1
|
Liu D, Ton PM, Zong D, Zarrinpar A, Ding Y. Expression of Fluorescence Reporters and Natural Products in Native Gut Escherichia coli. ACS Synth Biol 2025; 14:1557-1566. [PMID: 40138712 DOI: 10.1021/acssynbio.4c00835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Escherichia coli is a widely studied model organism and an integral component of the human gut microbiome, offering significant potential for bacteria-based therapeutic applications. Despite this promise, engineering native E. coli strains remains challenging. In this study, we employed the chassis-independent recombinase-assisted genome engineering (CRAGE) technique to genetically engineer the native gut strain E. coli EcAZ-1 and the probiotic strain E. coli Nissle 1917 (EcN). We successfully expressed a suite of heterologous genes, including the bioluminescent lux operon, green fluorescent protein (GFP), and oxygen-independent fluorescent protein IFP2.0, in both strains. Optimization of IFP2.0 fluorescence was achieved under both aerobic and anaerobic conditions by coexpressing a heme oxygenase gene and/or supplementing the chromophore biliverdin or hemin. Additionally, we engineered these strains to biosynthesize the bioactive compounds naringenin and mycosporine-like amino acids. This work highlights the potential of native E. coli strains as versatile platforms for synthetic biology, paving the way for innovative applications in biomedical research and therapeutic development.
Collapse
Affiliation(s)
- Dake Liu
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, Florida 32610, United States
| | - Phuong M Ton
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, Florida 32610, United States
| | - David Zong
- Division of Gastroenterology, University of California, San Diego, La Jolla, California 92093, United States
| | - Amir Zarrinpar
- Division of Gastroenterology, University of California, San Diego, La Jolla, California 92093, United States
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California 92093, United States
- Division of Gastroenterology, Jennifer Moreno Department of Veterans Affairs Medical Center, La Jolla, California 92093, United States
| | - Yousong Ding
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
2
|
Zimmermann A, Prieto-Vivas JE, Voordeckers K, Bi C, Verstrepen KJ. Mutagenesis techniques for evolutionary engineering of microbes - exploiting CRISPR-Cas, oligonucleotides, recombinases, and polymerases. Trends Microbiol 2024; 32:884-901. [PMID: 38493013 DOI: 10.1016/j.tim.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 03/18/2024]
Abstract
The natural process of evolutionary adaptation is often exploited as a powerful tool to obtain microbes with desirable traits. For industrial microbes, evolutionary engineering is often used to generate variants that show increased yields or resistance to stressful industrial environments, thus obtaining superior microbial cell factories. However, even in large populations, the natural supply of beneficial mutations is typically low, which implies that obtaining improved microbes is often time-consuming and inefficient. To overcome this limitation, different techniques have been developed that boost mutation rates. While some of these methods simply increase the overall mutation rate across a genome, others use recent developments in DNA synthesis, synthetic biology, and CRISPR-Cas techniques to control the type and location of mutations. This review summarizes the most important recent developments and methods in the field of evolutionary engineering in model microorganisms. It discusses how both in vitro and in vivo approaches can increase the genetic diversity of the host, with a special emphasis on in vivo techniques for the optimization of metabolic pathways for precision fermentation.
Collapse
Affiliation(s)
- Anna Zimmermann
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium; CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, 3001, Belgium
| | - Julian E Prieto-Vivas
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium; CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, 3001, Belgium
| | - Karin Voordeckers
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium; CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, 3001, Belgium
| | - Changhao Bi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; College of Life Science, Tianjin Normal University, Tianjin, China
| | - Kevin J Verstrepen
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium; CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, 3001, Belgium; VIB-VIB Joint Center of Synthetic Biology, National Center of Technology Innovation for Synthetic Biology, Tianjin, China.
| |
Collapse
|
3
|
Siguenza N, Brevi A, Zhang JT, Pabani A, Bhushan A, Das M, Ding Y, Hasty J, Ghosh P, Zarrinpar A. Engineered bacterial therapeutics for detecting and treating CRC. Trends Cancer 2024; 10:588-597. [PMID: 38693003 PMCID: PMC11392429 DOI: 10.1016/j.trecan.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 05/03/2024]
Abstract
Despite an overall decrease in occurrence, colorectal cancer (CRC) remains the third most common cause of cancer deaths in the USA. Detection of CRC is difficult in high-risk groups, including those with genetic predispositions, with disease traits, or from certain demographics. There is emerging interest in using engineered bacteria to identify early CRC development, monitor changes in the adenoma and CRC microenvironment, and prevent cancer progression. Novel genetic circuits for cancer therapeutics or functions to enhance existing treatment modalities have been tested and verified in vitro and in vivo. Inclusion of biocontainment measures would prepare strains to meet therapeutic standards. Thus, engineered bacteria present an opportunity for detection and treatment of CRC lesions in a highly sensitive and specific manner.
Collapse
Affiliation(s)
- Nicole Siguenza
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA; Division of Gastroenterology and Hepatology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Arianna Brevi
- Division of Gastroenterology and Hepatology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA; Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Joanna T Zhang
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Arman Pabani
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Abhinav Bhushan
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Moumita Das
- School of Physics and Astronomy, Rochester Institute of Technology, Rochester, NY, USA
| | - Yousong Ding
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL, USA
| | - Jeff Hasty
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA; Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA; Synthetic Biology Institute, University of California, San Diego, La Jolla, CA, USA; Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA; Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Pradipta Ghosh
- Division of Gastroenterology and Hepatology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA; Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Amir Zarrinpar
- Division of Gastroenterology and Hepatology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA; Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA; Synthetic Biology Institute, University of California, San Diego, La Jolla, CA, USA; Jennifer Moreno Department of Veterans Affairs, La Jolla, CA, USA; Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA; Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
4
|
Jiang K, Li W, Tong M, Xu J, Chen Z, Yang Y, Zang Y, Jiao X, Liu C, Lim B, Jiang X, Wang J, Wu D, Wang M, Liu SJ, Shao F, Gao X. Bacteroides fragilis ubiquitin homologue drives intraspecies bacterial competition in the gut microbiome. Nat Microbiol 2024; 9:70-84. [PMID: 38082149 DOI: 10.1038/s41564-023-01541-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 10/26/2023] [Indexed: 12/21/2023]
Abstract
Interbacterial antagonism and associated defensive strategies are both essential during bacterial competition. The human gut symbiont Bacteroides fragilis secretes a ubiquitin homologue (BfUbb) that is toxic to a subset of B. fragilis strains in vitro. In the present study, we demonstrate that BfUbb lyses certain B. fragilis strains by non-covalently binding and inactivating an essential peptidyl-prolyl isomerase (PPIase). BfUbb-sensitivity profiling of B. fragilis strains revealed a key tyrosine residue (Tyr119) in the PPIase and strains that encode a glutamic acid residue at Tyr119 are resistant to BfUbb. Crystal structural analysis and functional studies of BfUbb and the BfUbb-PPIase complex uncover a unique disulfide bond at the carboxy terminus of BfUbb to mediate the interaction with Tyr119 of the PPIase. In vitro coculture assays and mouse studies show that BfUbb confers a competitive advantage for encoding strains and this is further supported by human gut metagenome analyses. Our findings reveal a previously undescribed mechanism of bacterial intraspecies competition.
Collapse
Affiliation(s)
- Kun Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Weixun Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Ming Tong
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jinghua Xu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Zhe Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yan Yang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yuanrong Zang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xuyao Jiao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Chang Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Bentley Lim
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Xianzhi Jiang
- Microbiome Research Center, Moon (Guangzhou) Biotech Co. Ltd., Guangzhou, China
| | - Jiawei Wang
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Dalei Wu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Mingyu Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Feng Shao
- National Institute of Biological Sciences, Beijing, China
| | - Xiang Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
| |
Collapse
|
5
|
Jiang K, Chen Z, Shi Y, Zang Y, Shang C, Huang X, Zang J, Bai Z, Jiao X, Cai J, Gao X. A strategy to enhance the insecticidal potency of Vip3Aa by introducing additional cleavage sites to increase its proteolytic activation efficiency. ENGINEERING MICROBIOLOGY 2023; 3:100083. [PMID: 39628910 PMCID: PMC11610981 DOI: 10.1016/j.engmic.2023.100083] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/02/2023] [Accepted: 03/05/2023] [Indexed: 12/06/2024]
Abstract
Microbially derived, protein-based biopesticides have become a vital element in pest management strategies. Vip3 family proteins from Bacillus thuringiensis have distinct characteristics from known insecticidal Cry toxins and show efficient insecticidal activity against several detrimental lepidopteran pests. They are considered to be a promising toxic candidate for the management of various detrimental pests. In this study, we found that in addition to the preliminary digestion sites lysine, there are multiple cleavage activation sites in the linker region between domain I (DI) and DII of Vip3Aa. We further demonstrated that by adding more cleavage sites between DI and DII of Vip3Aa, its proteolysis efficiency by midgut proteases can be significantly increased, and correspondingly enhance its insecticidal activity against Spodoptera frugiperda and Helicoverpa armigera larvae. Our study promotes the understanding of the insecticidal mechanism of Vip3 proteins and illustrates an easily implementable strategy to increase the insecticidal potency of Vip3Aa. This facilitates their potential future development and efficient application for sustainable agriculture.
Collapse
Affiliation(s)
- Kun Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Zhe Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yiting Shi
- School of Life Sciences, Shandong University, Qingdao 266237, China
- Taishan College, Shandong University, Jinan 250100, China
| | - Yuanrong Zang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Chengbin Shang
- School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Xi Huang
- School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Jiahe Zang
- School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Zhudong Bai
- School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Xuyao Jiao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Jun Cai
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiang Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
6
|
Marsh JW, Kirk C, Ley RE. Toward Microbiome Engineering: Expanding the Repertoire of Genetically Tractable Members of the Human Gut Microbiome. Annu Rev Microbiol 2023; 77:427-449. [PMID: 37339736 DOI: 10.1146/annurev-micro-032421-112304] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Genetic manipulation is necessary to interrogate the functions of microbes in their environments, such as the human gut microbiome. Yet, the vast majority of human gut microbiome species are not genetically tractable. Here, we review the hurdles to seizing genetic control of more species. We address the barriers preventing the application of genetic techniques to gut microbes and report on genetic systems currently under development. While methods aimed at genetically transforming many species simultaneously in situ show promise, they are unable to overcome many of the same challenges that exist for individual microbes. Unless a major conceptual breakthrough emerges, the genetic tractability of the microbiome will remain an arduous task. Increasing the list of genetically tractable organisms from the human gut remains one of the highest priorities for microbiome research and will provide the foundation for microbiome engineering.
Collapse
Affiliation(s)
- James W Marsh
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany;
| | - Christian Kirk
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany;
| | - Ruth E Ley
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany;
| |
Collapse
|
7
|
Fogelson KA, Dorrestein PC, Zarrinpar A, Knight R. The Gut Microbial Bile Acid Modulation and Its Relevance to Digestive Health and Diseases. Gastroenterology 2023; 164:1069-1085. [PMID: 36841488 PMCID: PMC10205675 DOI: 10.1053/j.gastro.2023.02.022] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 02/27/2023]
Abstract
The human gut microbiome has been linked to numerous digestive disorders, but its metabolic products have been much less well characterized, in part due to the expense of untargeted metabolomics and lack of ability to process the data. In this review, we focused on the rapidly expanding information about the bile acid repertoire produced by the gut microbiome, including the impacts of bile acids on a wide range of host physiological processes and diseases, and discussed the role of short-chain fatty acids and other important gut microbiome-derived metabolites. Of particular note is the action of gut microbiome-derived metabolites throughout the body, which impact processes ranging from obesity to aging to disorders traditionally thought of as diseases of the nervous system, but that are now recognized as being strongly influenced by the gut microbiome and the metabolites it produces. We also highlighted the emerging role for modifying the gut microbiome to improve health or to treat disease, including the "engineered native bacteria'' approach that takes bacterial strains from a patient, modifies them to alter metabolism, and reintroduces them. Taken together, study of the metabolites derived from the gut microbiome provided insights into a wide range of physiological and pathophysiological processes, and has substantial potential for new approaches to diagnostics and therapeutics of disease of, or involving, the gastrointestinal tract.
Collapse
Affiliation(s)
- Kelly A Fogelson
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California; Department of Pediatrics, University of California San Diego, San Diego, California; Center for Microbiome Innovation, University of California San Diego, San Diego, California.
| | - Amir Zarrinpar
- Center for Microbiome Innovation, University of California San Diego, San Diego, California; Division of Gastroenterology, Jennifer Moreno Department of Veterans Affairs Medical Center, San Diego, California; Division of Gastroenterology, University of California San Diego, San Diego, California; Institute of Diabetes and Metabolic Health, University of California San Diego, San Diego, California.
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, San Diego, California; Center for Microbiome Innovation, University of California San Diego, San Diego, California; Department of Bioengineering, University of California San Diego, San Diego, California; Department of Computer Science and Engineering, University of California San Diego, San Diego, California.
| |
Collapse
|
8
|
Jiang K, Chen Z, Zang Y, Shi Y, Shang C, Jiao X, Cai J, Gao X. Functional characterization of Vip3Aa from Bacillus thuringiensis reveals the contributions of specific domains to its insecticidal activity. J Biol Chem 2023; 299:103000. [PMID: 36764522 PMCID: PMC10017365 DOI: 10.1016/j.jbc.2023.103000] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Microbially derived, protein-based biopesticides offer a more sustainable pest management alternative to synthetic pesticides. Vegetative insecticidal proteins (Vip3), multidomain proteins secreted by Bacillus thuringiensis, represent a second-generation insecticidal toxin that has been preliminarily used in transgenic crops. However, the molecular mechanism underlying Vip3's toxicity is poorly understood. Here, we determine the distinct functions and contributions of the domains of the Vip3Aa protein to its toxicity against Spodoptera frugiperda larvae. We demonstrate that Vip3Aa domains II and III (DII-DIII) bind the midgut epithelium, while DI is essential for Vip3Aa's stability and toxicity inside the protease-enriched host insect midgut. DI-DIII can be activated by midgut proteases and exhibits cytotoxicity similar to full-length Vip3Aa. In addition, we determine that DV can bind the peritrophic matrix via its glycan-binding activity, which contributes to Vip3Aa insecticidal activity. In summary, this study provides multiple insights into Vip3Aa's mode-of-action which should significantly facilitate the clarification of its insecticidal mechanism and its further rational development.
Collapse
Affiliation(s)
- Kun Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Zhe Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yuanrong Zang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yiting Shi
- School of Life Sciences, Shandong University, Qingdao, China; Taishan College, Shandong University, Jinan, China
| | - Chengbin Shang
- School of Life Sciences, Shandong University, Qingdao, China
| | - Xuyao Jiao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jun Cai
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiang Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
| |
Collapse
|