1
|
G S SG, Abraham N, R S H, S R, Xavier TS. Optimization studies on output stabilization time and graphene oxide concentration in graphene-based flexible micro-supercapacitor. NANOTECHNOLOGY 2024; 36:085401. [PMID: 39608019 DOI: 10.1088/1361-6528/ad983a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/28/2024] [Indexed: 11/30/2024]
Abstract
Miniature energy storage devices are vital for developing flexible and wearable electronics. This paper discusses the fabrication of flexible laser-induced graphene-based micro-supercapacitors (MSCs) using graphene oxide (GO) coated polyimide film as the precursor for laser scribing. The areal capacitance of the MSCs was assessed daily after applying a H2SO4/polyvinyl alcohol (PVA) gel electrolyte. The capacitance displayed a substantial increase in the early days before stabilizing at a consistent value. The stabilization time was evaluated through systematic experimentation conducted over ten consecutive days. The experiments showed that the capacitance stabilized after six days. Various concentrations of GO were used to assemble the MSCs, and their performance was evaluated to determine the optimal concentration. The electrochemical impedance spectroscopy revealed that the supercapacitor fabricated with the optimum concentration of GO exhibited the lowest resistance. The optimized MSC displayed an areal capacitance of 10.07 mF cm-2at a current density of 13µA cm-2. The device could maintain a reliable output at different bending states and retain 87.9% of its original capacitance after 5000 charge-discharge cycles, highlighting its suitability for flexible and self-powered systems.
Collapse
Affiliation(s)
- Sangeetha Gopan G S
- Department of ECE, College of Engineering Trivandrum, Thiruvananthapuram, Kerala 695016, India
- APJ Abdul Kalam Technological University, Thiruvananthapuram Kerala 695016, India
| | - Nelsa Abraham
- APJ Abdul Kalam Technological University, Thiruvananthapuram Kerala 695016, India
- Department of ECE, Rajiv Gandhi Institute of Technology, Kottayam, Kerala 686501, India
| | - Harikrishnan R S
- Department of Mechanical Engineering, College of Engineering Trivandrum, Thiruvananthapuram, Kerala 695016, India
| | - Rani S
- APJ Abdul Kalam Technological University, Thiruvananthapuram Kerala 695016, India
- Department of Mechanical Engineering, College of Engineering Trivandrum, Thiruvananthapuram, Kerala 695016, India
| | - T S Xavier
- Department of Physics, Govt. College for Women, Thiruvananthapuram, Kerala 695014, India
| |
Collapse
|
2
|
Pazhamalai P, Krishnan V, Mohamed Saleem MS, Kim SJ, Seo HW. Investigating composite electrode materials of metal oxides for advanced energy storage applications. NANO CONVERGENCE 2024; 11:30. [PMID: 39080114 PMCID: PMC11289214 DOI: 10.1186/s40580-024-00437-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/07/2024] [Indexed: 08/02/2024]
Abstract
Electrochemical energy systems mark a pivotal advancement in the energy sector, delivering substantial improvements over conventional systems. Yet, a major challenge remains the deficiency in storage technology to effectively retain the energy produced. Amongst these are batteries and supercapacitors, renowned for their versatility and efficiency, which depend heavily on the quality of their electrode materials. Metal oxide composites, in particular, have emerged as highly promising due to the synergistic effects that significantly enhance their functionality and efficiency beyond individual components. This review explores the application of metal oxide composites in the electrodes of batteries and SCs, focusing on various material perspectives and synthesis methodologies, including exfoliation and hydrothermal/solvothermal processes. It also examines how these methods influence device performance. Furthermore, the review confronts the challenges and charts future directions for metal oxide composite-based energy storage systems, critically evaluating aspects such as scalability of synthesis, cost-effectiveness, environmental sustainability, and integration with advanced nanomaterials and electrolytes. These factors are crucial for advancing next-generation energy storage technologies, striving to enhance performance while upholding sustainability and economic viability.
Collapse
Affiliation(s)
- Parthiban Pazhamalai
- Nanomaterials & System Laboratory, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, South Korea
- Research Institute of New Energy Industry (RINEI), Jeju National University, Jeju, 63243, South Korea
| | - Vignesh Krishnan
- Nanomaterials & System Laboratory, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, South Korea
| | - Mohamed Sadiq Mohamed Saleem
- Nanomaterials & System Laboratory, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, South Korea
| | - Sang-Jae Kim
- Nanomaterials & System Laboratory, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, South Korea.
- Research Institute of New Energy Industry (RINEI), Jeju National University, Jeju, 63243, South Korea.
- Nanomaterials & System Lab, Major of Mechanical System Engineering, College of Engineering, Jeju National University, Jeju, 63243, South Korea.
| | - Hye-Won Seo
- Department of Physics, Jeju National University, Jeju, 63243, South Korea.
| |
Collapse
|
3
|
Hwang JJ, Chen PY, Luo KH, Wang YC, Lai TY, Balitaan JNI, Lin SR, Yeh JM. Leaf on a Film: Mesoporous Silica-Based Epoxy Composites with Superhydrophobic Biomimetic Surface Structure as Anti-Corrosion and Anti-Biofilm Coatings. Polymers (Basel) 2024; 16:1673. [PMID: 38932022 PMCID: PMC11207373 DOI: 10.3390/polym16121673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
In this study, a series of amine-modified mesoporous silica (AMS)-based epoxy composites with superhydrophobic biomimetic structure surface of Xanthosoma sagittifolium leaves (XSLs) were prepared and applied as anti-corrosion and anti-biofilm coatings. Initially, the AMS was synthesized by the base-catalyzed sol-gel reaction of tetraethoxysilane (TEOS) and triethoxysilane (APTES) through a non-surfactant templating route. Subsequently, a series of AMS-based epoxy composites were prepared by performing the ring-opening polymerization of DGEBA with T-403 in the presence of AMS spheres, followed by characterization through FTIR, TEM, and CA. Furthermore, a nano-casting technique with polydimethylsiloxane (PDMS) as the soft template was utilized to transfer the surface pattern of natural XSLs to AMS-based epoxy composites, leading to the formation of AMS-based epoxy composites with biomimetic structure. From a hydrophilic CA of 69°, the surface of non-biomimetic epoxy significantly increased to 152° upon introducing XSL surface structure to the AMS-based epoxy composites. Based on the standard electrochemical anti-corrosion and anti-biofilm measurements, the superhydrophobic BEAMS3 composite was found to exhibit a remarkable anti-corrosion efficiency of ~99% and antimicrobial efficacy of 82% as compared to that of hydrophilic epoxy coatings.
Collapse
Affiliation(s)
- Jiunn-Jer Hwang
- Department of Health and Nutrition & Chemical Engineering, Army Academy, Chung Li 320316, Taiwan;
- Center for General Education, Chung Yuan Christian University, Chung Li 320314, Taiwan
| | - Pei-Yu Chen
- Department of Chemistry, Chung Yuan Christian University, Chung Li 320314, Taiwan
| | - Kun-Hao Luo
- Department of Chemistry, Chung Yuan Christian University, Chung Li 320314, Taiwan
| | - Yung-Chin Wang
- Department of Chemistry, Chung Yuan Christian University, Chung Li 320314, Taiwan
| | - Ting-Ying Lai
- Department of Chemistry, Chung Yuan Christian University, Chung Li 320314, Taiwan
| | - Jolleen Natalie I. Balitaan
- Department of Chemistry and Research Center for the Natural and Applied Sciences, University of Santo Tomas, España Boulevard, Manila 1008, Philippines
| | - Shu-Rung Lin
- Department of Bioscience Technology, Chung Yuan Christian University, Chung Li 320314, Taiwan
| | - Jui-Ming Yeh
- Department of Chemistry, Chung Yuan Christian University, Chung Li 320314, Taiwan
| |
Collapse
|
4
|
Shaheen I, Hussain I, Zahra T, Javed MS, Shah SSA, Khan K, Hanif MB, Assiri MA, Said Z, Arifeen WU, Akkinepally B, Zhang K. Recent advancements in metal oxides for energy storage materials: Design, classification, and electrodes configuration of supercapacitor. JOURNAL OF ENERGY STORAGE 2023; 72:108719. [DOI: 10.1016/j.est.2023.108719] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
5
|
Huang JC, Chen-Yang YW, Hwang JJ. Preparation and Characterization of Silica-Based Ionogel Electrolytes and Their Application in Solid-State Lithium Batteries. Polymers (Basel) 2023; 15:3505. [PMID: 37688131 PMCID: PMC10489929 DOI: 10.3390/polym15173505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
In this study, tetraethyl orthosilicate (TEOS) and methyltriethoxysilane (MTES) were used as precursors for silica, combined with the ionic liquid [BMIM-ClO4]. Lithium perchlorate was added as the lithium-ion source, and formic acid was employed as a catalyst to synthesize silica ionogel electrolytes via the sol-gel method. FT-IR and NMR identified the self-prepared ionic liquid [BMIM-ClO4], and its electrochemical window was determined using linear sweep voltammetry (LSV). The properties of the prepared silica ionogel electrolytes were further investigated through FT-IR, DSC, and 29Si MAS NMR measurements, followed by electrochemical property measurements, including conductivity, electrochemical impedance spectroscopy (EIS), LSV, and charge-discharge tests. The experimental results showed that adding methyltriethoxysilane (MTES) enhanced the mechanical strength of the silica ionogel electrolyte, simplifying its preparation process. The prepared silica ionogel electrolyte exhibited a high ionic conductivity of 1.65 × 10-3 S/cm. In the LSV test, the silica ionogel electrolyte demonstrated high electrochemical stability, withstanding over 5 V without oxidative decomposition. Finally, during the discharge-charge test, the second-cycle capacity reached 108.7 mAh/g at a discharge-charge rate of 0.2 C and a temperature of 55 °C.
Collapse
Affiliation(s)
- Ji-Cong Huang
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan;
- Department of Chemistry, Chung Yuan Christian University, Chung Li 32023, Taiwan;
| | - Yui Whei Chen-Yang
- Department of Chemistry, Chung Yuan Christian University, Chung Li 32023, Taiwan;
| | - Jiunn-Jer Hwang
- Department of Chemical Engineering, Army Academy, Chung Li 32092, Taiwan
- Center for General Education, Chung Yuan Christian University, Chung Li 32023, Taiwan
| |
Collapse
|
6
|
Shanmuganathan MAA, Raghavan A, Ghosh S. Recent progress in polyaniline-based composites as electrode materials for pliable supercapacitors. Phys Chem Chem Phys 2023; 25:7611-7628. [PMID: 36877126 DOI: 10.1039/d2cp05217b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Significant contributions have been made towards the development of flexible energy storage devices to meet the ever-growing energy demand. Flexibility, mechanical stability, and electrical conductivity are three critical qualities that distinguish conducting polymers from other materials. Polyaniline (PANI) has drawn considerable attention among the various conducting polymers for use in flexible supercapacitors. PANI offers several desirable properties including high porosity, a large surface area, and high conductivity. Despite its merits, it also suffers from poor cyclic stability, low mechanical strength, and notable discrepancy between theoretical and actual capacitance. These shortcomings have been addressed by creating composites of PANI with structurally sturdy elements such as graphene, carbon nanotubes (CNTs), metal-organic framework (MOFs), MXenes, etc., thus enhancing the performance of supercapacitors. This review outlines the several schemes adopted to prepare diverse binary and ternary composites of PANI as the electrode material for flexible supercapacitors and the significant impact of composite formation on the flexibility and electrochemical performance of the fabricated pliable supercapacitors.
Collapse
Affiliation(s)
| | - Akshaya Raghavan
- Polymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Sutapa Ghosh
- Polymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|