1
|
Balboa-Palomino A, Páramo-García U, Melo-Banda JA, Verde-Gómez JY, Gallardo-Rivas NV. Effect of Graphene Oxide Addition on the Properties of Electrochemically Synthesized Polyaniline-Graphene Oxide Films. Polymers (Basel) 2024; 16:1677. [PMID: 38932027 PMCID: PMC11207796 DOI: 10.3390/polym16121677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
In this work, the electrochemical synthesis of PANI and GO-modified PANI was performed using cyclic voltammetry, varying the amount of GO, 1 mg (PG1), 5 mg (PG5), and 10 mg (PG10) to analyze the effect of the amount of GO on the composite. PANI, PG1, PG5, and PG10 materials were characterized using optical microscopy, SEM, UV-vis, FTIR, Raman, and wettability. A stability test was also carried out by putting the materials to 500 oxidation-reduction cycles using cyclic voltammetry. The synthesis method allowed GO in PANI to be added through a chemical interaction between the two compounds. It was also found that the addition of GO led to an improvement in the hydrophilic character of the composite, which would lead to an improvement in the diffusion of reagents/species when the composites are used in aqueous media processes. The results of the stability test showed that the PG10 material presented a lower % loss of specific capacitance and energy compared with the other materials, which indicates that the GO presence (in the amount specified) improves the stability of the PANI. The PG10 material showed favorable and promising conditions for its use in fuel cell and battery processes.
Collapse
Affiliation(s)
- Armando Balboa-Palomino
- División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/Instituto Tecnológico de Ciudad Madero, Av. 1° de Mayo, Ciudad Madero C. P. 89440, Mexico; (A.B.-P.); (J.A.M.-B.); (N.V.G.-R.)
| | - Ulises Páramo-García
- División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/Instituto Tecnológico de Ciudad Madero, Av. 1° de Mayo, Ciudad Madero C. P. 89440, Mexico; (A.B.-P.); (J.A.M.-B.); (N.V.G.-R.)
| | - José Aarón Melo-Banda
- División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/Instituto Tecnológico de Ciudad Madero, Av. 1° de Mayo, Ciudad Madero C. P. 89440, Mexico; (A.B.-P.); (J.A.M.-B.); (N.V.G.-R.)
| | - José Ysmael Verde-Gómez
- División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/Instituto Tecnológico de Cancún, Av. Kabah km. 3, Cancún C. P. 77500, Mexico;
| | - Nohra Violeta Gallardo-Rivas
- División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/Instituto Tecnológico de Ciudad Madero, Av. 1° de Mayo, Ciudad Madero C. P. 89440, Mexico; (A.B.-P.); (J.A.M.-B.); (N.V.G.-R.)
| |
Collapse
|
2
|
Du K, Shi P, Zhang D, Xiao Y, Zhang S. Polydopamine-Anchored Cellulose Nanofiber Flexible Aerogel with High Charge Transfer as a Substrate for Conductive Materials. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30314-30323. [PMID: 38809660 DOI: 10.1021/acsami.4c06367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
In order to obtain a flexible aerogel substrate for conductive materials used in the electrode, polydopamine-anchored cellulose nanofiber (PDA@CNF) was introduced into a polyethylene imine-poly(vinyl alcohol) (PEI-PVA) cross-linking network which used 4-formylphenylboronic acid (4FPBA) as bridge. The incorporation of rigid CNF as a structural scaffold effectively improved the pore architecture of the aerogel, potentially providing substantial advantages for the infiltration and deposition of conductive materials. Additionally, the outstanding stability and flexibility exhibited by the aerogel in aqueous solutions suggest its significant potential for applications in flexible electrodes. Furthermore, electrochemical experiments showed that the rapid pathway formed between PDA and PEI could enhance the charge-transfer rate within the aerogel substrate. It is anticipated that such an enhancement would significantly benefit the electrochemical attributes of the electrode. Inspired by mussels, our introduced PDA-anchored rigid CNF into flexible polymer networks to fabricate aerogel substrates for electrode materials. This study would contribute to the development and utilization of flexible electrodes while reducing carbon footprint in energy production and conversion processes.
Collapse
Affiliation(s)
- Keke Du
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Pengcheng Shi
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Dongyan Zhang
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yiyan Xiao
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Shuangbao Zhang
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
3
|
Zhong Y, Lin Q, Yu H, Shao L, Cui X, Pang Q, Zhu Y, Hou R. Construction methods and biomedical applications of PVA-based hydrogels. Front Chem 2024; 12:1376799. [PMID: 38435666 PMCID: PMC10905748 DOI: 10.3389/fchem.2024.1376799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Abstract
Polyvinyl alcohol (PVA) hydrogel is favored by researchers due to its good biocompatibility, high mechanical strength, low friction coefficient, and suitable water content. The widely distributed hydroxyl side chains on the PVA molecule allow the hydrogels to be branched with various functional groups. By improving the synthesis method and changing the hydrogel structure, PVA-based hydrogels can obtain excellent cytocompatibility, flexibility, electrical conductivity, viscoelasticity, and antimicrobial properties, representing a good candidate for articular cartilage restoration, electronic skin, wound dressing, and other fields. This review introduces various preparation methods of PVA-based hydrogels and their wide applications in the biomedical field.
Collapse
Affiliation(s)
- Yi Zhong
- Zhejiang Key Laboratory of Pathophysiology, Department of Cell Biology and Regenerative Medicine, Health Science Center, Ningbo University, Ningbo, China
| | - Qi Lin
- Zhejiang Key Laboratory of Pathophysiology, Department of Cell Biology and Regenerative Medicine, Health Science Center, Ningbo University, Ningbo, China
| | - Han Yu
- Zhejiang Key Laboratory of Pathophysiology, Department of Cell Biology and Regenerative Medicine, Health Science Center, Ningbo University, Ningbo, China
| | - Lei Shao
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo, China
| | - Xiang Cui
- Department of Otorhinolaryngology, Lihuili Hospital of Ningbo University, Ningbo, China
| | - Qian Pang
- Zhejiang Key Laboratory of Pathophysiology, Department of Cell Biology and Regenerative Medicine, Health Science Center, Ningbo University, Ningbo, China
| | - Yabin Zhu
- Zhejiang Key Laboratory of Pathophysiology, Department of Cell Biology and Regenerative Medicine, Health Science Center, Ningbo University, Ningbo, China
| | - Ruixia Hou
- Zhejiang Key Laboratory of Pathophysiology, Department of Cell Biology and Regenerative Medicine, Health Science Center, Ningbo University, Ningbo, China
| |
Collapse
|
4
|
Chu X, Yang W, Li H. Recent advances in polyaniline-based micro-supercapacitors. MATERIALS HORIZONS 2023; 10:670-697. [PMID: 36598367 DOI: 10.1039/d2mh01345b] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The rapid development of the Internet of Things (IoTs) and proliferation of wearable electronics have significantly stimulated the pursuit of distributed power supply systems that are small and light. Accordingly, micro-supercapacitors (MSCs) have recently attracted tremendous research interest due to their high power density, good energy density, long cycling life, and rapid charge/discharge rate delivered in a limited volume and area. As an emerging class of electrochemical energy storage devices, MSCs using polyaniline (PANI) electrodes are envisaged to bridge the gap between carbonaceous MSCs and micro-batteries, leading to a high power density together with improved energy density. However, despite the intensive development of PANI-based MSCs in the past few decades, a comprehensive review focusing on the chemical properties and synthesis of PANI, working mechanisms, design principles, and electrochemical performances of MSCs is lacking. Thus, herein, we summarize the recent advances in PANI-based MSCs using a wide range of electrode materials. Firstly, the fundamentals of MSCs are outlined including their working principle, device design, fabrication technology, and performance metrics. Then, the working principle and synthesis methods of PANI are discussed. Afterward, MSCs based on various PANI materials including pure PANI, PANI hydrogel, and PANI composites are discussed in detail. Lastly, concluding remarks and perspectives on their future development are presented. This review can present new ideas and give rise to new opportunities for the design of high-performance miniaturized PANI-based MSCs that underpin the sustainable prosperity of the approaching IoTs era.
Collapse
Affiliation(s)
- Xiang Chu
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 639798, Singapore.
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China.
| | - Weiqing Yang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China.
| | - Hong Li
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 639798, Singapore.
| |
Collapse
|
5
|
Etman A, Ibrahim A, Darwish F, Qasim K. A 10 years-developmental study on conducting polymers composites for supercapacitors electrodes: a review for extensive data interpretation. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
6
|
Miao X, Chen Q, Liu Y, Zhang X, Chen Y, Lin J, Chen S, Zhang Y. Performance comparison of electro-polymerized polypyrrole and polyaniline as cathodes for iodine redox reaction in zinc-iodine batteries. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Postolache M, Dimitriu DG, Nechifor CD, Condurache Bota S, Closca V, Dorohoi DO. Birefringence of Thin Uniaxial Polymer Films Estimated Using the Light Polarization Ellipse. Polymers (Basel) 2022; 14:polym14051063. [PMID: 35267886 PMCID: PMC8914837 DOI: 10.3390/polym14051063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 11/17/2022] Open
Abstract
A simple method for determining the linear birefringence of the thin layers based on the determination of the orientation of the polarization ellipse of totally polarized light is proposed and it is applied to PVA thin foils. Theoretical notions and the experimental procedure are described. The linear birefringence of polymer thin foils with different degrees of stretching is determined and the applicability of the method is discussed.
Collapse
Affiliation(s)
- Mihai Postolache
- Faculty of Automatic Control and Computer Engineering, Gheorghe Asachi Technical University, 700050 Iasi, Romania;
| | - Dan Gheorghe Dimitriu
- Faculty of Physics, Alexandru Ioan Cuza University, 700506 Iasi, Romania; (V.C.); (D.O.D.)
- Correspondence: ; Tel.: +40-757-039815
| | - Cristina Delia Nechifor
- Faculty of Machine Manufacturing and Industrial Management, “Gheorghe Asachi” Technical University, 700050 Iasi, Romania;
| | | | - Valentina Closca
- Faculty of Physics, Alexandru Ioan Cuza University, 700506 Iasi, Romania; (V.C.); (D.O.D.)
- Department of Science, Eudoxiu Hurmuzachi National College, 725400 Radauti, Romania
| | - Dana Ortansa Dorohoi
- Faculty of Physics, Alexandru Ioan Cuza University, 700506 Iasi, Romania; (V.C.); (D.O.D.)
| |
Collapse
|