1
|
Rath BB, Fuchs L, Stemmler F, Rodríguez-Camargo A, Wang Y, Dorfner MFX, Olbrich J, van Slageren J, Ortmann F, Lotsch BV. Insights into Decoupled Solar Energy Conversion and Charge Storage in a 2D Covalent Organic Framework for Solar Battery Function. J Am Chem Soc 2025. [PMID: 40293361 DOI: 10.1021/jacs.4c17642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Decoupling solar energy conversion and storage in a single material offers a great advantage for off-grid applications. Herein, we disclose a two-dimensional naphthalenediimide (NDI)-based covalent organic framework (COF) exhibiting remarkable solar battery performance when used as a photoanode. Light-induced radicals are stabilized within the framework for several hours, offering on-demand charge extraction for electrical energy production. Our study reveals mechanistic insights into the long-term charge stabilization using optical spectroscopy and (photo)electrochemical measurements, in conjunction with density functional theory (DFT) simulations. Among several solvents, water provides the best dielectric screening and energetically favorable proton exchange to stabilize photoinduced radicals for more than 48 h without the need for additional metal cations. This study provides fundamental insights into the optoionic charge storage mechanism in NDI-COF, while introducing a highly tunable, nanoporous material platform that surpasses related materials, such as carbon nitrides, metal-organic frameworks (MOFs), or metal oxides, in terms of charge storage capacity. This study opens new perspectives for the design of optoionic charge-storing materials and the direct storage of solar energy to overcome the intermittency of solar irradiation.
Collapse
Affiliation(s)
- Bibhuti Bhusan Rath
- Nanochemistry Department, Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Laura Fuchs
- Department of Chemistry, TUM School of Natural Sciences, Technische Universität München, Garching b., 85748 München, Germany
| | - Friedrich Stemmler
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Andrés Rodríguez-Camargo
- Nanochemistry Department, Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
- Department of Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Yang Wang
- Nanochemistry Department, Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Maximilian F X Dorfner
- Department of Chemistry, TUM School of Natural Sciences, Technische Universität München, Garching b., 85748 München, Germany
| | - Johann Olbrich
- Department of Chemistry, TUM School of Natural Sciences, Technische Universität München, Garching b., 85748 München, Germany
| | - Joris van Slageren
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Frank Ortmann
- Department of Chemistry, TUM School of Natural Sciences, Technische Universität München, Garching b., 85748 München, Germany
| | - Bettina V Lotsch
- Nanochemistry Department, Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
- Department of Chemistry, Ludwig-Maximilians-Universität (LMU), Butenandtstr. 5-13, 81377 Munich, Germany
- E-Conversion and Center for Nanoscience, Lichtenbergstrasse 4a, 85748 Garching, Germany
| |
Collapse
|
2
|
Wang W, Balland V, Branca M, Limoges B. A Unified Charge Storage Mechanism to Rationalize the Electrochemical Behavior of Quinone-Based Organic Electrodes in Aqueous Rechargeable Batteries. J Am Chem Soc 2024; 146:15230-15250. [PMID: 38769770 DOI: 10.1021/jacs.4c02364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Due to their eco-sustainability and versatility, organic electrodes are promising candidates for large-scale energy storage in rechargeable aqueous batteries. This is notably the case of aqueous hybrid batteries that pair the low voltage of a zinc anode with the high voltage of a quinone-based (or analogue of quinone-based) organic cathode. However, the mechanisms governing their charge-discharge cycles remain poorly understood and are even a matter of debate and controversy. No consensus exists on the charge carrier in mild aqueous electrolytes, especially when working in an electrolyte containing a multivalent metal cation such as Zn2+. In this study, we comprehensively investigate the electrochemical reactivity of two model quinones, chloranil, and duroquinone, either diluted in solution or incorporated into carbon-based composite electrodes. We demonstrate that a common nine-member square scheme proton-coupled electron transfer mechanism allows us to fully describe and rationalize their electrochemical behavior in relation to the pH and chemical composition of the aqueous electrolyte. Additionally, we highlight the crucial role played by the pKas associated with the reduced states of quinones in determining the nature of the charge carrier that compensates for the negative charges reversibly injected in the active material. Finally, contrary to the widely reported findings for Zn/organic batteries, we unequivocally establish that the predominant solid-state charge carriers in Zn2+-based mild aqueous electrolytes are not multivalent Zn2+ cations but rather protons supplied by the weakly acidic hexaaqua metal ions (i.e., [Zn(H2O)6]2+]).
Collapse
Affiliation(s)
- Wenkang Wang
- CNRS, Laboratoire d'Electrochimie Moléculaire, Université Paris Cité, F-75013 Paris, France
| | - Véronique Balland
- CNRS, Laboratoire d'Electrochimie Moléculaire, Université Paris Cité, F-75013 Paris, France
| | - Mathieu Branca
- CNRS, Laboratoire d'Electrochimie Moléculaire, Université Paris Cité, F-75013 Paris, France
| | - Benoît Limoges
- CNRS, Laboratoire d'Electrochimie Moléculaire, Université Paris Cité, F-75013 Paris, France
| |
Collapse
|
3
|
Tiwari A, Fernandes RS, Dey N, Kanungo S. Comparative Analysis of the Hydrazine Interaction with Arylene Diimide Derivatives: Complementary Approach Using First Principles Calculation and Experimental Confirmation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10966-10979. [PMID: 38748624 DOI: 10.1021/acs.langmuir.4c00331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Suitable functional group-engineered π-conjugated aromatic dimides based on perylene (PDI) and naphthyl scaffolds (NDI) demonstrated excellent sensitivity toward different gaseous analytes. However, to date, no methodical analysis has been performed to rationalize molecular-level interactions in the context of optical transduction, which is essential for systematic performance optimization of NDI/PDI-based molecular sensors. Therefore, in this present work, NDI/PDI scaffolds have been designed with amino acid functional groups (alanine, ALA and glutamic acid, GLU) at the terminal positions, and we subsequently compared the efficacy of four different imide derivatives as model hosts for hydrazine adsorption. Specifically, the adsorption of hydrazine at different interaction sites has been thoroughly investigated using ab initio calculations, where the adsorption energy, charge transfer, and recovery time have been emphasized. Theoretical results exhibit that irrespective of host specification the COOH groups offer a primary interaction site for hydrazine through the hydrogen bonding interaction. The presence of more COOH groups and relatively stronger interaction with secondary edge oxygen ensure that GLU functional moieties are a superior choice over ALU for efficient hydrazine binding. The molecular energy spectrum analysis exhibits more favorable HOMO/LUMO gap variations after hydrazine interaction in the case of PDI derivatives irrespective to the nature of the amino acid residues. Therefore, by a combination of both factors, PDI-GLU has been identified as the most suitable host molecule for hydrazine among four derivatives. Finally, the key theoretical predictions has been later experimentally validated by analyzing UV-visible spectroscopy and NMR studies, wherein the mechanism of interaction has also been experimentally verified by EPR analysis and FT-IR studies.
Collapse
Affiliation(s)
- Aditya Tiwari
- Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Rikitha S Fernandes
- Department of Chemistry, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Nilanjan Dey
- Department of Chemistry, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Sayan Kanungo
- Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad 500078, India
- Materials Center for Sustainable Energy & Environment, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad 500078, India
| |
Collapse
|
4
|
Wang Z, Liu X, Zhang X, Zhang H, Zhao Y, Li Y, Yu H, He G. Realizing one-step two-electron transfer of naphthalene diimides via a regional charge buffering strategy for aqueous organic redox flow batteries. MATERIALS HORIZONS 2024; 11:1283-1293. [PMID: 38165892 DOI: 10.1039/d3mh01485a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Naphthalene diimide derivatives show great potential for application in neutral aqueous organic redox flow batteries (AORFBs) due to their highly conjugated molecular structure and stable two-electron storage capacity. However, the two-electron redox process of naphthalene diimides typically occurs via two separate steps with the transfer of one electron per step ("two-step two-electron" transfer process), which leads to an inevitable loss of voltage and energy. Herein, we report a novel regional charge buffering strategy that utilizes the core-substituted electron-donating group to adjust the redox properties of naphthalene diimides, realizing two electron transfer via a single-step redox process ("one-step two-electron" transfer process). The symmetrical battery testing of NDI-DEtOH revealed exceptional intrinsic stability lasting for 11 days with a daily decay rate of only 0.11%. Meanwhile, AORFBs with NDI-DMe/FcNCl and NDI-DEtOH/FcNCl exhibited a remarkable 40% improvement in peak power density at 50% state of charge (SOC) in comparison to NDI/FcNCl-based AORFBs. In addition, the battery's energy efficiency has increased by 24%, resulting in much more stable output power and significantly improved energy efficiency. These results are of great significance to practical applications of AORFBs.
Collapse
Affiliation(s)
- Zengrong Wang
- Frontier Institute of Science and Technology, Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China.
| | - Xu Liu
- Frontier Institute of Science and Technology, Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China.
| | - Xuri Zhang
- Frontier Institute of Science and Technology, Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China.
| | - Heng Zhang
- Frontier Institute of Science and Technology, Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China.
| | - Yujie Zhao
- Frontier Institute of Science and Technology, Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China.
| | - Yawen Li
- Frontier Institute of Science and Technology, Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China.
| | - Haiyan Yu
- Frontier Institute of Science and Technology, Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China.
| | - Gang He
- Frontier Institute of Science and Technology, Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China.
- Xi'an Key Laboratory of Electronic Devices and Material Chemistry, Engineering Research Center of Key Materials for Efficient Utilization of Clean Energy of Shaanxi Province, China
- Future Industrial Innovation Institute of Emerging Information Storage and Smart Sensor, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China
| |
Collapse
|
5
|
Caine JR, Choi H, Hojo R, Hudson ZM. Organic Photothermal Materials Obtained Using Thermally Activated Delayed Fluorescence Design Principles. Chemistry 2024; 30:e202302861. [PMID: 38015005 DOI: 10.1002/chem.202302861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Indexed: 11/29/2023]
Abstract
Organic small molecules with high photothermal conversion efficiencies that absorb near-infrared light are desirable for photothermal therapy due to their improved biocompatibility compared to inorganic materials and their ability to absorb light in the biological transparency window (650-1350 nm). Here we report three donor-acceptor organic materials DM-ANDI, O-ANDI, and S-ANDI that show high photothermal conversion efficiencies of 46-68 % with near-infrared absorption. The design of these molecules is based on the rational modification of a thermally activated delayed fluorescence material to favour a low photoluminescence quantum yield by reducing HOMO-LUMO overlap. Encapsulating these materials into either neat nanoparticles or aggregated organic dots modulates their photothermal conversion efficiencies, and also facilitates dispersion in water.
Collapse
Affiliation(s)
- Jana R Caine
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada)
| | - Heekyoung Choi
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada)
| | - Ryoga Hojo
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada)
| | - Zachary M Hudson
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada)
| |
Collapse
|
6
|
Hashemi A, Khakpour R, Mahdian A, Busch M, Peljo P, Laasonen K. Density functional theory and machine learning for electrochemical square-scheme prediction: an application to quinone-type molecules relevant to redox flow batteries. DIGITAL DISCOVERY 2023; 2:1565-1576. [PMID: 38013904 PMCID: PMC10561546 DOI: 10.1039/d3dd00091e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/11/2023] [Indexed: 11/29/2023]
Abstract
Proton-electron transfer (PET) reactions are rather common in chemistry and crucial in energy storage applications. How electrons and protons are involved or which mechanism dominates is strongly molecule and pH dependent. Quantum chemical methods can be used to assess redox potential (Ered.) and acidity constant (pKa) values but the computations are rather time consuming. In this work, supervised machine learning (ML) models are used to predict PET reactions and analyze molecular space. The data for ML have been created by density functional theory (DFT) calculations. Random forest regression models are trained and tested on a dataset that we created. The dataset contains more than 8200 quinone-type organic molecules that each underwent two proton and two electron transfer reactions. Both structural and chemical descriptors are used. The HOMO of the reactant and LUMO of the product participating in the oxidation reaction appeared to be strongly associated with Ered.. Trained models using a SMILES-based structural descriptor can efficiently predict the pKa and Ered. with a mean absolute error of less than 1 and 66 mV, respectively. Good prediction accuracy of R2 > 0.76 and >0.90 was also obtained on the external test set for Ered. and pKa, respectively. This hybrid DFT-ML study can be applied to speed up the screening of quinone-type molecules for energy storage and other applications.
Collapse
Affiliation(s)
- Arsalan Hashemi
- Department of Chemistry and Material Science, School of Chemical Engineering, Aalto University 02150 Espoo Finland
| | - Reza Khakpour
- Department of Chemistry and Material Science, School of Chemical Engineering, Aalto University 02150 Espoo Finland
| | - Amir Mahdian
- Department of Chemistry and Material Science, School of Chemical Engineering, Aalto University 02150 Espoo Finland
| | - Michael Busch
- Institute of Theoretical Chemistry, Ulm University Albert-Einstein Allee 11 89069 Ulm Germany
| | - Pekka Peljo
- Research Group of Battery Materials and Technologies, Department of Mechanical and Materials Engineering, Faculty of Technology, University of Turku 20014 Turun Yliopisto Finland
| | - Kari Laasonen
- Department of Chemistry and Material Science, School of Chemical Engineering, Aalto University 02150 Espoo Finland
| |
Collapse
|
7
|
Wei H, Cheng Z, Wu T, Liu Y, Guo J, Chen PA, Xia J, Xie H, Qiu X, Liu T, Zhang B, Hui J, Zeng Z, Bai Y, Hu Y. Novel Organic Superbase Dopants for Ultraefficient N-Doping of Organic Semiconductors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300084. [PMID: 36929089 DOI: 10.1002/adma.202300084] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/13/2023] [Indexed: 06/02/2023]
Abstract
Doping is a powerful technique for engineering the electrical properties of organic semiconductors (OSCs), yet efficient n-doping of OSCs remains a central challenge. Herein, the discovery of two organic superbase dopants, namely P2-t-Bu and P4-t-Bu as ultra-efficient n-dopants for OSCs is reported. Typical n-type semiconductors such as N2200 and PC61 BM are shown to experience a significant increase of conductivity upon doping by the two dopants. In particular, the optimized electrical conductivity of P2-t-Bu-doped PC61 BM reaches a record-high value of 2.64 S cm-1 . The polaron generation efficiency of P2-t-Bu-doped in PC61 BM is found to be over 35%, which is 2-3 times higher than that of benchmark n-dopant N-DMBI. In addition, a deprotonation-initiated, nucleophilic-attack-based n-doping mechanism is proposed for the organic superbases, which involves the deprotonation of OSC molecules, the nucleophilic attack of the resulting carbanions on the OSC's π-bonds, and the subsequent n-doping through single electron transfer process between the anionized and neutral OSCs. This work highlights organic superbases as promising n-dopants for OSCs and opens up opportunities to explore and develop highly efficient n-dopants.
Collapse
Affiliation(s)
- Huan Wei
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, China
- Shenzhen Research Institute of Hunan University, Shenzhen, 518063, China
- Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
| | - Zehong Cheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Tong Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yu Liu
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Jing Guo
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Ping-An Chen
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Jiangnan Xia
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Haihong Xie
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Xincan Qiu
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Tingting Liu
- College of Energy, Soochow University, 688 Moye Road, Suzhou, Jiangsu, 215123, China
| | - Bohan Zhang
- Key Laboratory of Natural Medicine and Immune Engineering, Henan University, 85 Minglun Street, Kaifeng, Henan, 475004, China
| | - Jingshu Hui
- College of Energy, Soochow University, 688 Moye Road, Suzhou, Jiangsu, 215123, China
| | - Zebing Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yugang Bai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yuanyuan Hu
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, China
- Shenzhen Research Institute of Hunan University, Shenzhen, 518063, China
- Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
| |
Collapse
|
8
|
Singh V, Kwon S, Choi Y, Ahn S, Kang G, Yi Y, Lim MH, Seo J, Baik MH, Byon HR. Controlling π-π Interactions of Highly Soluble Naphthalene Diimide Derivatives for Neutral pH Aqueous Redox Flow Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210859. [PMID: 36749820 DOI: 10.1002/adma.202210859] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Organic redox-active molecules are a promising platform for designing sustainable, cheap, and safe charge carriers for redox flow batteries. However, radical formation during the electron-transfer process causes severe side reactions and reduces cyclability. This problem is mitigated by using naphthalene diimide (NDI) molecules and regulating their π-π interactions. The long-range π-stacking of NDI molecules, which leads to precipitation, is disrupted by tethering four ammonium functionalities, and the solubility approaches 1.5 m in water. The gentle π-π interactions induce clustering and disassembling of the NDI molecules during the two-electron transfer processes. When the radical anion forms, the antiferromagnetic coupling develops tetramer and dimer and nullifies the radical character. In addition, short-range-order NDI clusters at 1 m concentration are not precipitated but inhibit crossover. They are disassembled in the subsequent electron-transfer process, and the negatively charged NDI core strongly interacts with ammonium groups. These behaviors afford excellent RFB performance, demonstrating 98% capacity retention for 500 cycles at 25 mA cm-2 and 99.5% Coulombic efficiency with 2 m electron storage capacity.
Collapse
Affiliation(s)
- Vikram Singh
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Advanced Battery Center, KAIST Institute for NanoCentury, Daejeon, 34141, Republic of Korea
- Natural Science Research Institute, KAIST, Daejeon, 34141, Republic of Korea
| | - Seongyeon Kwon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Yunseop Choi
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Seongmo Ahn
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Advanced Battery Center, KAIST Institute for NanoCentury, Daejeon, 34141, Republic of Korea
| | - Gyumin Kang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Yelim Yi
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jongcheol Seo
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Hye Ryung Byon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Advanced Battery Center, KAIST Institute for NanoCentury, Daejeon, 34141, Republic of Korea
| |
Collapse
|
9
|
Koenig JDB, Piers WE, Welch GC. Promoting photocatalytic CO2 reduction through facile electronic modification of N-annulated perylene diimide rhenium bipyridine dyads. Chem Sci 2022; 13:1049-1059. [PMID: 35211271 PMCID: PMC8790914 DOI: 10.1039/d1sc05465a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/28/2021] [Indexed: 11/24/2022] Open
Abstract
The development of CO2 conversion catalysts has become paramount in the effort to close the carbon loop. Herein, we report the synthesis, characterization, and photocatalytic CO2 reduction performance for a series of N-annulated perylene diimide (NPDI) tethered Re(bpy) supramolecular dyads [Re(bpy-C2-NPDI-R)], where R = –H, –Br, –CN, –NO2, –OPh, –NH2, or pyrrolidine (–NR2). The optoelectronic properties of these Re(bpy-C2-NPDI-R) dyads were heavily influenced by the nature of the R-group, resulting in significant differences in photocatalytic CO2 reduction performance. Although some R-groups (i.e. –Br and –OPh) did not influence the performance of CO2 photocatalysis (relative to –H; TONco ∼60), the use of an electron-withdrawing –CN was found to completely deactivate the catalyst (TONco < 1) while the use of an electron-donating –NH2 improved CO2 photocatalysis four-fold (TONco = 234). Despite being the strongest EWG, the –NO2 derivative exhibited good photocatalytic CO2 reduction abilities (TONco = 137). Using a combination of CV and UV-vis-nIR SEC, it was elucidated that the –NO2 derivative undergoes an in situ transformation to –NH2 under reducing conditions, thereby generating a more active catalyst that would account for the unexpected activity. A photocatalytic CO2 mechanism was proposed for these Re(bpy-C2-NPDI-R) dyads (based on molecular orbital descriptions), where it is rationalized that the photoexcitation pathway, as well as the electronic driving-force for NPDI2− to Re(bpy) electron-transfer both significantly influence photocatalytic CO2 reduction. These results help provide rational design principles for the future development of related supramolecular dyads. Seven N-annulated perylene diimide tethered rhenium (2,2′-bipyridine) supramolecular dyads are evaluated as photocatalysts for the reduction for carbon dioxide, highlighting the importance of photoexcitation pathway and electronic driving-force.![]()
Collapse
Affiliation(s)
- Josh D. B. Koenig
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, T2N 1N4, Canada
| | - Warren E. Piers
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, T2N 1N4, Canada
| | - Gregory C. Welch
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, T2N 1N4, Canada
| |
Collapse
|
10
|
Shahsavan M, Wiberg C, Peljo P. Gamma-aminobutyric acid-functionalized naphthalene diimide for aqueous organic flow batteries. Chem Commun (Camb) 2022; 58:12692-12695. [DOI: 10.1039/d2cc03316j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gamma-aminobutyric acid-functionalized naphthalene diimide (GABA-NDI) was synthesized and cycled in a flow battery coupled with ferrocyanide. The battery demonstrated a coulombic efficiency of 99.96% and an energy efficiency of 80.9% at 60 mA cm−2.
Collapse
Affiliation(s)
- Mahsa Shahsavan
- Research Group of Battery Materials and Technologies, Department of Mechanical and Materials Engineering, Faculty of Technology, University of Turku, 20014 Turku, Finland
| | - Cedrik Wiberg
- Research Group of Battery Materials and Technologies, Department of Mechanical and Materials Engineering, Faculty of Technology, University of Turku, 20014 Turku, Finland
| | - Pekka Peljo
- Research Group of Battery Materials and Technologies, Department of Mechanical and Materials Engineering, Faculty of Technology, University of Turku, 20014 Turku, Finland
| |
Collapse
|
11
|
Koenig JDB, Dubrawski ZS, Rao KR, Willkomm J, Gelfand BS, Risko C, Piers WE, Welch GC. Lowering Electrocatalytic CO 2 Reduction Overpotential Using N-Annulated Perylene Diimide Rhenium Bipyridine Dyads with Variable Tether Length. J Am Chem Soc 2021; 143:16849-16864. [PMID: 34597040 DOI: 10.1021/jacs.1c09481] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We report the design, synthesis, and characterization of four N-annulated perylene diimide (NPDI) functionalized rhenium bipyridine [Re(bpy)] supramolecular dyads. The Re(bpy) scaffold was connected to the NPDI chromophore either directly [Re(py-C0-NPDI)] or via an ethyl [Re(bpy-C2-NPDI)], butyl [Re(bpy-C4-NPDI)], or hexyl [Re(bpy-C6-NPDI)] alkyl-chain spacer. Upon electrochemical reduction in the presence of CO2 and a proton source, Re(bpy-C2/4/6-NPDI) all exhibited significant current enhancement effects, while Re(py-C0-NPDI) did not. During controlled potential electrolysis (CPE) experiments at Eappl = -1.8 V vs Fc+/0, Re(bpy-C2/4/6-NPDI) all achieved comparable activity (TONco ∼ 25) and Faradaic efficiency (FEco ∼ 94%). Under identical CPE conditions, the standard catalyst Re(dmbpy) was inactive for electrocatalytic CO2 reduction; only at Eappl = -2.1 V vs Fc+/0 could Re(dmbpy) achieve the same catalytic performance, representing a 300 mV lowering in overpotential for Re(bpy-C2/4/6-NPDI). At higher overpotentials, Re(bpy-C4/6-NPDI) both outperformed Re(bpy-C2-NPDI), indicating the possibility of coinciding electrocatalytic CO2 reduction mechanisms that are dictated by tether-length and overpotential. Using UV-vis-nearIR spectroelectrochemistry (SEC), FTIR SEC, and chemical reduction experiments, it was shown that the NPDI-moiety served as an electron-reservoir for Re(bpy), thereby allowing catalytic activity at lower overpotentials. Density functional theory studies probing the optimized geometries and frontier molecular orbitals of various catalytic intermediates revealed that the geometric configuration of NPDI relative to the Re(bpy)-moiety plays a critical role in accessing electrons from the electron-reservoir. The improved performance of Re(bpy-C2/4/6-NPDI)dyads at lower overpotentials, relative to Re(dmbpy), highlights the utility of chromophore electron-reservoirs as a method for lowering the overpotential for CO2 conversion.
Collapse
Affiliation(s)
- Josh D B Koenig
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
| | - Zachary S Dubrawski
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
| | - Keerthan R Rao
- Department of Chemistry & Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Janina Willkomm
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
| | - Benjamin S Gelfand
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
| | - Chad Risko
- Department of Chemistry & Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Warren E Piers
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
| | - Gregory C Welch
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
12
|
Naphthalene diimides (NDI) in highly stable pH-neutral aqueous organic redox flow batteries. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Busch M, Ahlberg E, Laasonen K. From absolute potentials to a generalized computational standard hydrogen electrode for aqueous and non-aqueous solvents. Phys Chem Chem Phys 2021; 23:11727-11737. [PMID: 33982050 DOI: 10.1039/d1cp00499a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We describe a simple and efficient procedure to compute a conversion factor for the absolute potential of the standard hydrogen electrode in water to any other solvent. In contrast to earlier methods our procedure only requires the pKa of an arbitrary acid in water and few simple quantum chemical calculations as input. Thus, it is not affected adversely by experimental shortcomings related to measurements in non-aqueous solvents. By combining this conversion factor with the absolute potential in water, the absolute potential in the solvent of interest is obtained. Based on this procedure a new generalized computational standard hydrogen electrode for the computation of electron transfer and proton-coupled electron transfer potentials in non-aqueous solvents and ionic liquids is developed. This enables for the first time the reliable prediction of redox potentials in any solvent. The method is tested through calculation of absolute potentials in 36 solvents. Using the Kamlet-Taft linear solvation energy model we find that the relative absolute potentials consistently increase with decreasing polarisability and decreasing hydrogen bonding ability. For protic solvents good agreement with literature is observed while significant deviations are found for aprotic solvents. The obtained conversion factors are independent of the quantum chemical method, while minor differences are observed between solvation models. This does, however, not affect the global trends.
Collapse
Affiliation(s)
- Michael Busch
- Department of Chemistry and Material Science, School of Chemical Engineering, Aalto University Kemistintie 1, 02150 Espoo, Finland.
| | - Elisabet Ahlberg
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemigården 4, 41296 Gothenburg, Sweden
| | - Kari Laasonen
- Department of Chemistry and Material Science, School of Chemical Engineering, Aalto University Kemistintie 1, 02150 Espoo, Finland.
| |
Collapse
|