1
|
Yorozuya H, Ashrafi NE, Sato K, Islam A, Fukae R, Tagashira Y, Iimori T. Synthesis and Fluorescence Mechanism of Nitrogen-Doped Carbon Dots Utilizing Biopolymer and Urea. Molecules 2025; 30:2068. [PMID: 40363873 PMCID: PMC12073190 DOI: 10.3390/molecules30092068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/28/2025] [Accepted: 05/02/2025] [Indexed: 05/15/2025] Open
Abstract
Fluorescent carbon dots are nontoxic nanoparticles composed of carbon, exhibiting advantageous properties for applications in bioimaging and functional materials. We present a methodology for synthesizing fluorescent nitrogen-doped carbon dots (N-CDs) using starch, a biopolymer, and urea as the sources of nitrogen, via the microwave-assisted hydrothermal method. Furthermore, the dependence of the fluorescence spectra and fluorescence quantum yield of N-CDs on the initial concentration of urea in the reactant solution was examined, thereby providing a comprehensive understanding of the influence of nitrogen doping on the CDs. The fluorescence of N-CDs was tunable by varying the excitation wavelength. Stronger fluorescence intensity was observed for a moist phosphate salt/N-CD composite, in contrast to the weaker fluorescence exhibited by a dried one. Fluorescence lifetime measurements revealed that the change in fluorescence intensity can be attributed to the suppression of the non-radiative deactivation process. This observation highlights the critical importance of the interaction between water molecules and surface functional groups in controlling the photophysics of the excited state of N-CDs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Toshifumi Iimori
- Department of Sciences and Informatics, Muroran Institute of Technology, 27-1 Mizumoto-cho, Muroran 050-8585, Japan
| |
Collapse
|
2
|
Falara PP, Chatzikonstantinou N, Zourou A, Tsipas P, Sakellis E, Alexandratou E, Nasikas NK, Kordatos KV, Antoniadou M. Optimizing Carbon Dot-TiO 2 Nanohybrids for Enhanced Photocatalytic Hydrogen Evolution. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1023. [PMID: 40077248 PMCID: PMC11901194 DOI: 10.3390/ma18051023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/16/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025]
Abstract
CDs/TiO2 nanohybrids were synthesized and tested for photocatalytic H2 production from aqueous media through simulated solar light-driven photocatalytic reactions. Firstly, three different types of CDs were prepared through green methods, specifically hydrothermal treatment and microwave irradiation, using citric acid and urea as precursors in varying molar ratios. After a multi-step purification procedure, impurity-free CDs were obtained. The as-synthesized CDs were thoroughly characterized using UV-Vis, FT-IR, and PL spectroscopy, along with HR-TEM. The results revealed that the size and optical and physicochemical properties of CDs can be tailored by selecting the precursors' ratio and the synthetic approach. The heterostructured CDs/TiO2 photocatalysts were formed solvothermally and were analyzed using UV-Vis/DRS, FT-IR, and XPS techniques, which confirmed the effective incorporation of CDs and the improved properties of TiO2. The use of sacrificial reagents is among the most common strategies for enhancing H2 production from water through photocatalytic processes; herein, ethanol was selected as a green liquid organic hydrogen carrier. A maximum H2 production rate of 0.906 μmol H2/min was achieved, while the recyclability study demonstrated that the photocatalyst maintained stable performance during multiple cycles of reuse. Thus, optimizing the synthesis conditions of CDs/TiO2 nanohybrids resulted in the creation of environmentally friendly and reusable photocatalysts.
Collapse
Affiliation(s)
- Pinelopi P. Falara
- School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou St., Zografou, 15780 Athens, Greece; (P.P.F.); (N.C.); (A.Z.)
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research “Demokritos”, Agia Paraskevi, 15341 Athens, Greece; (P.T.); (E.S.); (N.K.N.)
| | - Nikolaos Chatzikonstantinou
- School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou St., Zografou, 15780 Athens, Greece; (P.P.F.); (N.C.); (A.Z.)
| | - Adamantia Zourou
- School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou St., Zografou, 15780 Athens, Greece; (P.P.F.); (N.C.); (A.Z.)
| | - Polychronis Tsipas
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research “Demokritos”, Agia Paraskevi, 15341 Athens, Greece; (P.T.); (E.S.); (N.K.N.)
| | - Elias Sakellis
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research “Demokritos”, Agia Paraskevi, 15341 Athens, Greece; (P.T.); (E.S.); (N.K.N.)
| | - Eleni Alexandratou
- School of Electrical and Computer Engineering, National Technical University of Athens, 9 Iroon Polytechniou St., Zografou, 15780 Athens, Greece;
| | - Nektarios K. Nasikas
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research “Demokritos”, Agia Paraskevi, 15341 Athens, Greece; (P.T.); (E.S.); (N.K.N.)
- Department of Military Studies, Division of Mathematics and Engineering Sciences, Hellenic Army Academy, Vari, 16673 Athens, Greece
| | - Konstantinos V. Kordatos
- School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou St., Zografou, 15780 Athens, Greece; (P.P.F.); (N.C.); (A.Z.)
| | - Maria Antoniadou
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research “Demokritos”, Agia Paraskevi, 15341 Athens, Greece; (P.T.); (E.S.); (N.K.N.)
- Department of Chemical Engineering, University of Western Macedonia, 50100 Kozani, Greece
| |
Collapse
|
3
|
Pandey PK, Sathyavageeswaran A, Holmlund N, Perry SL. Polyelectrolyte-Carbon Dot Complex Coacervation. ACS Macro Lett 2025; 14:43-50. [PMID: 39701962 PMCID: PMC11756532 DOI: 10.1021/acsmacrolett.4c00745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
This Letter presents complex coacervation between the biopolymer diethylaminoethyl dextran hydrochloride (DEAE-Dex) and carbon dots. The formation of these coacervates was dependent on both DEAE-Dex concentration and solution ionic strength. Fluorescence spectroscopy revealed that the blue fluorescence of the carbon dots was unaffected by coacervation. Additionally, microrheological studies were conducted to determine the viscosity of these coacervates. These complex coacervates, formed through the interaction of nanoparticles and polyelectrolytes, hold a promising role for future applications where the combination of optical properties from the carbon dots and encapsulation via coacervation can be leveraged.
Collapse
Affiliation(s)
- Pankaj Kumar Pandey
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Arvind Sathyavageeswaran
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Nickolas Holmlund
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Sarah L. Perry
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
4
|
Fernandes S, Algarra M, Gil A, Esteves da Silva J, Pinto da Silva L. Development of a Facile and Green Synthesis Strategy for Brightly Fluorescent Carbon Dots from Various Waste Materials. CHEMSUSCHEM 2025; 18:e202401702. [PMID: 39221509 DOI: 10.1002/cssc.202401702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Carbon dots (CDs) are fluorescent carbon-based nanomaterials with remarkable properties, making them more attractive than traditional fluorophores. Consequently, researchers focused on their development and application in fields such as sensing and bioimaging. One potential advantage of employing CDs is using organic waste as carbon precursors in their synthesis, providing a pathway for waste upcycling for a circular economy. However, waste-based CDs often have low fluorescence quantum yields (QYFL), limiting their practical applications. So, there is a need for a well-defined strategy to consistently produce waste-based CDs with appreciable QYFL, irrespective of the starting waste material. Herein, we developed a fabrication strategy based on the hydrothermal treatment of waste materials, using citric acid as a co-carbon precursor and ethylenediamine as N-dopant. This strategy was tested with various materials, including corn stover, spent coffee grounds, cork powder, and sawdust. The results showed consistently appreciable QYFL, reaching up to ~40 %. A Life Cycle Assessment (LCA) study demonstrated that producing these waste-based CDs has lower environmental impacts compared to CDs made solely from commercial reagents. Thus, we have established a framework for the environmentally friendly production of CDs by upcycling different waste materials without significant sacrifices in performance (QYFL).
Collapse
Affiliation(s)
- Sónia Fernandes
- Chemistry Research Unit (CIQUP), Department of Geosciences, Environment and Spatial Plannings, Faculty of Sciences, Institute of Molecular Sciences (IMS), University of Porto, R. Campo Alegre s/n, Porto, 4169-007, Portugal
| | - Manuel Algarra
- Department of Science, Public University of Navarre INAMAT - Institute for Advanced Materials and Mathematics, Campus of Arrosadia, 31006, Pamplona, Spain
| | - Antonio Gil
- Department of Science, Public University of Navarre INAMAT - Institute for Advanced Materials and Mathematics, Campus of Arrosadia, 31006, Pamplona, Spain
| | - Joaquim Esteves da Silva
- Chemistry Research Unit (CIQUP), Department of Geosciences, Environment and Spatial Plannings, Faculty of Sciences, Institute of Molecular Sciences (IMS), University of Porto, R. Campo Alegre s/n, Porto, 4169-007, Portugal
| | - Luís Pinto da Silva
- Chemistry Research Unit (CIQUP), Department of Geosciences, Environment and Spatial Plannings, Faculty of Sciences, Institute of Molecular Sciences (IMS), University of Porto, R. Campo Alegre s/n, Porto, 4169-007, Portugal
| |
Collapse
|
5
|
Gholamzadeh Y, Hemmati-Sarapardeh A, Sharifi M. Interfacial tension reduction using nitrogen graphene quantum dots with various precursors, molar ratios, and synthesis durations for enhanced oil recovery. Sci Rep 2024; 14:31863. [PMID: 39738603 DOI: 10.1038/s41598-024-83282-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 12/12/2024] [Indexed: 01/02/2025] Open
Abstract
Nanofluids have the capacity to reduce interfacial tension (IFT) of crude oil and water for enhanced oil recovery (EOR) operations, but traditional nanoparticles are limited in tight reservoirs due to their inappropriate size for micro-nano pores and their tendency to aggregate. In this paper, Graphene Quantum Dots (GQDs) with simple and favorable properties are developed, and their performance and mechanism for reducing IFT are evaluated. The paper also aims to explore the effects of GQD precursor type, synthesis duration, and molar percentages of precursors on reducing IFT. For this purpose, citric acid was used as a carbon source, and ethylenediamine, urea, and thiourea were used as nitrogen sources to synthesize different GQDs. FTIR, XPS, HR-TEM, XRD, UV visible, and PL photoluminescence were used to identify the GQDs' characteristics. The highest IFT reduction value is achieved by using 1000 ppm ethylenediamine-derived GQDs, which reduces the IFT from 19.03 to 0.70 mN/m at 200,000 ppm NaCl concentrations without using any surfactants. The XPS analysis revealed that ethylenediamine-derived GQDs exhibit higher pyrrolic nitrogen content and a relative intensity ratio of sp3 C/sp2 C. It has been identified that the presence of more polar atomic bonds on the surfaces of GQDs decreases the ability of GQDs to reduce IFT. In this way, urea-derived and thiourea-derived GQDs exhibit less capability for IFT reductions from 19.03 to 12.33 and 18.04 mN/m at 1000 ppm GQDs and 200,000 ppm NaCl concentration, respectively. Furthermore, ethylenediamine-derived and urea-derived GQDs perform optimally at approximately 5 and 10 h, respectively, with a precursor molar ratio of 3 (mole ethylenediamine/urea per mole citric acid), while thiourea-derived GQDs show no significant IFT change with varying synthesis times or precursor molar ratio. The developed GQDs provide a promising solution for EOR operations in unconventional reservoirs by significantly decreasing the IFT between crude oil and nanofluids.
Collapse
Affiliation(s)
- Younes Gholamzadeh
- Department of Petroleum and Geoenergy Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Abdolhossein Hemmati-Sarapardeh
- Department of Petroleum Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
- State Key Laboratory of Continental Shale Hydrocarbon Accumulation and Efficient Development, Ministry of Education, Northeast Petroleum University, Daqing, 163318, China
| | - Mohammad Sharifi
- Department of Petroleum and Geoenergy Engineering, Amirkabir University of Technology, Tehran, Iran.
| |
Collapse
|
6
|
Sahu G, Chawre Y, Kujur AB, Miri P, Sinha A, Nagwanshi R, Karbhal I, Ghosh KK, Jena VK, Satnami ML. Nitrogen Doped Carbon Quantum Dots as Fluorescence "Turn-Off-On" Sensor for Detection of Fe 3+ Ions and Ascorbic Acid in Moringa oleifera and Citrus Lemon. J Fluoresc 2024:10.1007/s10895-024-04012-0. [PMID: 39514072 DOI: 10.1007/s10895-024-04012-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
In recent year, the uses of carbon quantum dots (CQDs) have increased in many fields. Herein we report, synthesis of fluorescent nitrogen doped carbon quantum dots (N-CQDs) by simple and ecofriendly hydrothermal method. The as-synthesized N-CQDs were characterized by various techniques and the quantum yield was also calculated. Then, application of N-CQDs were performed as a sensor for detection of ferric ions (Fe3+) based on static quenching mechanism (turn-off) which occurred due to formation of non-fluorescent complex between N-CQDs and Fe3+ ions. Interestingly, fluorescence intensity of quenched N-CQDs has been significantly recovered (turn-on) by addition of ascorbic acid (AA). The recovery mechanism is based on the redox reaction between Fe3+ ions and AA. Thus, N-CQDs has been used as fluorescence "turn-off-on" sensor for detection of Fe3+ ions and AA. Further this detection system is used for detecting Fe3+ ions in Moringa oleifera and AA in citrus lemon.
Collapse
Affiliation(s)
- Girish Sahu
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, 492010, C.G, India
- Department of Chemistry, Govt. Nagarjuna P. G. College of Science, Raipur, 492010, C.G, India
| | - Yogyata Chawre
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, 492010, C.G, India
| | - Ankita Beena Kujur
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, 492010, C.G, India
| | - Pinki Miri
- Department of Chemistry, Govt. Nagarjuna P. G. College of Science, Raipur, 492010, C.G, India
| | - Akash Sinha
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, 492010, C.G, India
- Department of Chemistry, Govt. Nagarjuna P. G. College of Science, Raipur, 492010, C.G, India
| | - Rekha Nagwanshi
- Department of Chemistry, Govt. P. G. Science College, Ujjain, 456010, Madhya Pradesh, India
| | - Indrapal Karbhal
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, 492010, C.G, India
| | - Kallol K Ghosh
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, 492010, C.G, India
| | - Vinod K Jena
- Department of Chemistry, Govt. Nagarjuna P. G. College of Science, Raipur, 492010, C.G, India
| | - Manmohan L Satnami
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, 492010, C.G, India.
| |
Collapse
|
7
|
Dumitriu C, Pandele AM, Mîndroiu MV, Lazar OA, Popp A, Enachescu M, Buica GO. Electrochemical detection of anti-tissue transglutaminase antibody using quantum dots-doped polypyrrole-modified electrode. Mikrochim Acta 2024; 191:543. [PMID: 39153033 PMCID: PMC11330391 DOI: 10.1007/s00604-024-06620-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
A nanohybrid-modified glassy carbon electrode based on conducting polypyrrole doped with carbon quantum dots (QDs) was developed and used for the electrochemical detection of anti-tissue transglutaminase (anti-tTG) antibodies. To improve the polypyrrole conductivity, carrier mobility, and carrier concentration, four types of carbon nanoparticles were tested. Furthermore, a polypyrrole-modified electrode doped with QDs was functionalized with a PAMAM dendrimer and transglutaminase 2 protein by cross-linking with N-hydroxysuccinimide (NHS)/N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC). The steps of electrode surface modification were surveyed via electrochemical measurements (differential pulse voltammetry (DPV), impedance spectroscopy, and X-ray photoelectron spectroscopy (XPS)). The surface characteristics were observed by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and contact angle measurements. The obtained modified electrode exhibited good stability and repeatability. DPV between - 0.1 and 0.6 V (vs. Ag/AgCl 3 M KCl reference electrode) was used to evaluate the electrochemical alterations that occur after the antibody interacts with the antigen (transglutaminase 2 protein), for which the limit of detection was 0.79 U/mL. Without the use of a secondary label, (anti-tTG) antibodies may be detected at low concentrations because of these modified electrode features.
Collapse
Affiliation(s)
- Cristina Dumitriu
- National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, Sector 6, 060042, Bucharest, Romania
| | - Andreea Madalina Pandele
- National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, Sector 6, 060042, Bucharest, Romania
| | - Mihaela Vasilica Mîndroiu
- National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, Sector 6, 060042, Bucharest, Romania
| | - Oana-Andreea Lazar
- Center for Surface Science and Nanotechnology, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, Sector 6, 060042, Bucharest, Romania
| | - Alina Popp
- National Institute for Mother and Child Health "Alessandrescu-Rusescu", 120 Lacul Tei Boulevard, Sector 2, 020395, Bucharest, Romania
| | - Marius Enachescu
- Center for Surface Science and Nanotechnology, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, Sector 6, 060042, Bucharest, Romania
- Academy of Romanian Scientists, Splaiul Independentei 54, 050094, Bucharest, Romania
| | - George-Octavian Buica
- National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, Sector 6, 060042, Bucharest, Romania.
| |
Collapse
|
8
|
Li S, Chen L, Wang J, Liu T, Li D, Yang Z, Xiao X, Chu C, Chen B. Integrative Active Sites of Cathode for Electron-Oxygen-Proton Coupling To Favor H 2O 2 Production in a Photoelectrochemical System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10072-10083. [PMID: 38810213 DOI: 10.1021/acs.est.4c01601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The oxygen reduction process generating H2O2 in the photoelectrochemical (PEC) system is milder and environmentally friendly compared with the traditional anthraquinone process but still lacks the efficient electron-oxygen-proton coupling interfaces to improve H2O2 production efficiency. Here, we propose an integrated active site strategy, that is, designing a hydrophobic C-B-N interface to refine the dearth of electron, oxygen, and proton balance. Computational calculation results show a lower energy barrier for H2O2 production due to synergistic and coupling effects of boron sites for O2 adsorption, nitrogen sites for H+ binding, and the carbon structure for electron transfer, demonstrating theoretically the feasibility of the strategy. Furthermore, we construct a hydrophobic boron- and nitrogen-doped carbon black gas diffusion cathode (BN-CB-PTFE) with graphite carbon dots decorated on a BiVO4 photoanode (BVO/g-CDs) for H2O2 production. Remarkably, this approach achieves a record H2O2 production rate (9.24 μmol min-1 cm-2) at the PEC cathode. The BN-CB-PTFE cathode exhibits an outstanding Faraday efficiency for H2O2 production of ∼100%. The newly formed h-BN integrative active site can not only adsorb more O2 but also significantly improve the electron and proton transfer. Unexpectedly, coupling BVO/g-CDs with the BN-CB-PTFE gas diffusion cathode also achieves a record H2O2 production rate (6.60 μmol min-1 cm-2) at the PEC photoanode. This study opens new insight into integrative active sites for electron-O2-proton coupling in a PEC H2O2 production system that may be meaningful for environment and energy applications.
Collapse
Affiliation(s)
- Shan Li
- Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Lei Chen
- Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jian Wang
- Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Tian Liu
- Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Dawei Li
- Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhi Yang
- Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xin Xiao
- Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Chiheng Chu
- Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Baoliang Chen
- Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Hangzhou, Zhejiang 311400, China
| |
Collapse
|
9
|
Patel HP, Desai PH, Patel RV, Lodha SN, Gore AH, Patil PO, Desai BV, Desai DT, Vyas BA, Willcox MDP, Maulvi FA. Clozapine-laden carbon dots delivered to the brain via an intranasal pathway: Synthesis, characterization, ex vivo, and in vivo studies. Colloids Surf B Biointerfaces 2024; 237:113862. [PMID: 38518556 DOI: 10.1016/j.colsurfb.2024.113862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Clozapine, which is widely used to treat schizophrenia, shows low bioavailability due to poor solubility and high first-pass metabolism. The study aimed to design clozapine-loaded carbon dots (CDs) to enhance availability of the clozapine to the brain via intranasal pathway. The CDs were synthesized by pyrolysis of citric acid and urea at 200 °C by hydrothermal technique and characterized by photoluminescence, transmission electron microscopy (TEM), X-ray Photoelectron Spectrometer (XPS), and Fourier transform infrared spectrum (FTIR). The optimized clozapine-loaded CDs (CLZ-CDs-1:3-200) showed a quasi-spherical shape (9-12 nm) with stable blue fluorescence. The CDs showed high drug solubilization capacity (1.5 mg drug in 1 mg/ml CDs) with strong electrostatic interaction with clozapine (drug loading efficiency = 94.74%). The ex vivo release study performed using nasal goat mucosa showed sustained release of clozapine (43.89%) from CLZ-CDs-1:3-200 for 30 h. The ciliotoxicity study (histopathology) confirmed no toxicity to the nasal mucosal tissues using CDs. In the rat model (in vivo pharmacokinetic study), when CDs were administrated by the intranasal route, a significantly higher concentration of clozapine in the brain tissue (Cmax = 58.07 ± 5.36 μg/g and AUCt (µg/h*g) = 105.76 ± 12.31) was noted within a short time (tmax = 1 h) compared to clozapine suspension administered by intravenous route (Cmax = 20.99 ± 3.91 μg/g, AUC t (µg/h*g) = 56.89 ± 12.31, and tmax = 4 h). The high value of drug targeting efficiency (DTE, 486%) index and direct transport percentage (DTP, 58%) indicates the direct entry of clozapine-CDs in the brain via the olfactory route. In conclusion, designed CDs demonstrated a promising dosage form for targeted nose-to-brain delivery of clozapine for the effective treatment of schizophrenia.
Collapse
Affiliation(s)
- Hetal P Patel
- Department of Pharmaceutics, Maliba Pharmacy College, Uka Tarsadia University, Surat 394350, India.
| | - Priya H Desai
- Department of Pharmaceutics, Maliba Pharmacy College, Uka Tarsadia University, Surat 394350, India
| | | | - Sandesh N Lodha
- Department of Pharmaceutics, Maliba Pharmacy College, Uka Tarsadia University, Surat 394350, India
| | - Anil H Gore
- Tarsadia Institute of Chemical Science, Uka Tarsadia University, Maliba Campus, Surat 394350, India
| | - Pravin O Patil
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, India
| | - Bhargavi V Desai
- Department of Pharmaceutics, Maliba Pharmacy College, Uka Tarsadia University, Surat 394350, India
| | - Ditixa T Desai
- Department of Pharmaceutics, Maliba Pharmacy College, Uka Tarsadia University, Surat 394350, India
| | - Bhavin A Vyas
- Department of Pharmaceutics, Maliba Pharmacy College, Uka Tarsadia University, Surat 394350, India
| | - Mark D P Willcox
- School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Furqan A Maulvi
- Department of Pharmaceutics, Maliba Pharmacy College, Uka Tarsadia University, Surat 394350, India; School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales 2052, Australia.
| |
Collapse
|
10
|
Wang J, Sun Y, Wang P, Sun Z, Wang Y, Gao M, Wang H, Wang X. A dual-emitting fluoroprobe fabricated by aloe leaf-based N-doped carbon quantum dots and copper nanoclusters for nitenpyram detection in waters by virtue of inner filter effect and static quenching principles. Anal Chim Acta 2024; 1289:342182. [PMID: 38245198 DOI: 10.1016/j.aca.2023.342182] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/14/2023] [Accepted: 12/26/2023] [Indexed: 01/22/2024]
Abstract
Fluorescence sensing technique has been used in environmental analysis due to its simplicity, low cost, and visualization. Although the fruit pulp-based biomass carbon quantum dots (CQDs) have excellent luminescent properties, aloe leaves possess the superiority of being easily accessible in all seasons compared to fruit pulp. Thus, we fabricated Aloe carazo leaf-based nitrogen doping-CQDs (N-CQDs) using a facile hydrothermal approach, which emitted bright blue fluorescence with a quantum yield of 21.4 %. By comparison, the glutathione-encapsulated copper nanoclusters (GSH-CuNCs) displayed strong red fluorescence. A blue/red dual emission based on the N-CQDs/CuNCs mixture was established for nitenpyram detection. At the 350-nm excitation, the N-CQD/CuNCs system produced dual-wavelength emitting peaks at 440 and 660 nm, respectively. Moreover, when nitenpyram was introduced into the system, the fluorescence intensities (FIs) of N-CQDs significantly decreased, whereas the FIs of GSH-CuNCs varied slightly; simultaneously, the solution color changed from bright blue to dark red. Both the spectral overlapping between nitenpyram's UV-Vis absorption and N-CQDs' excitation and almost unchanged fluorescence lifetimes indicated the occurrence of inner-filtering effect (IFE) in the dual-emitting fluoroprobe. In addition, the Stern-Volmer constant (Ksv = 6.92 × 103 M-1), temperature effect, as well as UV-Vis absorption of N-CQD/CuNCs before and after the addition of nitenpyram corroborated the static-quenching behavior. Consequently, the fluorescence-quenching of N-CQDs by nitenpyram was attributable to the joint IFE and static-quenching principles. A good linearity existed between the F660/F440 values and nitenpyram concentrations (0.5-200 μM) with a method detection limit of 0.15 μM. The dual-emitting fluoroprobe provided the satisfactory recoveries (95.0%-107.0 %) for nitenpyram detection in real-world waters, which were comparable with the results of traditional liquid chromatography coupled to tandem mass spectrometry method. Owing to its simple operations, low-cost, and adaptability for on-site outdoor monitoring, the newly developed dual-emitting fluoroprobe possesses great potential applications in routine monitoring of nitenpyram under field conditions.
Collapse
Affiliation(s)
- Junxia Wang
- Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; College of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Yueying Sun
- Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Panpan Wang
- Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Zhengpeng Sun
- Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yawei Wang
- Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Ming Gao
- Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Huili Wang
- Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xuedong Wang
- College of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
11
|
Bao H, Liu Y, Li H, Qi W, Sun K. Luminescence of carbon quantum dots and their application in biochemistry. Heliyon 2023; 9:e20317. [PMID: 37790961 PMCID: PMC10543222 DOI: 10.1016/j.heliyon.2023.e20317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/17/2023] [Accepted: 09/19/2023] [Indexed: 10/05/2023] Open
Abstract
Similar to fullerenes, carbon nanotubes and graphene, carbon dots (CDs) are causing a lot of research work in their own right. CDs are a type of surface-passivated quantum dot that contain carbon atoms. Their distinctive characteristics, such as luminescent emission that varies with size and wavelength, resistance to photobleaching, easy biological binding, lack of toxicity, and economical production without the need for intricate synthetic processes, have led to a noteworthy surge in attention within the research community. Different techniques can be utilized to create these CDs, spanning from basic candle burning to laser ablation. This review article delves into the principles of fluorescence technology, providing insights into how different synthesis methods of quantum dots impact their luminescent properties. Additionally, it highlights the latest applications of quantum dots in catalysis and biomedical fields, with special emphasis on the current status of luminescent properties in biology and chemistry. Towards the end, the article discusses the limitations of quantum dots in current practical applications, pointing out that CDs hold promising potential for future applications.
Collapse
Affiliation(s)
- Haili Bao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Yihao Liu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - He Li
- Beijing University of Chemical Technology, Beijing, China
| | - Wenxin Qi
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Keyan Sun
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
12
|
Arel I, Ay A, Wang J, Gil-Herrera LK, Dumanli AG, Akbulut O. Encapsulation of Carbon Dots in a Core-Shell Mesh through Coaxial Direct Ink Writing for Improved Crop Growth. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:13939-13949. [PMID: 37771763 PMCID: PMC10523578 DOI: 10.1021/acssuschemeng.3c02641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/16/2023] [Indexed: 09/30/2023]
Abstract
Through coaxial direct ink writing, we fabricated a core-shell mesh system for the controlled release of carbon dots (C-dots). In the core ink, we developed an ink formulation with tuned viscosity using hydroxypropyl cellulose and polyethylene glycol to host C-dots. Polycaprolactone was employed as the main shell material, in combination with sodium alginate, to control the degradation rate of the shell. We investigated the degradation profile of the 3D-printed meshes and tracked the weekly release of C-dots in an aqueous medium by spectrofluorometry. We tested the efficacy of the C-dot release on plants by placing the meshes in transparent soil with Triticum aestivum L. seeds. We observed the in vivo translocation of the C-dots in the plant using confocal microscopy. We measured the root elongation and shoot length to assess the effect of C-dots on plant growth. Our study revealed that the plants exposed to C-dots grew 2.5-fold faster than the control group, indicating that C-dots are promising nanofertilizers for aggrotech and non-toxic fluorescent biolabels for in vivo applications.
Collapse
Affiliation(s)
- Isik Arel
- Faculty
of Engineering and Natural Sciences, Sabanci
University, Tuzla, Istanbul 34956, Turkey
| | - Ayse Ay
- Faculty
of Engineering and Natural Sciences, Sabanci
University, Tuzla, Istanbul 34956, Turkey
| | - Jingyi Wang
- Department
of Materials, University of Manchester, Manchester M13 9PL, U.K.
- Henry
Royce Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Luz Karime Gil-Herrera
- Department
of Materials, University of Manchester, Manchester M13 9PL, U.K.
- Henry
Royce Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Ahu Gümrah Dumanli
- Department
of Materials, University of Manchester, Manchester M13 9PL, U.K.
- Henry
Royce Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Ozge Akbulut
- Faculty
of Engineering and Natural Sciences, Sabanci
University, Tuzla, Istanbul 34956, Turkey
| |
Collapse
|
13
|
Mauro N, Cillari R, Gagliardo C, Utzeri MA, Marrale M, Cavallaro G. Gadolinium-Doped Carbon Nanodots as Potential Anticancer Tools for Multimodal Image-Guided Photothermal Therapy and Tumor Monitoring. ACS APPLIED NANO MATERIALS 2023; 6:17206-17217. [PMID: 37772264 PMCID: PMC10526686 DOI: 10.1021/acsanm.3c03583] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/20/2023] [Indexed: 09/30/2023]
Abstract
This study focuses on the synthesis and characterization of gadolinium-doped carbon nanodots (CDs-Gd) and their potential applications in multimodal imaging and precision cancer therapy. CDs-Gd were synthesized through a solvothermal decomposition method combining citric acid, GdCl3, and urea. The incorporation of Gd3+ ions within the carbonaceous structure resulted in stable CDs-Gd with a peculiar architecture that retained optical and paramagnetic properties. Combined characterization techniques confirmed the presence of pH-sensitive COOH functions on the CDs-Gd surface along with the unique lattice structure induced by Gd3+ doping. The optical properties of CDs-Gd exhibited a tunable emission spectrum displaying blue-green emission with pH-dependent behavior. Additionally, CDs-Gd exhibited contrast-enhancing properties in T1-weighted magnetic resonance imaging (MRI) experiments. MRI acquisitions at different Gd3+ concentrations and pH values demonstrated the potential of CDs-Gd as contrast agents for monitoring pH changes in an aqueous environment. We found that the relaxivity of CDs-Gd at pH 5.5 (tumor, 11.3 mM-1 s-1) is roughly 3-fold higher than that observed at pH 7.4 (physiological, 5.0 mM-1 s-1) and outperformed clinical standards such as γ-butyrol (3.3 mM-1 s-1). Monitoring pH changes in tumor microenvironment (TME) is crucial for evaluating the effectiveness of anticancer treatments and understanding tumor progression. Furthermore, CDs-Gd demonstrated concentration-dependent photothermal conversion ability in the near-infrared (NIR) region, allowing for efficient heat generation under laser irradiation. This indicates the potential application of CDs-Gd in image-guided photothermal therapy (IG-PTT) for cancer treatment. The in vitro studies on MCF-7 (breast cancer) and 16-HBE (healthy bronchial epithelium) cell lines demonstrated that CDs-Gd exhibited high biocompatibility (cell viability >80%). However, upon NIR activation, they showed potent anticancer effects by inhibiting tumor cell proliferation and inducing apoptosis selectively in cancer cells. In conclusion, the synthesized CDs-Gd nanoparticles possess unique optical, photothermal, and MRI contrast properties, making them promising candidates for multimodal imaging-guided precision cancer therapy applications.
Collapse
Affiliation(s)
- Nicolò Mauro
- Laboratory
of Biocompatible Polymers, Department of “Scienze e Tecnologie
Biologiche, Chimiche e Farmaceutiche” (STEBICEF), University of Palermo, Via Archirafi, 32, 90123 Palermo, Italy
| | - Roberta Cillari
- Laboratory
of Biocompatible Polymers, Department of “Scienze e Tecnologie
Biologiche, Chimiche e Farmaceutiche” (STEBICEF), University of Palermo, Via Archirafi, 32, 90123 Palermo, Italy
| | - Cesare Gagliardo
- Department
of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Via del Vespro 129, 90123 Palermo, Italy
| | - Mara Andrea Utzeri
- Laboratory
of Biocompatible Polymers, Department of “Scienze e Tecnologie
Biologiche, Chimiche e Farmaceutiche” (STEBICEF), University of Palermo, Via Archirafi, 32, 90123 Palermo, Italy
| | - Maurizio Marrale
- Department
of Physics and Chemistry “Emilio Segrè”, University of Palermo, Viale delle Scienze Ed. 18, 90128 Palermo, Italy
- National
Institute for Nuclear Physics (INFN), Catania Division, Via Santa Sofia 64, 95123 Catania, Italy
- Advanced
Technology Environment Network Center, Viale Delle Scienze Ed. 18, 90128 Palermo, Italy
| | - Gennara Cavallaro
- Laboratory
of Biocompatible Polymers, Department of “Scienze e Tecnologie
Biologiche, Chimiche e Farmaceutiche” (STEBICEF), University of Palermo, Via Archirafi, 32, 90123 Palermo, Italy
- Advanced
Technology Environment Network Center, Viale Delle Scienze Ed. 18, 90128 Palermo, Italy
| |
Collapse
|
14
|
Zhao F, Liu Z, Sui S, Huang K, Yang Y, Chen Z, Yin H. Surficial amino groups coupling induced concentration-dependent fluorescence and fluorescence quantum yield of nitrogen-dopped carbon quantum dots via efficient charge transfer. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 294:122542. [PMID: 36848858 DOI: 10.1016/j.saa.2023.122542] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/09/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Modification of surficial functional groups among carbon quantum dots (CQDs) has been considered an efficient approach to regulate the fluorescence emission of CQDs. However, the mechanism of how surficial functional groups affect fluorescence is vague which fundamentally limits the further applications of CQDs. Here we report the concentration-dependent fluorescence and fluorescence quantum yield of nitrogen-dopped carbon quantum dots (N-CQDs). At high concentrations (≥0.188 g/L), fluorescence redshift occurs accompanied with decrease in fluorescence quantum yield. Fluorescence excitation spectra and HOMO-LUMO energy gaps calculations show that energy levels of excited states of N-CQDs are relocated via the coupling of surficial amino groups among N-CQDs. Furthermore, electron density difference maps and broadened fluorescence spectra obtained from both experimental measurement and theoretical calculation further confirm that the coupling of surficial amino groups dominates the fluorescence property and verify the formation of charge-transfer state of N-CQDs complex at high concentrations which provides pathways for efficient charge transfer. Given that charge-transfer state induced fluorescence loss and fluorescence spectra broadening are the typical characteristics of organic molecules, CQDs exhibit the optical properties of both quantum dots and organic molecules.
Collapse
Affiliation(s)
- Fengjiao Zhao
- School of Science, Dalian Maritime University, Dalian, Liaoning 116026, China
| | - Zhaoshuang Liu
- School of Science, Dalian Maritime University, Dalian, Liaoning 116026, China
| | - Shuxin Sui
- School of Science, Dalian Maritime University, Dalian, Liaoning 116026, China
| | - Kai Huang
- School of Science, Dalian Maritime University, Dalian, Liaoning 116026, China
| | - Yang Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhen Chen
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hongming Yin
- School of Science, Dalian Maritime University, Dalian, Liaoning 116026, China
| |
Collapse
|
15
|
Wang D, Chen Y, Xia T, Claudino M, Melendez A, Ni X, Dong C, Liu Z, Yang J. Citric Acid-Based Intrinsic Band-Shifting Photoluminescent Materials. RESEARCH (WASHINGTON, D.C.) 2023; 6:0152. [PMID: 37256199 PMCID: PMC10226408 DOI: 10.34133/research.0152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/27/2023] [Indexed: 06/01/2023]
Abstract
Citric acid, an important metabolite with abundant reactive groups, has been demonstrated as a promising starting material to synthesize diverse photoluminescent materials including small molecules, polymers, and carbon dots. The unique citrate chemistry enables the development of a series of citric acid-based molecules and nanomaterials with intriguing intrinsic band-shifting behavior, where the emission wavelength shifts as the excitation wavelength increases, ideal for chromatic imaging and many other applications. In this review, we discuss the concept of "intrinsic band-shifting photoluminescent materials", introduce the recent advances in citric acid-based intrinsic band-shifting materials, and discuss their potential applications such as chromatic imaging and multimodal sensing. It is our hope that the insightful and forward-thinking discussion in this review will spur the innovation and applications of the unique band-shifting photoluminescent materials.
Collapse
Affiliation(s)
- Dingbowen Wang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences,
The Pennsylvania State University, University Park, PA 16802, USA
| | - Yizhu Chen
- Department of Electrical Engineering, Materials Research Institute,
The Pennsylvania State University, University Park, PA 16802, USA
| | - Tunan Xia
- Department of Electrical Engineering, Materials Research Institute,
The Pennsylvania State University, University Park, PA 16802, USA
| | - Mariana Claudino
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences,
The Pennsylvania State University, University Park, PA 16802, USA
| | - Allison Melendez
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences,
The Pennsylvania State University, University Park, PA 16802, USA
| | - Xingjie Ni
- Department of Electrical Engineering, Materials Research Institute,
The Pennsylvania State University, University Park, PA 16802, USA
| | - Cheng Dong
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences,
The Pennsylvania State University, University Park, PA 16802, USA
| | - Zhiwen Liu
- Department of Electrical Engineering, Materials Research Institute,
The Pennsylvania State University, University Park, PA 16802, USA
| | - Jian Yang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences,
The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
16
|
La Ferla B, Vercelli B. Red-Emitting Carbon Quantum Dots for Biomedical Applications: Synthesis and Purification Issues of the Hydrothermal Approach. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101635. [PMID: 37242053 DOI: 10.3390/nano13101635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/07/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023]
Abstract
The possibility of performing the synthesis of red-emitting carbon quantum dots (r-CDs), in a well-controllable, large scale and environmentally sustainable way is undoubtedly of fundamental importance, as it will pave the way to their employment in advanced medical large-scale applications. Knowledge of the difficulties involved in producing r-CDs with reproducible optical, structural, and chemical characteristics, might help in their large-scale production, making the process standardizable. In this work, we present an experimental study, also supported by results reported in the literature, on the issues encountered during the synthesis and post-synthesis purification treatments of r-CDS. We focused on the hydrothermal approach as it was found to be more suitable for future large-scale industrial applications. We propose three synthetic strategies and observed that employing p-phenylenediamine (p-PDA), as a precursor, the synthetic process showed low efficiency with low yields of r-CDs, large amounts of unreacted precursor, and reaction intermediates. Changing reaction parameters does not improve performance. The r-CDs obtained using citric acid (CA) and urea, as precursors, resulted to be sensitive to pH and difficult to separate from the reaction mixture. Furthermore, the proposed synthetic strategies show that the hydrothermal preparation of r-CDS requires approaches that are not fully sustainable.
Collapse
Affiliation(s)
- Barbara La Ferla
- Dipartimento di Biotecnologie e di Bioscienze, Università degli Studi di Milano-Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy
| | - Barbara Vercelli
- Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia, CNR-ICMATE, Via Cozzi, 53, 20125 Milano, Italy
| |
Collapse
|
17
|
Jing X, Liu Y, Liu X, Wang XF, You C, Chang D, Zhang S. Nitrogen-doped carbon dots enhanced seedling growth and salt tolerance with distinct requirements of excitation light. RSC Adv 2023; 13:12114-12122. [PMID: 37082373 PMCID: PMC10111579 DOI: 10.1039/d3ra01514a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/10/2023] [Indexed: 04/22/2023] Open
Abstract
Numerous nanomaterials with optical properties have demonstrated excellent capacities to enhance plant growth and stress tolerance. However, the corresponding mechanisms have only been partially characterized, especially the excitation-light dependencies of different actions. Here, nitrogen-doped carbon dots (N-CDs) were developed to explore the excitation-light dependence in N-CD-induced growth enhancement and salt tolerance. Compared to the control, N-CDs induced significant enhancements in Arabidopsis thaliana growth under excitation light, including fresh/dry weight of shoot (21.07% and 16.87%), chlorophyll content (9.17%), soluble sugar content (23.41%), leaf area (28.68%), total root length (34.07%) and root tip number (46.69%). In the absence of excitation light, N-CD-treated seedlings exhibited little differences in these parameters, except the enhancements in root length (24.51%) and root tip number (10.24%). On the other hand, N-CD-treatment could improve seedling salt tolerance with or without excitation light. Under salt stress (150 mM NaCl), in the presence of excitation light, the N-CDs treatment significantly increased shoot/root fresh weight and chlorophyll content by 43.29%, 50.66% and 22.59%, and reduced malondialdehyde (MDA) content and relative conductivity by 17.59% and 32.58% compared to the control group. In the absence of excitation light, significant enhancements in shoot/root fresh weight (34.22%, 32.60%) and chlorophyll content (10.45%), and obvious decreases in MDA content (28.84%) and relative conductivity (16.13%) were also found. These results indicated that N-CDs only induced growth enhancement under excitation light, but they improved salt tolerance with and without excitation light, suggesting that the two effects occurred via distinct signaling pathways. This study revealed the excitation-light dependencies of nanomaterial-involved agriculture applications, providing insight into designing more efficient nanomaterials in the future.
Collapse
Affiliation(s)
- Xiuli Jing
- State Key Laboratory of Crop Biology, Shandong Green Fertilizer Technology Innovation Center, Apple Technology Innovation Center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University Taian Shandong China
| | - Yankai Liu
- State Key Laboratory of Crop Biology, Shandong Green Fertilizer Technology Innovation Center, Apple Technology Innovation Center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University Taian Shandong China
| | - Xuzhe Liu
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, College of Chemistry and Material Science, Shandong Agricultural University Taian Shandong China
| | - Xiao-Fei Wang
- State Key Laboratory of Crop Biology, Shandong Green Fertilizer Technology Innovation Center, Apple Technology Innovation Center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University Taian Shandong China
| | - Chunxiang You
- State Key Laboratory of Crop Biology, Shandong Green Fertilizer Technology Innovation Center, Apple Technology Innovation Center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University Taian Shandong China
| | - Dayong Chang
- Yantai Goodly Biological Technology Co., Ltd. Yantai Shandong China
| | - Shuai Zhang
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, College of Chemistry and Material Science, Shandong Agricultural University Taian Shandong China
| |
Collapse
|
18
|
Crista D, Algarra M, Martínez de Yuso MV, Esteves da Silva JCG, Pinto da Silva L. Investigation of the role of pH and the stoichiometry of the N-dopant in the luminescence, composition and synthesis yield of carbon dots. J Mater Chem B 2023; 11:1131-1143. [PMID: 36637160 DOI: 10.1039/d2tb02318k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Carbon dots (CDs) are carbon-based nanoparticles with very attractive luminescence features, which simplicity and flexibility of their fabrication can lead to an endless number of CDs with distinct properties and applications. High fluorescence quantum yields (QYFL) are generally a necessary feature for various applications of CDs. One commonly employed strategy to improve the fluorescence properties of CDs is heteroatom-doping using precursors containing desired heteroatoms (with focus on N-doping). In this work, we report the synthesis and systematic investigation of an array of N-doped CDs, obtained from the dry heating of solid mixtures of glucose and urea in different molar ratios with two main objectives: to study the role of stoichiometry in the optical properties and composition of CDs and to investigate the formation of possible alkaline-responsive nanoparticles and the potential of this procedure for obtaining CDs with higher synthesis yields. We have characterized the optical properties of this diverse array of glucose and urea-based CDs using both UV-Vis and fluorescence spectroscopies. In addition, we have also examined the CDs by using high-resolution transmission electron microscopy (HR-TEM) and X-Ray photoelectron (XPS) spectroscopy, as well as by assessing the thermal stability of the nanoparticles. We have found that this fabrication process generates two types of CDs, one readily soluble in water and other only soluble at basic pH. The latter was characterized by higher synthesis yields, and lower QYFL and thermal stability, when compared with those of the former. Furthermore, the stoichiometry of the N-dopant does not appear to be correlated with the QYFL of the obtained CDs. This study provides novel information that should be useful for the future rational development of CDs with higher QYFL and synthesis yields.
Collapse
Affiliation(s)
- Diana Crista
- Chemistry Research Unit (CIQUP), Institute of Molecular Sciences (IMS), Department of Geosciences, Environment and Territorial Planning, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal.
| | - Manuel Algarra
- INAMAT2-Institute for Advanced Materials and Mathematics, Department of Science, Public University of Navarra, Campus of Arrosadía, 31006 Pamplona, Spain.
| | - Maria Valle Martínez de Yuso
- X-ray Photoelectron Spectroscopy Lab. Central Service to Support Research Building (SCAI), University of Málaga, 29071 Málaga, Spain
| | - Joaquim C G Esteves da Silva
- Chemistry Research Unit (CIQUP), Institute of Molecular Sciences (IMS), Department of Geosciences, Environment and Territorial Planning, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal. .,LACOMEPHI, GreenUPorto, Department of Geosciences, Environment and Territorial Planning, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Luís Pinto da Silva
- Chemistry Research Unit (CIQUP), Institute of Molecular Sciences (IMS), Department of Geosciences, Environment and Territorial Planning, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal. .,LACOMEPHI, GreenUPorto, Department of Geosciences, Environment and Territorial Planning, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
19
|
Ni–Co–P functionalized Nitrogen-Doped-Carbon quantum dots for efficient methanol electrooxidation and nanofluid applications. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2022.117083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
Ghezzi F, Donnini R, Sansonetti A, Giovanella U, La Ferla B, Vercelli B. Nitrogen-Doped Carbon Quantum Dots for Biosensing Applications: The Effect of the Thermal Treatments on Electrochemical and Optical Properties. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010072. [PMID: 36615268 PMCID: PMC9821838 DOI: 10.3390/molecules28010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 12/25/2022]
Abstract
The knowledge of the ways in which post-synthesis treatments may influence the properties of carbon quantum dots (CDs) is of paramount importance for their employment in biosensors. It enables the definition of the mechanism of sensing, which is essential for the application of the suited design strategy of the device. In the present work, we studied the ways in which post-synthesis thermal treatments influence the optical and electrochemical properties of Nitrogen-doped CDs (N-CDs). Blue-emitting, N-CDs for application in biosensors were synthesized through the hydrothermal route, starting from citric acid and urea as bio-synthesizable and low-cost precursors. The CDs samples were thermally post-treated and then characterized through a combination of spectroscopic, structural, and electrochemical techniques. We observed that the post-synthesis thermal treatments show an oxidative effect on CDs graphitic N-atoms. They cause their partially oxidation with the formation of mixed valence state systems, [CDs]0+, which could be further oxidized into the graphitic N-oxide forms. We also observed that thermal treatments cause the decomposition of the CDs external ammonium ions into ammonia and protons, which protonate their pyridinic N-atoms. Photoluminescence (PL) emission is quenched.
Collapse
Affiliation(s)
- Francesco Ghezzi
- Istituto per la Scienza e Tecnologia dei Plasmi, CNR-ISTP, Via Cozzi 53, 20125 Milano, Italy
| | - Riccardo Donnini
- Istituto di Chimica della Materia Condensata e di Tecnologie per l’Energia, CNR-ICMATE, Via Cozzi 53, 20125 Milano, Italy
| | - Antonio Sansonetti
- Istituto di Scienze del Patrimonio Culturale, CNR-ISPC, Via Cozzi 53, 20125 Milano, Italy
| | - Umberto Giovanella
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, CNR-SCITEC, Via Alfonso Corti 12, 20133 Milano, Italy
| | - Barbara La Ferla
- Dipartimento di Biotecnologie e di Bioscienze, Università degli Studi di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Barbara Vercelli
- Istituto di Chimica della Materia Condensata e di Tecnologie per l’Energia, CNR-ICMATE, Via Cozzi 53, 20125 Milano, Italy
- Correspondence:
| |
Collapse
|
21
|
Wu S, Yin Y, Sun C, Song W. Efficient Synthesis of Highly Photo‐stable N‐doped Carbon Quantum Dots and their Applications in Detection and Cellular Imaging of Mercury Ions. ChemistrySelect 2022. [DOI: 10.1002/slct.202202540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Shunwei Wu
- School of Chemical Engineering Qinghai University Xining 810016 China
| | - Yongzheng Yin
- School of Chemical Engineering Qinghai University Xining 810016 China
| | - Chunyan Sun
- School of Chemical Engineering Qinghai University Xining 810016 China
| | - Weijun Song
- School of Chemical Engineering Qinghai University Xining 810016 China
| |
Collapse
|
22
|
Carbon Functionalized Material Derived from Byproduct of Plasma Tar-Cracking Unit on Biomass Gasifier Collected Using Standard Impinger Method. Processes (Basel) 2022. [DOI: 10.3390/pr10091733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Reduction of tar concentration in biomass gasification with secondary plasma tar cracking unit remains a challenge to meet the requirement for clean syngas energy applications. Typically, the post-treatment of syngas to reduce the tar from an updraft fixed-bed reactor is using secondary plasma tar cracking unit. In this study, an additional trapping train was introduced as a mechanism to harvest byproducts of the tar decomposition process (byproduct carbon functionalized material or BCFM). The measurement in gravimetric and particle size distribution, supported by photoluminescent (PL) and Fourier transform infrared spectroscopy (FT–IR) of BCFM, were conducted to reveal the BCFM characteristic. The gravimetric analysis showed that the application of the secondary plasma tar cracking unit highly reduced the tar concentration. Similarly, the average particle size also decreased significantly. The peak emission spectra of the suspended BCFM particle under the plasma cracking treatment shifted from around 500 nm to around 400 nm. The significant changes in the BCFM functional group occurred due to the successful cracking process. It was concluded that the byproduct received from the plasma cracking process resulted in very low tar content and was revealed to be a carbon functionalized material with a very small size (16.2 nm) and stable suspension.
Collapse
|
23
|
Joseph J, Anappara AA. Comparative photoluminescence study of nitrogen doped carbon dots co-doped with boron and sulphur. LUMINESCENCE 2022; 37:1475-1481. [PMID: 35797229 DOI: 10.1002/bio.4320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/04/2022] [Accepted: 06/08/2022] [Indexed: 11/06/2022]
Abstract
Although different studies in carbon dots (CDs) were reported based on heteroatom doping, most of them have focussed on the enhancement of fluorescence properties. Herein we report a comparative study of both fluorescence and room-temperature phosphorescence (RTP) of nitrogen-sulphur doped CDs (N-S CDs) and N, B doped CDs (N-B CDs) with N doped CDs (N CDs). The CDs employed in the study were synthesized through microwave-assisted pyrolysis. Among the doped CDs, sulphur doped CDs showed high fluorescence quantum yield. Upon irradiation, the aqueous dispersion of the CDs demonstrated blue fluorescence; and further, by incorporating the CDs in potash alum matrix, blue fluorescence, as well as green phosphorescence was observed. The phosphorescence lifetime measurements indicated that the N-S CDs exhibit a longer emission lifetime and red-shifted emission in contrast to other samples, which might be attributed to the presence of a greater proportion of surface states on N-S CDs.
Collapse
Affiliation(s)
- Julin Joseph
- Photonic Materials and Devices Laboratory, Department of Physics, National Institute of Technology Calicut, Kera, India.,PG Department of Physics, St Joseph's College for Women, Alappuzha, Kera, India
| | - Aji A Anappara
- Photonic Materials and Devices Laboratory, Department of Physics, National Institute of Technology Calicut, Kera, India
| |
Collapse
|
24
|
Chi H, Li Y, Liu G. A molecularly imprinted electrochemical sensor based on a
MoS
2
/peanut shell carbon complex coated with
AuNPs
and nitrogen‐doped carbon dots for selective and rapid detection of benzo(a)pyrene. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hai Chi
- School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Yujie Li
- School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Guoqin Liu
- School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety South China University of Technology Guangzhou 510640 China
| |
Collapse
|
25
|
Wu C, Sun W, Wang Q. Exploration of Sulfur-Containing Nanoparticles: Synthesis, Microstructure Analysis, and Sensing Potential. Inorg Chem 2022; 61:4159-4170. [PMID: 35188743 DOI: 10.1021/acs.inorgchem.1c04024] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this work, three different sulfur sources such as sulfur powder, sodium sulfide, and sodium thiosulfate are selected to prepare sulfur-derived quantum dots (S-QDs), Na2S-derived nanoparticles (NS-NPs), and Na2S2O3--derived QDs (NSO-QDs) in the presence of NaOH or assisted by hydrogen peroxide etching. The low sulfur percentage in the above three samples and the synthesis experiments in the presence of nitrogen/oxygen all support that poly(ethylene glycol) (PEG) plays an important role during the assembly process and the definition of sulfur dots is not accurate. For photophysical features, remarkable green quantum dots (S-QDs) possess an excitation-independent emission peak at 500 nm. But NS-NPs and NSO-QDs demonstrate observable shift tendency, and the evolution of emission profiles varies from 480 to 586 nm. NSO-QDs can be used as a fluorescent probe for highly selective and quantitative detection of Ni2+ in an aqueous solution in the presence of potential interfering ions with a low detection limit (0.18 μM) and a wide linear range (8-380 μM). Their reusability performance has also been demonstrated by employing dimethylglyoxime as the restoration reagent.
Collapse
Affiliation(s)
- Chuqiao Wu
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Wenjie Sun
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Qianming Wang
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou 510006, China.,Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
26
|
Wang H, Qi C, Yang A, Wang X, Xu J. One-Pot Synthesis of Bright Blue Luminescent N-Doped GQDs: Optical Properties and Cell Imaging. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2798. [PMID: 34835564 PMCID: PMC8623353 DOI: 10.3390/nano11112798] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/16/2021] [Accepted: 10/19/2021] [Indexed: 12/27/2022]
Abstract
High fluorescent graphene quantum dots (GQDs) are promising in bioimaging and optoelectronics. In this paper, bright blue fluorescent N-doped GQDs were synthesized using a ultrasonic-assisted hydrothermal method. The morphology, structure, surface chemistry, optical properties, and stability subject to photo-bleaching, temperature, pH and preservation period for the N-GQDs were investigated in detail using various microscopy and spectroscopy techniques. The results showed that the N-GQDs possessed an average size of 2.65 nm, 3.57% N doping, and up to 54% quantum yield (QY). The photoluminescence (PL) spectra of the N-GQDs are excitation dependent when excited in the range of 300-370 nm and excitation independent in the range of 380-500 nm for the core and surface states emission. The N-GQDs showed excellent photo-bleaching resistance and superior photo-stability. At room temperature and in the pH range of 3-8, the fluorescence of the N-GQDs was almost invariable. The N-GQDs can be stably preserved for at least 40 days. The average decay lifetime of the N-GQDs was 2.653 ns, and the radiative and nonradiative decay rate constants were calculated to be 2.04 × 108 s-1 and 1.73 × 108 s-1, respectively. The PL mechanism was qualitatively explained. The N-GQDs was used for cell imaging, and it showed good results, implying great potential applications for bioimaging or biomarking.
Collapse
Affiliation(s)
- Huaidong Wang
- College of Physics & Optoelectronic Engineering, Ocean University of China, Qingdao 266100, China; (H.W.); (C.Q.)
| | - Chong Qi
- College of Physics & Optoelectronic Engineering, Ocean University of China, Qingdao 266100, China; (H.W.); (C.Q.)
| | - Ailing Yang
- College of Physics & Optoelectronic Engineering, Ocean University of China, Qingdao 266100, China; (H.W.); (C.Q.)
| | - Xiaoxu Wang
- College of Food Science & Engineering, Ocean University of China, Qingdao 266003, China; (X.W.); (J.X.)
| | - Jie Xu
- College of Food Science & Engineering, Ocean University of China, Qingdao 266003, China; (X.W.); (J.X.)
| |
Collapse
|
27
|
Wang Y, Liu Y, Zhou J, Yue J, Xu M, An B, Ma C, Li W, Liu S. Hydrothermal synthesis of nitrogen-doped carbon quantum dots from lignin for formaldehyde determination. RSC Adv 2021; 11:29178-29185. [PMID: 35479568 PMCID: PMC9040886 DOI: 10.1039/d1ra05370a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/20/2021] [Indexed: 02/03/2023] Open
Abstract
This work assessed the fabrication of nitrogen-doped CQDs (NCQDs) from alkali lignin (AL) obtained from spruce, representing a green, low-cost biomass generated by the pulp and biorefinery industries. The AL was found to retain its original lignin skeleton and could be used to produce NCQDs with excellent photoluminescence properties by one-pot hydrothermal treatment of AL and m-phenylenediamine. These NCQDs exhibited blue-green fluorescence (FL) with excitation/emission of 390/490 nm under optimal conditions. The NCQDs showed pH and excitation wavelength-dependent FL emission behaviors. On the basis of the exceptional selective response of these NCQDs to specific solvents, we developed a FL probe for the detection of formaldehyde (FA). The FL intensity of NCQDs was found to be directly proportional to the concentration of FA in the range of 0.05 to 2 mM (R2 = 0.993), with a detection limit of 4.64 µM (based on 3σ/K). A composite film comprising NCQDs with poly(vinyl alcohol) was found to act as a sensor with a good FL response to FA gas. When exposed to gaseous FA, this film exhibited increased FL intensity and transitioned from blue-green to blue. A mechanism is proposed in which the NCQDs react rapidly with FA to generate Schiff bases that result in enhanced FL emission and the observed blue shift in color. A hydrothermal method for synthesis of lignin-based N-doped carbon quantum dots (NCQDs) proposes a mechanism for rapid reaction of NCQDs with formaldehyde to generate Schiff bases, which leads to enhanced FL emission and the observed blue shift.![]()
Collapse
Affiliation(s)
- Ying Wang
- Key Laboratory of Bio-based Material Science &Technology, Northeast Forestry University, Ministry of Education Harbin 150040 P. R. China
| | - Yushan Liu
- Key Laboratory of Bio-based Material Science &Technology, Northeast Forestry University, Ministry of Education Harbin 150040 P. R. China
| | - Jin Zhou
- Key Laboratory of Bio-based Material Science &Technology, Northeast Forestry University, Ministry of Education Harbin 150040 P. R. China
| | - Jinquan Yue
- Key Laboratory of Bio-based Material Science &Technology, Northeast Forestry University, Ministry of Education Harbin 150040 P. R. China
| | - Mingcong Xu
- Key Laboratory of Bio-based Material Science &Technology, Northeast Forestry University, Ministry of Education Harbin 150040 P. R. China
| | - Bang An
- Key Laboratory of Bio-based Material Science &Technology, Northeast Forestry University, Ministry of Education Harbin 150040 P. R. China
| | - Chunhui Ma
- Key Laboratory of Bio-based Material Science &Technology, Northeast Forestry University, Ministry of Education Harbin 150040 P. R. China
| | - Wei Li
- Key Laboratory of Bio-based Material Science &Technology, Northeast Forestry University, Ministry of Education Harbin 150040 P. R. China
| | - Shouxin Liu
- Key Laboratory of Bio-based Material Science &Technology, Northeast Forestry University, Ministry of Education Harbin 150040 P. R. China
| |
Collapse
|
28
|
Yao G, Zhao J, Haruna MA, Wen D. Molecular dynamics insight into viscosity reduction of hydrolysed polyacrylamide by using carbon quantum dots. RSC Adv 2021; 11:26037-26048. [PMID: 34354829 PMCID: PMC8317175 DOI: 10.1039/d1ra03935k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/06/2021] [Indexed: 11/21/2022] Open
Abstract
Hydrolysed polyacrylamide (HPAM) is widely used in many industrial fields where its rheological properties play a leading role. Recent discovery of the reduction of HPAM's viscosity by adding carbon quantum dots (CQDs), however, is controversial to the established theories. By using all atom molecular dynamics simulation with an OPLS-AA force field, this study aims to provide detailed molecular insight into such an uncommon phenomenon. The dynamic structures of the HPAM chain in the presence or absence of CQDs were clearly captured from the molecular aspect. The results reveal that the adsorption of CQD reduces the gyration radius of the HPAM chain, and it is the corresponding hydration effect that leads to the reduction of the viscosity. The amide rather than the carboxylate group along the HPAM chain is dominant in terms of the interaction with the CQDs, and the driven atoms depend on the surface where the polymer is adsorbed.
Collapse
Affiliation(s)
- Guice Yao
- School of Aeronautic Science and Engineering, Beihang University Beijing 100191 China
| | - Jin Zhao
- School of General Engineering, Beihang University Beijing 100191 China
| | - Maje Alhaji Haruna
- School of Chemical and Process Engineering, University of Leeds Leeds LS2 9JT UK
| | - Dongsheng Wen
- School of Aeronautic Science and Engineering, Beihang University Beijing 100191 China.,School of General Engineering, Beihang University Beijing 100191 China .,School of Chemical and Process Engineering, University of Leeds Leeds LS2 9JT UK
| |
Collapse
|