and self-healing characteristics of the PVA + LB binder are the main reasons to improve the stability of the Si or Si/C contained electrodes. The novel self-healing binder shows great potential in designing the new generation of silicon-based lithium-ion batteries and even electrochemical energy storage devices.
Collapse
|
7
|
Du A, Li H, Chen X, Han Y, Zhu Z, Chu C. Recent Research Progress of Silicon‐Based Anode Materials for Lithium‐Ion Batteries. ChemistrySelect 2022. [DOI: 10.1002/slct.202201269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Aimin Du
- School of Automotive Studies Tongji University Shanghai 201804 P.R.China
| | - Hang Li
- School of Automotive Studies Tongji University Shanghai 201804 P.R.China
| | - Xinwen Chen
- School of Automotive Studies Tongji University Shanghai 201804 P.R.China
| | - Yeyang Han
- School of Automotive Studies Tongji University Shanghai 201804 P.R.China
| | - Zhongpan Zhu
- School of Automotive Studies Tongji University Shanghai 201804 P.R.China
- School of Electronic and Information Engineering Tongji University Shanghai 201804 P.R.China
| | - Chuanchuan Chu
- School of Automotive Studies Tongji University Shanghai 201804 P.R.China
| |
Collapse
|
8
|
Xu J, Yin Q, Li X, Tan X, Liu Q, Lu X, Cao B, Yuan X, Li Y, Shen L, Lu Y. Spheres of Graphene and Carbon Nanotubes Embedding Silicon as Mechanically Resilient Anodes for Lithium-Ion Batteries. NANO LETTERS 2022; 22:3054-3061. [PMID: 35315677 DOI: 10.1021/acs.nanolett.2c00341] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Novel anode materials for lithium-ion batteries were synthesized by in situ growth of spheres of graphene and carbon nanotubes (CNTs) around silicon particles. These composites possess high electrical conductivity and mechanical resiliency, which can sustain the high-pressure calendering process in industrial electrode fabrication, as well as the stress induced during charging and discharging of the electrodes. The resultant electrodes exhibit outstanding cycling durability (∼90% capacity retention at 2 A g-1 after 700 cycles or a capacity fading rate of 0.014% per cycle), calendering compatibility (sustain pressure over 100 MPa), and adequate volumetric capacity (1006 mAh cm-3), providing a novel design strategy toward better silicon anode materials.
Collapse
Affiliation(s)
- Jinhui Xu
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Qingyang Yin
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Xinru Li
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Xinyi Tan
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Qian Liu
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Xing Lu
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Bocheng Cao
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Xintong Yuan
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Yuzhang Li
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Li Shen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Yunfeng Lu
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
9
|
Xue H, Wu Y, Wang Z, Shen Y, Sun Q, Liu G, Yin D, Wang L, Li Q, Ming J. Unraveling the New Role of Metal-Organic Frameworks in Designing Silicon Hollow Nanocages for High-Energy Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:40471-40480. [PMID: 34404202 DOI: 10.1021/acsami.1c07495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Metal-organic framework (MOF)-derived materials are attracting considerable attention because of the moldability in compositions and structures, enabling greater performances in diverse applications. However, the nanostructural control of multicomponent MOF-based complexes remains challenging due to the complexity of reaction mechanisms. Herein, we present a surface-induced self-nucleation-growth mechanism for the zeolitic imidazolate framework (ZIF) to prepare a new type of ZIF-8@SiO2 polyhedral nanoparticles. We discover that the Zn hydroxide moieties (Zn-OH) within ZIF-8 can trigger the hydrolysis of tetraethyl orthosilicate effectively on the ZIF-8 surface precisely, avoiding the formation of free orthosilicic acid (Si(OH)4) successfully. This is a pioneering work to elucidate the importance of MOF surface properties for preparing multicomponent materials. Then, a novel well-dispersed silicon hollow nanocage (H-Si@C) modified by the carbon was prepared after removal of the ZIF-8 and magnesiothermic reduction. The as-prepared H-Si@C demonstrates an overwhelmingly high lithium storage capability and extraordinary stability in lithium-ion batteries (LIBs), particularly the impressive performances when it was matched with the LiNi0.6Co0.2Mn0.2O2 cathode in a full cell. The MOF surface-induced self-nucleation-growth strategy is useful for preparing more multifunctional materials, while the study of lithium storage performances of the H-Si@C material is practical for LIB applications.
Collapse
Affiliation(s)
- Hongjin Xue
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, CAS, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yingqiang Wu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, CAS, Changchun 130022, China
| | - Zhaomin Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, CAS, Changchun 130022, China
| | - Yabin Shen
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, CAS, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Qujiang Sun
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, CAS, Changchun 130022, China
| | - Gang Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, CAS, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Dongming Yin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, CAS, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Limin Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, CAS, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Qian Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, CAS, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jun Ming
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, CAS, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
10
|
Carbon nanotubes-enhanced lithium storage capacity of recovered silicon/carbon anodes produced from solar-grade silicon kerf scrap. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138269] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
11
|
Dual confinement of carbon/TiO2 hollow shells enables improved lithium storage of Si nanoparticles. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137863] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|