1
|
Ge H, Wang X, Bai S, Bi Y, Liu F, Sun J, Fu W, Xu D. Dual pH- and Temperature-Responsive Performance and Cytotoxicity of N-Isopropylacrylamide and Acrylic Acid Functionalized Bimodal Mesoporous Silicas with Core-Shell Structure and Fluorescent Feature for Hela Cell. Pharmaceutics 2025; 17:206. [PMID: 40006572 PMCID: PMC11859581 DOI: 10.3390/pharmaceutics17020206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Polymer-coated mesoporous silica nanoparticles have attracted immense research interest in stimuli-responsive drug delivery systems due to their drug-releasing ability on demand at specific sites in response to external or internal signals. However, the relationships between the coated-copolymer encapsulation and drug delivery performance in the hybrid nanocomposites was rarely reported. Therefore, the main objectives of the present work are to explore the cell uptake, cellular internalization, cytotoxicity, and hemolysis performance of the fluorescent hybrid materials with different polymer-encapsulated amounts. Methods: Using (2-(2-aminoethyl)-6-(dimethylamino)-1H-benzo[de]isoquinoline-1,3(2H)-dione)-doped poly[(N-isopropylacrylamide)-co-(acrylic acid)] (PAN) as a shell and bimodal mesoporous silicas (BMMs) as a core, the dual pH- and temperature-responsive mesoporous PAN@M-BMMs with the fluorescent performances were synthesized via a radical polymerization approach. The effects of the PAN-coated thicknesses on their physicochemical properties and structural features were demonstrated via XRD and SAXS patterns, SEM and TEM images, FT-IR spectra, and TG analysis. Their mass fractal (Dm) evolutions were elucidated on the basis of the SAXS patterns and fluorescence spectra. Results: The Dm values increased from 2.74 to 2.87 with an increase of the PAN-coated amount from 17 to 26.5% along with the particle size from 76.1 to 85.6 nm and blue-shifting of their fluorescent emission wavelength from 470 to 444 nm. Meanwhile, the PAN@M-BMMs exhibited a high ibuprofen (IBU) loading capacity (13.8%) and strong dual pH-/temperature-responsive drug-releasing performances (83.1%) at pH 7.4 and 25 °C, as comparison with that (17.9%) at pH 2.0 and 37 °C. The simulated results confirmed that the adsorption energy decreased from -67.18 kJ/mol for pure BMMs to -116.76 kJ/mol for PAN@M-BMMs, indicating the PAN-grafting on the surfaces of the BMMs core was beneficial to improve its IBU-adsorption capacity. Its uptake in the HeLa cell line was performed via microplate readers, confocal microscopy, flow cytometry, and ICP measurement, showing a low cytotoxicity at a concentration up to 100 µg/mL. Specially, P0.2AN@M-BMMs had a superior cellular uptake and fluorescence properties via the time-dependent uptake experiments, and exhibited the highest silicon content via the cellular internalization analysis, as compared to other carriers. Hemolysis tests confirmed the hemolysis rates below 5%. Conclusions: These demonstrations verified that PAN@M-BMMs should be a promising biomedical application prospect.
Collapse
Affiliation(s)
- Huijie Ge
- Beijing Key Laboratory for Green Catalysis and Separation, Institute of Matter Science, Beijing University of Technology, Beijing 100124, China; (H.G.); (X.W.); (S.B.); (Y.B.); (F.L.)
| | - Xiaoli Wang
- Beijing Key Laboratory for Green Catalysis and Separation, Institute of Matter Science, Beijing University of Technology, Beijing 100124, China; (H.G.); (X.W.); (S.B.); (Y.B.); (F.L.)
| | - Shiyang Bai
- Beijing Key Laboratory for Green Catalysis and Separation, Institute of Matter Science, Beijing University of Technology, Beijing 100124, China; (H.G.); (X.W.); (S.B.); (Y.B.); (F.L.)
| | - Yuhua Bi
- Beijing Key Laboratory for Green Catalysis and Separation, Institute of Matter Science, Beijing University of Technology, Beijing 100124, China; (H.G.); (X.W.); (S.B.); (Y.B.); (F.L.)
| | - Fei Liu
- Beijing Key Laboratory for Green Catalysis and Separation, Institute of Matter Science, Beijing University of Technology, Beijing 100124, China; (H.G.); (X.W.); (S.B.); (Y.B.); (F.L.)
| | - Jihong Sun
- Beijing Key Laboratory for Green Catalysis and Separation, Institute of Matter Science, Beijing University of Technology, Beijing 100124, China; (H.G.); (X.W.); (S.B.); (Y.B.); (F.L.)
| | - Wenliang Fu
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China;
| | - Donggang Xu
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China;
| |
Collapse
|
2
|
Wu B, Zhang S, Huang M, Zhang S, Liu B, Zhang B. Theoretical insight into H 2O impact on V 2O 5/TiO 2 catalysts for selective catalytic reduction of NO x. Phys Chem Chem Phys 2024; 26:14651-14663. [PMID: 38743154 DOI: 10.1039/d4cp00893f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
H2O in flue gas causes the deactivation of V2O5/TiO2 catalysts for selective catalytic reduction (SCR) of NOx with NH3 at low temperatures. Developing water resistance requires understanding the theoretical mechanism of H2O impact on the catalysts. The aim of this work was to clarify the adsorption process of H2O and the deactivation mechanism induced by H2O through density functional theory (DFT). The process of H2O adsorption was studied based on a modeled V2O5/TiO2 catalyst surface. It was found that H2O had a strong interaction with exposed titanium atoms. Water adsorption on the catalyst surface significantly alters the electronic structure of VOx sites, transforming Lewis acid sites into Brønsted acid sites. Exposed titanium sites contribute to the decrease of Lewis acidity via adsorbed water. Ab initio thermodynamic calculations show that H2O adsorption on V2O5/TiO2 is stable at low coverage but less favorable at high coverage. Adsorption of NH3 is the most critical step for the SCR of NOx, and the adsorption of H2O can hinder this process. The H2O coverage below 15% of adsorption sites could enhance the NH3 adsorption rate and have a limited effect on the acidity, while higher coverage impeded the adsorption ability of VOx sites. This work provided electron-scale insight into the adsorption impact of H2O on the surface of V2O5/TiO2 catalysts, presented thermodynamic analysis of the adsorption of H2O and NH3, paving the way for the exploration of V2O5/TiO2 catalysts with improved water resistance.
Collapse
Affiliation(s)
- Boyu Wu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China.
| | - Shengen Zhang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China.
| | - Mingtian Huang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China.
| | - Shengyang Zhang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China.
| | - Bo Liu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China.
| | - Bolin Zhang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
3
|
Lang X, Wang T, Wang Z, Qu T, Li L, Yao C, Lai Q, Cai K. Ti x+ in-situ intercalation and interlayer modification via titanium foil/vanadium ion solution interface of VO 2.375 as sulfur-wrapped matrix enabling long-life lithium sulfur battery. J Colloid Interface Sci 2024; 659:560-568. [PMID: 38198933 DOI: 10.1016/j.jcis.2024.01.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/31/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
Lithium sulfur battery (LSB) has great potential as a promising next-generation energy storage system owing to ultra-high theoretical specific capacity and energy density. However, the polysulfide shuttle effect and slow redox kinetics are recognized the most stumbling blocks on the way of commercializing LSB. On this account, for the first time, we use Tix+ in-situ intercalation strategy via titanium foil/vanadium ion (V5+) solution interface to modify the layer of vanadium oxide for long cycle LSB. The inserted Tix+ strengthens interlayer interaction and enhances lithium-ion mobility rate. Meanwhile, based on density functional theory (DFT) calculation, the mixed valence of V5+/V4+ in the vanadium oxide structure reduces the stress and strain of lithium-ion intercalation through the interlayer support of titanium ions (Tix+). Also, Tix+ refines the structural stability of the sulfur wrapped composite matrix so as to facilitate the LiPSs transformation, and improve the electrochemical performances. Consequently, the Ti-VO2.375/S cathode delivers a lower capacity decay of 0.037 % per cycle over 1500 cycles with a stable coulombic efficiency around 100 %.
Collapse
Affiliation(s)
- Xiaoshi Lang
- Institute of Advanced Chemical Power Source, College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, Liaoning, China
| | - Tan Wang
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zhenhua Wang
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Tingting Qu
- Institute of Advanced Chemical Power Source, College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, Liaoning, China; MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Lan Li
- Institute of Advanced Chemical Power Source, College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, Liaoning, China
| | - Chuangang Yao
- Institute of Advanced Chemical Power Source, College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, Liaoning, China
| | - Qinzhi Lai
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, Hebei Province, China
| | - Kedi Cai
- Institute of Advanced Chemical Power Source, College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, Liaoning, China.
| |
Collapse
|
4
|
Dehghan-Manshadi H, Mazloum-Ardakani M, Mozaffari SA. A flexible capacity-metric creatinine sensor based on polygon-shape polyvinylpyrrolidone/CuO and Fe 2O 3 NRDs electrodeposited on three-dimensional TiO 2-V 2O 5-Polypyrrole nanocomposite. Biosens Bioelectron 2024; 246:115881. [PMID: 38042049 DOI: 10.1016/j.bios.2023.115881] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 12/04/2023]
Abstract
The innovations of the present work include these items; (i) Design and preparation of three-dimensional flexible conductive polymeric nanocomposites (3D-FCPNCs) containing polypyrrole (PPy), V2O5 and TiO2 and modification of their surface with polygon-shape polyvinylpyrrolidone/CuO nanorods (PVP/CuO NRDs) and Fe2O3 NRDs using an hierarchical process based on isoelectric point (IEP), (ii) Application of the prepared surfaces as the flexible enzymeless creatinine sensors using four calibration curves (impedimetric, real capacitance (C'), imaginary capacitance (C″) and double layer capacitance (Cdl)) obtained from electrochemical impedance spectroscopy (EIS) technique. The best results have been obtained using PVP/CuO NRDs-Fe2O3 NRDs/TiO2-V2O5-PPy 3D-FCPNC hierarchical electrode with a wide range of the linear concentration range (10 nmol L-1 -1.3 mmol L-1). Although, determination of creatinine through extraction of parameters such as charge transfer resistance (Rct) and Cdl from measuring impedance at a wide range of frequencies provides useful information about the characteristics of the electrolyte/electrode interface, but measuring real and imaginary capacitances at a specific frequency instead of a wide frequency range can decrease the response time to lower than 1 min. Finally, the prepared hierarchical enzymeless sensors have been successfully used to estimate creatinine concentration in blood serum.
Collapse
Affiliation(s)
- H Dehghan-Manshadi
- Thin Layer and Nanotechnology Laboratory, Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), P.O. Box 33535-111, Tehran, Iran
| | - M Mazloum-Ardakani
- Department of Chemistry, Faculty of Science, Yazd University, Yazd, Iran.
| | - S A Mozaffari
- Thin Layer and Nanotechnology Laboratory, Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), P.O. Box 33535-111, Tehran, Iran
| |
Collapse
|
5
|
Li J, Wu X, Jian C, Qiao X, Wan F, Wu Z, Zhong B, Chen Y, Guo X. GO-CoNiP New Composite Material Modified Separator for Long Cycle Lithium-Sulfur Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2307912. [PMID: 38048540 DOI: 10.1002/smll.202307912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/28/2023] [Indexed: 12/06/2023]
Abstract
Lithium-sulfur batteries with high capacity are considered the most promising candidates for next-generation energy storage systems. Mitigating the shuttle reaction and promoting catalytic conversion within the battery are major challenges in the development of high-performance lithium-sulfur batteries. To solve these problems, a novel composite material GO-CoNiP is synthesized in this study. The material has excellent conductivity and abundant active sites to adsorb polysulfides and improve reaction kinetics within the battery. The initial capacity of the GO-CoNiP separator battery at 1 C is 889.4 mAh g-1 , and the single-cycle decay is 0.063% after 1000 cycles. In the 4 C high-rate test, the single-cycle decay is only 0.068% after 400 cycles. The initial capacity is as high as 828.2 mAh g-1 under high sulfur loading (7.3 mg cm-2 ). In addition, high and low-temperature performance tests are performed on the GO-CoNiP separator battery. The first cycle discharge reaches 810.9 mAh g-1 at a low temperature of 0 °C, and the first cycle discharge reaches 1064.8 mAh g-1 at a high temperature of 60 °C, and both can run stably for 120 cycles. In addition, in situ Raman tests are conducted to explain the adsorption of polysulfides by GO-CoNiP from a deeper level.
Collapse
Affiliation(s)
- Jiaqi Li
- College of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Xinxiang Wu
- College of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Caifeng Jian
- College of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Xianyan Qiao
- College of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Fang Wan
- College of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Zhenguo Wu
- College of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Benhe Zhong
- College of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yanxiao Chen
- College of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Xiaodong Guo
- College of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
- Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, NSW, 2522, Australia
| |
Collapse
|
6
|
Wang T, He J, Zhu Z, Cheng XB, Zhu J, Lu B, Wu Y. Heterostructures Regulating Lithium Polysulfides for Advanced Lithium-Sulfur Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303520. [PMID: 37254027 DOI: 10.1002/adma.202303520] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/17/2023] [Indexed: 06/01/2023]
Abstract
Sluggish reaction kinetics and severe shuttling effect of lithium polysulfides seriously hinder the development of lithium-sulfur batteries. Heterostructures, due to unique properties, have congenital advantages that are difficult to be achieved by single-component materials in regulating lithium polysulfides by efficient catalysis and strong adsorption to solve the problems of poor reaction kinetics and serious shuttling effect of lithium-sulfur batteries. In this review, the principles of heterostructures expediting lithium polysulfides conversion and anchoring lithium polysulfides are detailedly analyzed, and the application of heterostructures as sulfur host, interlayer, and separator modifier to improve the performance of lithium-sulfur batteries is systematically reviewed. Finally, the problems that need to be solved in the future study and application of heterostructures in lithium-sulfur batteries are prospected. This review will provide a valuable reference for the development of heterostructures in advanced lithium-sulfur batteries.
Collapse
Affiliation(s)
- Tao Wang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, P. R. China
| | - Jiarui He
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, P. R. China
| | - Zhi Zhu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, P. R. China
| | - Xin-Bing Cheng
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, P. R. China
| | - Jian Zhu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Bingan Lu
- School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
| | - Yuping Wu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, P. R. China
| |
Collapse
|
7
|
Smaisim GF, Abed AM, Al-Madhhachi H, Hadrawi SK, Al-Khateeb HMM, Kianfar E. Graphene-Based Important Carbon Structures and Nanomaterials for Energy Storage Applications as Chemical Capacitors and Supercapacitor Electrodes: a Review. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-01048-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Pan Q, Tong Z, Su Y, Zheng Y, Shang L, Tang Y. Flat-Zigzag Interface Design of Chalcogenide Heterostructure toward Ultralow Volume Expansion for High-Performance Potassium Storage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203485. [PMID: 35962631 DOI: 10.1002/adma.202203485] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Heterostructure construction of layered metal chalcogenides can boost their alkali-metal storage performance, where the charge transfer kinetics can be promoted by the built-in electric fields. However, these heterostructures usually undergo interface separation due to severe layer expansion, especially for large-size potassium accommodation, resulting in the deconstruction of heterostructures and battery performance fading. Herein, first a stable interface design strategy where two metal chalcogenides with totally different layer-morphologies are stacked to form large K+ transport channels, rendering ultralow interlayer expansion, is presented. As a proof of concept, the flat-zigzag MoS2 /Bi2 S3 heterostructures stacked with zigzag-morphology Bi2 S3 and flat-morphology MoS2 present an ultralow expansion ratio (1.98%) versus MoS2 (9.66%) and Bi2 S3 (9.61%), which deliver an ultrahigh potassium storage capacity of above 600 mAh g-1 and capacity retention of 76% after 500 cycles, together with the built-in electric field of heterostructures. Once the heterostructures are used as an anode for potassium-based dual-ion batteries (K-DIBs), it achieves a superior full-cell capacity of ≈166 mAh g-1 with a capacity retention of 71% after 400 cycles, which is an outstanding performance among the reported K-DIBs. This proposed interface stacking strategy may offer a new way toward stable heterostructure design for metal ions storage and transport applications.
Collapse
Affiliation(s)
- Qingguang Pan
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Zhaopeng Tong
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuanqiang Su
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongping Zheng
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Lin Shang
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Yongbing Tang
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Advanced Materials Processing & Mold, Ministry of Education, Zhengzhou University, Zhengzhou, 450002, China
| |
Collapse
|
9
|
Jiang Y, Smaisim GF, Mahmoud MZ, Li Z, Aybar HŞ, Abed AM. Simultaneous numerical investigation of the passive use of phase-change materials and the active use of a nanofluid inside a rectangular duct in the thermal management of lithium-ion batteries. JOURNAL OF POWER SOURCES 2022; 541:231610. [DOI: 10.1016/j.jpowsour.2022.231610] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
10
|
Liu J, Tavakoli F, Sajadi SM, Mahmoud MZ, Heidarshenas B, Aybar HŞ. Numerical evaluation and artificial neural network modeling of the effect of oval PCM compartment dimensions around a triple lithium-ion battery pack despite forced airflow. ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS 2022; 142:71-92. [DOI: 10.1016/j.enganabound.2022.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
11
|
Peng M, Shin K, Jiang L, Jin Y, Zeng K, Zhou X, Tang Y. Alloy-Type Anodes for High-Performance Rechargeable Batteries. Angew Chem Int Ed Engl 2022; 61:e202206770. [PMID: 35689344 DOI: 10.1002/anie.202206770] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Indexed: 12/18/2022]
Abstract
Alloy-type anodes are one of the most promising classes of next-generation anode materials due to their ultrahigh theoretical capacity (2-10 times that of graphite). However, current alloy-type anodes have several limitations: huge volume expansion, high tendency to fracture and disintegrate, an unstable solid-electrolyte interphase (SEI) layer, and low Coulombic efficiency. Efforts to overcome these challenges are ongoing. This Review details recent progress in the research of batteries based on alloy-type anodes and discusses the direction of their future development. We conclude that improvements in structural design, the introduction of a protective interface, and the selection of suitable electrolytes are the most effective ways to improve the performance of alloy-type anodes. Furthermore, future studies should direct more attention toward analyzing their synergistic promoting effect.
Collapse
Affiliation(s)
- Manqi Peng
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Kyungsoo Shin
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lixia Jiang
- Bureau of Major R&D Programs, Chinese Academy of Sciences, Beijing, 100864, China
| | - Ye Jin
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Ke Zeng
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Xiaolong Zhou
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongbing Tang
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Key Laboratory of Adv. Mater. Processing & Mold, Ministry of Education, Zhengzhou University, Zhengzhou, 450002, China
| |
Collapse
|
12
|
Jiang Y, Wang X, Mahmoud MZ, Elkotb MA, Baloo L, Li Z, Heidarshenas B. A study of nanoparticle shape in water/alumina/boehmite nanofluid flow in the thermal management of a lithium-ion battery under the presence of phase-change materials. JOURNAL OF POWER SOURCES 2022; 539:231522. [DOI: 10.1016/j.jpowsour.2022.231522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
13
|
Peng M, Shin K, Jiang L, Jin Y, Zeng K, Zhou X, Tang Y. Alloy‐Type Anodes for High‐Performance Rechargeable Batteries. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Manqi Peng
- Advanced Energy Storage Technology Research Center Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
- School of Materials Science and Engineering Chongqing University of Technology Chongqing 400054 China
| | - Kyungsoo Shin
- Advanced Energy Storage Technology Research Center Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Lixia Jiang
- Bureau of Major R&D Programs Chinese Academy of Sciences Beijing 100864 China
| | - Ye Jin
- Advanced Energy Storage Technology Research Center Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
- Nano Science and Technology Institute University of Science and Technology of China Suzhou 215123 China
| | - Ke Zeng
- Advanced Energy Storage Technology Research Center Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
- Nano Science and Technology Institute University of Science and Technology of China Suzhou 215123 China
| | - Xiaolong Zhou
- Advanced Energy Storage Technology Research Center Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yongbing Tang
- Advanced Energy Storage Technology Research Center Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Key Laboratory of Adv. Mater. Processing & Mold, Ministry of Education Zhengzhou University Zhengzhou 450002 China
| |
Collapse
|
14
|
Jiang C, Zheng Y, Wang D, Zheng Y, Xie C, Shi L, Liu Z, Tang Y. Unusual Size Effect in Ion and Charge Transport in Micron‐sized Particulate Aluminum Anodes of Lithium‐ion Batteries. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chunlei Jiang
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Advanced Energy Storage Technology Research Center CHINA
| | - Yinyin Zheng
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Advanced Energy Storage Technology Research Center CHINA
| | - Doufeng Wang
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Advanced Energy Storage Technology Research Center CHINA
| | - Yongping Zheng
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Advanced Energy Storage Technology Research Center CHINA
| | - Chengde Xie
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Advanced Energy Storage Technology Research Cente CHINA
| | - Lei Shi
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Advanced Energy Storage Technology Research Center CHINA
| | - Zhipeng Liu
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Advanced Energy Storage Technology Research Center CHINA
| | - Yongbing Tang
- Shenzhen institute of advanced technology Chinese Academy of Sciences Functional Thin Films Research Centre 1068 Xueyuan Avenue, Shenzhen University Town 518000 SHENZHEN CHINA
| |
Collapse
|
15
|
Jiang C, Zheng Y, Wang D, Zheng Y, Xie C, Shi L, Liu Z, Tang Y. Unusual Size Effect in Ion and Charge Transport in Micron-Sized Particulate Aluminum Anodes of Lithium-Ion Batteries. Angew Chem Int Ed Engl 2022; 61:e202208370. [PMID: 35796325 DOI: 10.1002/anie.202208370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Indexed: 02/03/2023]
Abstract
Aluminum is a promising anode material for lithium-ion batteries owing to its high theoretical capacity, excellent conductivity, and natural abundance. An anomalous size effect was observed for micron-sized aluminum powder electrodes in this work. Experimental and theoretical investigations reveal that the insulating oxide surface layer is the underlying cause, which leads to poor electrical conductivity and limited capacity utilization when the particle is too small. Additionally, poor electrolyte wettability also accounts for the hindered reaction kinetics due to the weak polarity feature of the oxide layer. Surface grafting of polar amino groups was demonstrated to be an effective strategy to improve electrolyte wettability. The present work revealed the critical limitations and underlying mechanisms for the aluminum anode, which is crucial for its practical application. Our results are also valuable for other metallic anodes with similar issues.
Collapse
Affiliation(s)
- Chunlei Jiang
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yinyin Zheng
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Doufeng Wang
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongping Zheng
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chengde Xie
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Lei Shi
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhipeng Liu
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongbing Tang
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Key Laboratory of Advanced Materials Processing & Mold, Ministry of Education, Zhengzhou University, Zhengzhou, 450002, China
| |
Collapse
|
16
|
Wang H, Jia B, Zhao Z, Luo C, Wu X. Interlayer spacing enlarged 2D 1T-MoS2 and V2CTx MXene as superior anodes for boosting potassium-ion diffusion coefficient. J Colloid Interface Sci 2022; 618:56-67. [DOI: 10.1016/j.jcis.2022.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/15/2022] [Accepted: 03/08/2022] [Indexed: 11/25/2022]
|
17
|
Wang Z, Liu Y, Mahmoud MZ. Simultaneous application of active and passive methods in cooling of a cylindrical lithium-ion battery by changing the size of the elliptical cavity filled with nano phase change materials. JOURNAL OF ENERGY STORAGE 2022; 50:104693. [DOI: 10.1016/j.est.2022.104693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
18
|
Chebil S, chemek M, Mestiri T, Alimi K. Theoretical enhancement of the electronic and optical properties of a new D-π-A-π-D synthesized donor molecule for a new generation of fullerene-based bulk heterojunction (BHJ) for new organic solar cells devices. J Mol Graph Model 2022; 115:108226. [DOI: 10.1016/j.jmgm.2022.108226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 11/25/2022]
|
19
|
Liu J, jabbari H, Kadhim MM, Javed Ansari M, Ghaffar Ebadi A. Design organic material with acceptor-π-donor configuration for high performance solar cells. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|