1
|
Nargatti KI, Subhedar AR, Ahankari SS, Grace AN, Dufresne A. Nanocellulose-based aerogel electrodes for supercapacitors: A review. Carbohydr Polym 2022; 297:120039. [DOI: 10.1016/j.carbpol.2022.120039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/08/2022] [Accepted: 08/23/2022] [Indexed: 11/29/2022]
|
2
|
Yang I, Mok JH, Jung M, Yoo J, Kim MS, Choi D, Jung JC. Polyethylene-Derived Activated Carbon Materials for Commercially Available Supercapacitor in an Organic Electrolyte System. Macromol Rapid Commun 2022; 43:e2200006. [PMID: 35316561 DOI: 10.1002/marc.202200006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/04/2022] [Indexed: 11/07/2022]
Abstract
We fabricated high-performance supercapacitors based on activated carbons (AC) derived from Polyethylene (PE), which is one of the most abundant plastic materials worldwide. First, PE carbons (PEC) were prepared via sulfonation, which is reported solution for successful carbonization of innately non-carbonizable PE. Then, we explored the physico-electrical changes of PECs upon a chemical activation process. Interestingly, upon the chemical activation, PECs were converted ACs with a large surface area and high crystallinity at the same time. Subsequently, we exploited PE-derived ACs (PEAC) as electrode materials for supercapacitors. Resultant supercapacitors based on PEACs exhibited impressive performance. When compared to supercapacitors based on YP50f, a representative commercial ACs, devices using PEACs presented considerably good capacitance, low resistance, and great rate capability. Specifically, the retention rate of devices using PEACs was significantly higher than that of YP50f-based devices. At the high-rate of charge-discharge situation reaching 7 A g-1 , the capacitance of supercapacitors using PEACs was about 70% higher than that of YP50f-based devices. We assumed the carbon structure accompanying both large surface area and high conductivity endowed a great electrochemical performance at the high current operating conditions. Therefore, it is envisioned PE might be a viable candidate electrode material for commercially available supercapacitors. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Inchan Yang
- Department of Chemical Engineering, Myongji University, 116, Myongji-ro, Yongin, 17058, Republic of Korea
| | - Ji Hye Mok
- Department of Chemical Engineering, Myongji University, 116, Myongji-ro, Yongin, 17058, Republic of Korea
| | - Meenkyoung Jung
- Department of Chemical Engineering, Myongji University, 116, Myongji-ro, Yongin, 17058, Republic of Korea
| | - Jihoon Yoo
- Department of Chemical Engineering, Myongji University, 116, Myongji-ro, Yongin, 17058, Republic of Korea
| | - Myung-Soo Kim
- Department of Chemical Engineering, Myongji University, 116, Myongji-ro, Yongin, 17058, Republic of Korea
| | - Dalsu Choi
- Department of Chemical Engineering, Myongji University, 116, Myongji-ro, Yongin, 17058, Republic of Korea
| | - Ji Chul Jung
- Department of Chemical Engineering, Myongji University, 116, Myongji-ro, Yongin, 17058, Republic of Korea
| |
Collapse
|
3
|
Ostertag BJ, Cryan MT, Serrano JM, Liu G, Ross AE. Porous Carbon Nanofiber-Modified Carbon Fiber Microelectrodes for Dopamine Detection. ACS APPLIED NANO MATERIALS 2022; 5:2241-2249. [PMID: 36203493 PMCID: PMC9531868 DOI: 10.1021/acsanm.1c03933] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We present a method to modify carbon-fiber microelectrodes (CFME) with porous carbon nanofibers (PCFs) to improve detection and to investigate the impact of porous geometry for dopamine detection with fast-scan cyclic voltammetry (FSCV). PCFs were fabricated by electrospinning, carbonizing, and pyrolyzing poly(acrylonitrile)-b-poly(methyl methacrylate) (PAN-b-PMMA) block copolymer nanofiber frameworks. Commonly, porous nanofibers are used for energy storage applications, but we present an application of these materials for biosensing which has not been previously studied. This modification impacted the topology and enhanced redox cycling at the surface. PCF modifications increased the oxidative current for dopamine 2.0 ± 0.1-fold (n = 33) with significant increases in detection sensitivity. PCF are known to have more edge plane sites which we speculate lead to the two-fold increase in electroactive surface area. Capacitive current changes were negligible providing evidence that improvements in detection are due to faradaic processes at the electrode. The ΔEp for dopamine decreased significantly at modified CFMEs. Only a 2.2 ± 2.2 % change in dopamine current was observed after repeated measurements and only 10.5 ± 2.8% after 4 hours demonstrating the stability of the modification over time. We show significant improvements in norepinephrine, ascorbic acid, adenosine, serotonin, and hydrogen peroxide detection. Lastly, we demonstrate that the modified electrodes can detect endogenous, unstimulated release of dopamine in living slices of rat striatum. Overall, we provide evidence that porous nanostructures significantly improve neurochemical detection with FSCV and echo the necessity for investigating the extent to which geometry impacts electrochemical detection.
Collapse
Affiliation(s)
- Blaise J. Ostertag
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA
| | - Michael T. Cryan
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA
| | - Joel M. Serrano
- Virginia Polytechnic Institute and State University, Department of Chemistry, Macromolecules Innovation Institute, Division of Nanoscience, Academy of Integrated Science, 800 West Campus Dr., Blacksburg, VA, 2406, USA
| | - Guoliang Liu
- Virginia Polytechnic Institute and State University, Department of Chemistry, Macromolecules Innovation Institute, Division of Nanoscience, Academy of Integrated Science, 800 West Campus Dr., Blacksburg, VA, 2406, USA
| | - Ashley E. Ross
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA
- Corresponding author: Office Phone#: 513-556-9314,
| |
Collapse
|
4
|
Synthesis, crystal structure and battery-like studies on a new acylpyrazolone-based mixed-ligand Cu(II) complex. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04605-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|