1
|
He Q, Ning J, Chen H, Jiang Z, Wang J, Chen D, Zhao C, Liu Z, Perepichka IF, Meng H, Huang W. Achievements, challenges, and perspectives in the design of polymer binders for advanced lithium-ion batteries. Chem Soc Rev 2024; 53:7091-7157. [PMID: 38845536 DOI: 10.1039/d4cs00366g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Energy storage devices with high power and energy density are in demand owing to the rapidly growing population, and lithium-ion batteries (LIBs) are promising rechargeable energy storage devices. However, there are many issues associated with the development of electrode materials with a high theoretical capacity, which need to be addressed before their commercialization. Extensive research has focused on the modification and structural design of electrode materials, which are usually expensive and sophisticated. Besides, polymer binders are pivotal components for maintaining the structural integrity and stability of electrodes in LIBs. Polyvinylidene difluoride (PVDF) is a commercial binder with superior electrochemical stability, but its poor adhesion, insufficient mechanical properties, and low electronic and ionic conductivity hinder its wide application as a high-capacity electrode material. In this review, we highlight the recent progress in developing different polymeric materials (based on natural polymers and synthetic non-conductive and electronically conductive polymers) as binders for the anodes and cathodes in LIBs. The influence of the mechanical, adhesion, and self-healing properties as well as electronic and ionic conductivity of polymers on the capacity, capacity retention, rate performance and cycling life of batteries is discussed. Firstly, we analyze the failure mechanisms of binders based on the operation principle of lithium-ion batteries, introducing two models of "interface failure" and "degradation failure". More importantly, we propose several binder parameters applicable to most lithium-ion batteries and systematically consider and summarize the relationships between the chemical structure and properties of the binder at the molecular level. Subsequently, we select silicon and sulfur active electrode materials as examples to discuss the design principles of the binder from a molecular structure point of view. Finally, we present our perspectives on the development directions of binders for next-generation high-energy-density lithium-ion batteries. We hope that this review will guide researchers in the further design of novel efficient binders for lithium-ion batteries at the molecular level, especially for high energy density electrode materials.
Collapse
Affiliation(s)
- Qiang He
- School of Advanced Materials, Peking University Shenzhen Graduate School, 2199 Lishui Road, Nanshan district, Shenzhen 518055, China.
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China.
| | - Jiaoyi Ning
- Multi-scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies & School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Hongming Chen
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Zhixiang Jiang
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China.
| | - Jianing Wang
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China.
| | - Dinghui Chen
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China.
| | - Changbin Zhao
- School of Advanced Materials, Peking University Shenzhen Graduate School, 2199 Lishui Road, Nanshan district, Shenzhen 518055, China.
| | - Zhenguo Liu
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China.
| | - Igor F Perepichka
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China.
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, M. Strzody Street 9, Gliwice 44-100, Poland
- Centre for Organic and Nanohybrid Electronics (CONE), Silesian University of Technology, S. Konarskiego Street 22b, Gliwice 44-100, Poland
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada
| | - Hong Meng
- School of Advanced Materials, Peking University Shenzhen Graduate School, 2199 Lishui Road, Nanshan district, Shenzhen 518055, China.
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China.
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China.
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
2
|
Yoon J, Lee J, Kim H, Kim J, Jin HJ. Polymeric Binder Design for Sustainable Lithium-Ion Battery Chemistry. Polymers (Basel) 2024; 16:254. [PMID: 38257053 PMCID: PMC10821008 DOI: 10.3390/polym16020254] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/10/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
The design of binders plays a pivotal role in achieving enduring high power in lithium-ion batteries (LIBs) and extending their overall lifespan. This review underscores the indispensable characteristics that a binder must possess when utilized in LIBs, considering factors such as electrochemical, thermal, and dispersion stability, compatibility with electrolytes, solubility in solvents, mechanical properties, and conductivity. In the case of anode materials, binders with robust mechanical properties and elasticity are imperative to uphold electrode integrity, particularly in materials subjected to substantial volume changes. For cathode materials, the selection of a binder hinges on the crystal structure of the cathode material. Other vital considerations in binder design encompass cost effectiveness, adhesion, processability, and environmental friendliness. Incorporating low-cost, eco-friendly, and biodegradable polymers can significantly contribute to sustainable battery development. This review serves as an invaluable resource for comprehending the prerequisites of binder design in high-performance LIBs and offers insights into binder selection for diverse electrode materials. The findings and principles articulated in this review can be extrapolated to other advanced battery systems, charting a course for developing next-generation batteries characterized by enhanced performance and sustainability.
Collapse
Affiliation(s)
- Juhee Yoon
- Program in Environmental and Polymer Engineering, Inha University, Incheon 22212, Republic of Korea; (J.Y.); (H.K.); (J.K.)
| | - Jeonghun Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea;
| | - Hyemin Kim
- Program in Environmental and Polymer Engineering, Inha University, Incheon 22212, Republic of Korea; (J.Y.); (H.K.); (J.K.)
| | - Jihyeon Kim
- Program in Environmental and Polymer Engineering, Inha University, Incheon 22212, Republic of Korea; (J.Y.); (H.K.); (J.K.)
| | - Hyoung-Joon Jin
- Program in Environmental and Polymer Engineering, Inha University, Incheon 22212, Republic of Korea; (J.Y.); (H.K.); (J.K.)
- Department of Polymer Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
3
|
Hwang JH, Kim E, Lim EY, Lee W, Kim J, Choi I, Kim YS, Kim D, Lee JH, Lee J. A Multifunctional Interlocked Binder with Synergistic In Situ Covalent and Hydrogen Bonding for High-Performance Si Anode in Li-ion Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302144. [PMID: 37587798 PMCID: PMC10602578 DOI: 10.1002/advs.202302144] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/19/2023] [Indexed: 08/18/2023]
Abstract
Silicon has garnered significant attention as a promising anode material for high-energy density Li-ion batteries. However, Si can be easily pulverized during cycling, which results in the loss of electrical contact and ultimately shortens battery lifetime. Therefore, the Si anode binder is developed to dissipate the enormous mechanical stress of the Si anode with enhanced mechanical properties. However, the interfacial stability between the Si anode binder and Cu current collector should also be improved. Here, a multifunctional thiourea polymer network (TUPN) is proposed as the Si anode binder. The TUPN binder provides the structural integrity of the Si anode with excellent tensile strength and resilience due to the epoxy-amine and silanol-epoxy covalent cross-linking, while exhibiting high extensibility from the random coil chains with the hydrogen bonds of thiourea, oligoether, and isocyanurate moieties. Furthermore, the robust TUPN binder enhances the interfacial stability between the Si anode and current collector by forming a physical interaction. Finally, the facilitated Li-ion transport and improved electrolyte wettability are realized due to the polar oligoether, thiourea, and isocyanurate moieties, respectively. The concept of this work is to highlight providing directions for the design of polymer binders for next-generation batteries.
Collapse
Affiliation(s)
- Jae Hyuk Hwang
- Advanced Materials DivisionKorea Research Institute of Chemical Technology141 Gajeong‐ro, Yuseong‐guDaejeon34114Republic of Korea
- School of Chemical and Biological Engineering and Institute of Chemical ProcessesSeoul National University599 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Eunji Kim
- School of Chemical EngineeringPusan National University2, Busandaehak‐ro 63beon‐gil, Geumjeong‐guBusan46421Republic of Korea
| | - Eun Young Lim
- School of Chemical EngineeringPusan National University2, Busandaehak‐ro 63beon‐gil, Geumjeong‐guBusan46421Republic of Korea
| | - Woohwa Lee
- Advanced Materials DivisionKorea Research Institute of Chemical Technology141 Gajeong‐ro, Yuseong‐guDaejeon34114Republic of Korea
| | - Ji‐Oh Kim
- School of Chemical EngineeringPusan National University2, Busandaehak‐ro 63beon‐gil, Geumjeong‐guBusan46421Republic of Korea
| | - Inhye Choi
- School of Chemical EngineeringPusan National University2, Busandaehak‐ro 63beon‐gil, Geumjeong‐guBusan46421Republic of Korea
| | - Yong Seok Kim
- Advanced Materials DivisionKorea Research Institute of Chemical Technology141 Gajeong‐ro, Yuseong‐guDaejeon34114Republic of Korea
- Advanced Materials and Chemical Engineering, KRICT SchoolUniversity of Science and Technology217 Gajeong‐ro, Yuseong‐guDaejeon34114Republic of Korea
| | - Dong‐Gyun Kim
- Advanced Materials DivisionKorea Research Institute of Chemical Technology141 Gajeong‐ro, Yuseong‐guDaejeon34114Republic of Korea
- Advanced Materials and Chemical Engineering, KRICT SchoolUniversity of Science and Technology217 Gajeong‐ro, Yuseong‐guDaejeon34114Republic of Korea
| | - Jin Hong Lee
- School of Chemical EngineeringPusan National University2, Busandaehak‐ro 63beon‐gil, Geumjeong‐guBusan46421Republic of Korea
| | - Jong‐Chan Lee
- School of Chemical and Biological Engineering and Institute of Chemical ProcessesSeoul National University599 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| |
Collapse
|
4
|
Du C, Zhao Y, Li Y. Theoretical Derivation of the Effect of Bonding Current on the Bonding Interface during Anodic Bonding of PEG-Based Encapsulation Materials and Aluminum. Polymers (Basel) 2023; 15:polym15040913. [PMID: 36850196 PMCID: PMC9965209 DOI: 10.3390/polym15040913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/04/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
This study analyzed the mechanism underlying the effect of the bonding current on the bonding interface during anodic bonding on the basis of the anodic bonding of PEG (polyethylene glycol)-based encapsulation materials and Al. By establishing an equivalent electrical model, the effects of various electrical parameters on the dynamic performance of the bonding current were evaluated, and the change law of the bonding current transfer function was analyzed. By examining the gap deformation model, the conditions for contact between the interface gaps and the bonding current pair were determined, and the influence law of the gap deformation of the bonding interface was derived. By assessing the effect of the bonding current on the ionic behavior, we found that the larger the bonding current, the greater the number of activated mobile ions in the bonding material and the higher the field strength in the cation depletion area. From the anodic bonding experiments, it was found that increasing the bonding voltage can increase the peak current and improve the bonding efficiency. The SEM image after bonding shows that the bonding interface had no obvious defects; the higher bonding voltage can result in a thicker bonding layer.
Collapse
Affiliation(s)
- Chao Du
- Department of Materials Science and Engineering, Jinzhong University, Jinzhong 030600, China
- Shanxi Province Collaborative Innovation Center for Light Materials Modification and Application, Jinzhong 030600, China
| | - Yali Zhao
- Department of Materials Science and Engineering, Jinzhong University, Jinzhong 030600, China
- Shanxi Province Collaborative Innovation Center for Light Materials Modification and Application, Jinzhong 030600, China
- Correspondence:
| | - Yong Li
- Department of Materials Science and Engineering, Jinzhong University, Jinzhong 030600, China
- Shanxi Province Collaborative Innovation Center for Light Materials Modification and Application, Jinzhong 030600, China
| |
Collapse
|