1
|
Wang M, Ou WC, Yu ZT. Porous Silicon-Supported Catalytic Materials for Energy Conversion and Storage. CHEMSUSCHEM 2025; 18:e202401459. [PMID: 39269735 DOI: 10.1002/cssc.202401459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/15/2024]
Abstract
Porous silicon (Si) has a tetrahedral structure similar to that of sp3-hybridized carbon atoms in a typical diamond structure, which affords it unique chemical and physical properties including an adjustable intrinsic bandgap, a high-speed carrier transfer efficiency. It has shown great potential in photocatalysis, rechargeable batteries, solar cells, detectors, and electrocatalysis. This review introduces various porous Si-supported electrocatalysts and analyzes the reasons why porous Si is used as a new carrier/active sites from the perspectives of its molecular structure, electronic properties, synthesis methods, etc. The electrochemical applications of porous Si-based electrocatalysts in energy conversion reactions such as hydrogen evolution reaction, oxygen evolution reaction, oxygen reduction reaction, and total water decomposition together with lithium-ion battery and supercapacitor in energy storage are summarized. The challenges and future research directions for porous Si are also discussed. This review aims to deepen the understanding of porous Si and promote the development and applications of this new type of Si material.
Collapse
Affiliation(s)
- Man Wang
- National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory for Nanotechnology, College of Engineering and Applied Sciences, Nanjing University, 210093, Nanjing, China
| | - Wei-Cheng Ou
- National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory for Nanotechnology, College of Engineering and Applied Sciences, Nanjing University, 210093, Nanjing, China
| | - Zhen-Tao Yu
- National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory for Nanotechnology, College of Engineering and Applied Sciences, Nanjing University, 210093, Nanjing, China
| |
Collapse
|
2
|
Carvalho A, Nair V, Echeverrigaray SG, Castro Neto AH. High Capacity NbS 2-Based Anodes for Li-Ion Batteries. ACS OMEGA 2024; 9:33912-33918. [PMID: 39130587 PMCID: PMC11307310 DOI: 10.1021/acsomega.4c04118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/27/2024] [Accepted: 07/09/2024] [Indexed: 08/13/2024]
Abstract
We have investigated the lithium capacity of the 2H phase of niobium sulfide (NbS2) using density functional theory calculations and experiments. Theoretically, this material is found to allow the intercalation of a double layer of Li in between each NbS2 layer when in equilibrium with metal Li. The resulting specific capacity (340.8 mAh/g for the pristine material, 681.6 mAh/g for oxidized material) can reach more than double the specific capacity of graphite anodes. The presence of various defects leads to an even higher capacity with a partially reversible conversion of the material, indicating that the performance of the anodes is robust with respect to the presence of defects. Experiments in battery prototypes with NbS2-based anodes find a first specific capacity of about 1,130 mAh/g, exceeding the theoretical predictions.
Collapse
Affiliation(s)
- Alexandra Carvalho
- Institute
for Functional Intelligent Materials, National
University of Singapore, 117544, Singapore
| | - Vivek Nair
- CRADLE
Singapore, Hyundai Motor Innovation Center
in, 649674, Singapore
| | | | - Antonio H. Castro Neto
- Centre
for Advanced 2D Materials, National University
of Singapore, 117546, Singapore
- Department
of Materials Science Engineering, National
University of Singapore, 117575, Singapore
- Institute
for Functional Intelligent Materials, National
University of Singapore, 117544, Singapore
| |
Collapse
|
3
|
Maddipatla R, Loka C, Lee KS. Exploring the Potential of Carbonized Nano-Si within G@C@Si Anodes for Lithium-Ion Rechargeable Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58437-58450. [PMID: 38079573 DOI: 10.1021/acsami.3c14115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
This study presents the synthesis, characterization, and electrochemical performance evaluation of carbon@silicon (C@Si) and graphite@carbon@silicon (G@C@Si) nanocomposites as potential anode materials for lithium-ion batteries (LIBs). Employing a combination of mechanical milling and carbonization using citric acid, we developed nanocomposites exhibiting unique core-shell structures, as confirmed by detailed SEM and TEM analysis. The G@C@Si nanocomposite displayed superior electrochemical performance, delivering an initial discharge capacity of 1724 mAh g-1 and a high initial Coulombic efficiency of 87.37%. The nanocomposite demonstrated remarkable cycling durability with a discharge capacity of 1248 mAh g-1 over 200 cycles and an average Coulombic efficiency of 99.1% and high-capacity retention of about 83%. Notably, a high capacity of 1325 mAh g-1 was observed at a high 3C rate, and the electrode showed excellent resilience by rapidly recovering to a discharge capacity of 1637 mAh g-1 when the C rate was reduced back to 0.5C. Electrochemical impedance spectra revealed a reduced charge transfer resistance of approximately 43 Ω in the G@C@Si nanocomposite as compared to that of C@Si (∼56 Ω) and nano-Si (105 Ω), indicating enhanced lithium-ion diffusion due to the integration of graphite. Postcycle electrode analysis revealed excellent structural integrity, with minimized volume changes in both C@Si and G@C@Si. XPS studies revealed a thinner SEI layer formation in the G@C@Si electrode compared to C@Si. The C@Si core-shell formation through the citric acid treatment of nano-Si and integration of graphite by mechanical milling significantly boosts the electrochemical performance of the G@C@Si nanocomposite. These findings suggest that the G@C@Si nanocomposite offers immense potential for utilization in high-capacity and high-efficiency LIBs.
Collapse
Affiliation(s)
- Reddyprakash Maddipatla
- Department of Advanced Materials Engineering, Kongju National University, Cheonan 31080, Republic of Korea
| | - Chadrasekhar Loka
- Department of Advanced Materials Engineering, Kongju National University, Cheonan 31080, Republic of Korea
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, Braga 4715-330, Portugal
| | - Kee-Sun Lee
- Department of Advanced Materials Engineering, Kongju National University, Cheonan 31080, Republic of Korea
| |
Collapse
|
4
|
Liu G, Liu X, Ma X, Tang X, Zhang X, Dong J, Ma Y, Zang X, Cao N, Shao Q. High-Performance Dual-Ion Battery Based on Silicon-Graphene Composite Anode and Expanded Graphite Cathode. Molecules 2023; 28:molecules28114280. [PMID: 37298755 DOI: 10.3390/molecules28114280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Dual-ion batteries (DIBs) are a new kind of energy storage device that store energy involving the intercalation of both anions and cations on the cathode and anode simultaneously. They feature high output voltage, low cost, and good safety. Graphite was usually used as the cathode electrode because it could accommodate the intercalation of anions (i.e., PF6-, BF4-, ClO4-) at high cut-off voltages (up to 5.2 V vs. Li+/Li). The alloying-type anode of Si can react with cations and boost an extreme theoretic storage capacity of 4200 mAh g-1. Therefore, it is an efficient method to improve the energy density of DIBs by combining graphite cathodes with high-capacity silicon anodes. However, the huge volume expansion and poor electrical conductivity of Si hinders its practical application. Up to now, there have been only a few reports about exploring Si as an anode in DIBs. Herein, we prepared a strongly coupled silicon and graphene composite (Si@G) anode through in-situ electrostatic self-assembly and a post-annealing reduction process and investigated it as an anode in full DIBs together with home-made expanded graphite (EG) as a fast kinetic cathode. Half-cell tests showed that the as-prepared Si@G anode could retain a maximum specific capacity of 1182.4 mAh g-1 after 100 cycles, whereas the bare Si anode only maintained 435.8 mAh g-1. Moreover, the full Si@G//EG DIBs achieved a high energy density of 367.84 Wh kg-1 at a power density of 855.43 W kg-1. The impressed electrochemical performances could be ascribed to the controlled volume expansion and improved conductivity as well as matched kinetics between the anode and cathode. Thus, this work offers a promising exploration for high energy DIBs.
Collapse
Affiliation(s)
- Guoshun Liu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xuhui Liu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xingdong Ma
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiaoqi Tang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiaobin Zhang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Jianxia Dong
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Yunfei Ma
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiaobei Zang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Ning Cao
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Qingguo Shao
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
5
|
Li H, Lai Y, Li H, Yang Q, Yang Z, Zheng Z, Liu Y, Sun Y, Zhong B, Wu Z, Guo X. The Size Effects of Si Particles on the Final Si@C Composite Anode. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Haodong Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yizhu Lai
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Haoyu Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Qing Yang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Zhiwei Yang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Zhuo Zheng
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, PR China
| | - Yang Liu
- School of Materials Science and Engineering, Henan Normal University, Xinxiang, Henan 453007 PR China
| | - Yan Sun
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Benhe Zhong
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Zhenguo Wu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Xiaodong Guo
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| |
Collapse
|
6
|
Strategies for Controlling or Releasing the Influence Due to the Volume Expansion of Silicon inside Si-C Composite Anode for High-Performance Lithium-Ion Batteries. MATERIALS 2022; 15:ma15124264. [PMID: 35744323 PMCID: PMC9228666 DOI: 10.3390/ma15124264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 02/01/2023]
Abstract
Currently, silicon is considered among the foremost promising anode materials, due to its high capacity, abundant reserves, environmental friendliness, and low working potential. However, the huge volume changes in silicon anode materials can pulverize the material particles and result in the shedding of active materials and the continual rupturing of the solid electrolyte interface film, leading to a short cycle life and rapid capacity decay. Therefore, the practical application of silicon anode materials is hindered. However, carbon recombination may remedy this defect. In silicon/carbon composite anode materials, silicon provides ultra-high capacity, and carbon is used as a buffer, to relieve the volume expansion of silicon; thus, increasing the use of silicon-based anode materials. To ensure the future utilization of silicon as an anode material in lithium-ion batteries, this review considers the dampening effect on the volume expansion of silicon particles by the formation of carbon layers, cavities, and chemical bonds. Silicon-carbon composites are classified herein as coated core-shell structure, hollow core-shell structure, porous structure, and embedded structure. The above structures can adequately accommodate the Si volume expansion, buffer the mechanical stress, and ameliorate the interface/surface stability, with the potential for performance enhancement. Finally, a perspective on future studies on Si-C anodes is suggested. In the future, the rational design of high-capacity Si-C anodes for better lithium-ion batteries will narrow the gap between theoretical research and practical applications.
Collapse
|
7
|
Large areal capacity all-in-one lithium-ion battery based on boron-doped silicon/carbon hybrid anode material and cellulose framework. J Colloid Interface Sci 2022; 612:679-688. [PMID: 35032925 DOI: 10.1016/j.jcis.2022.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/28/2021] [Accepted: 01/03/2022] [Indexed: 01/09/2023]
Abstract
Si, featuring ultra-large theoretical specific capacity, is a very promising alternative to graphite for Li-ion batteries (LIBs). However, Si suffers from intrinsic low electrical conductivity and structural instability upon lithiation, thereby severely deteriorating its electrochemical performance. To address these issues, B-doping into Si, N-doped carbon coating layer, and carbon nanotube conductive network are combined in this work. The obtained Si/C hybrid anode material can be "grown" onto the Cu foil without using any binder and delivers large specific capacity (2328 mAh g-1 at 0.2 A g-1), great rate capability (1296.8 mAh g-1 at 4 A g-1), and good cyclability (76.7% capacity retention over 500 cycles). Besides, a cellulose separator derived from cotton is found to be superior to traditional polypropylene separator. By using cellulose as both the separator host and the mechanical skeleton of two electrodes, a flexible all-in-one paper-like LIB is assembled via a facile layer-by-layer filtration method. In this all-in-one LIB, all the components are integrated together with robust interfaces. This LIB is able to offer commercial-level areal capacity of 3.47 mAh cm-2 (corresponding to 12.73 mWh cm-2 and 318.3 mWh cm-3) and good cycling stability even under bending. This study offers a new route for optimizing Si-based anode materials and constructing flexible energy storage devices with a large areal capacity.
Collapse
|