1
|
Yao Y, Yang P, Wang B, Xu Q, Song F, Wang Y, Zhao Y, Guo L, Wang X, Xu M. Divergent mitigation mechanisms of soil antibiotic resistance genes by biochar from different agricultural wastes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126247. [PMID: 40222606 DOI: 10.1016/j.envpol.2025.126247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 04/15/2025]
Abstract
Biochar, produced from agricultural waste, provides a sustainable solution for effective waste management and soil remediation. The potential and mechanisms of biochar derived from primary agricultural sources (plant residues and animal manure) to mitigate the antibiotic resistance genes (ARGs) pollution in agricultural soil remain unexplored. To address this, a 60-day microcosm experiment was conducted, applying biochar derived from either corn straw (B1) or chicken manure (B2) to sulfamethazine and tetracycline-contaminated soil. The results demonstrated that B1 had richer functional groups than B2. B1 increased soil pH (+1.63 %) and total carbon (+24.56 %), but it decreased the abundance of norank_Vicinamibacteraceae (-35.71 %) and Haliangium (-42.11 %), and inhibited the dissemination of tetM and tetW by 57.76 % and 39.17 %, respectively. Comparatively, B2 significantly increased soil dissolved organic carbon (+161.66 %) and decreased the abundance of potential ARGs hosts (Acidibacter, -40.32 %), leading to reduced sul2 abundance (-33.47 %). Besides, B2 enhanced soil total nitrogen and bacterial diversity, and further reduced tetW abundance (-33.76 %). Overall, this study revealed divergent mechanisms and potential for mitigating soil ARGs transmission by biochar derived from corn straw and chicken manure. This study contributes to developing more effective strategies for managing ARGs in contaminated soil and mitigating their environmental risks.
Collapse
Affiliation(s)
- Yu Yao
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, China
| | - Peiyang Yang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, China
| | - Bin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Qiao Xu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, China; Department of Animal, Plant and Soil Sciences, Centre for AgriBioscience, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Fanhao Song
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yabo Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, China
| | - Yingdong Zhao
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, China
| | - Lei Guo
- General Hospital of Eastern Command, Nanjing, Jiangsu, 210000, China
| | - Xiaozhi Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, Jiangsu, 210095, China
| | - Meiling Xu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, China.
| |
Collapse
|
2
|
Li Z, Zhang L, Ye X, Huang Y, Ji Y, Li Y, Wall D, Cui Z. Myxobacteria: Versatile cell factories of novel commercial enzymes for bio-manufacturing. Biotechnol Adv 2025; 82:108594. [PMID: 40345460 DOI: 10.1016/j.biotechadv.2025.108594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 05/06/2025] [Accepted: 05/06/2025] [Indexed: 05/11/2025]
Abstract
Microbial cell factories for the production of high-quality commercial-grade enzymes have accelerated the development of advanced bio-manufacturing approaches, which in turn are environmentally friendly and sustainable. Myxobacteria, a term commonly used to refer to a group within the Myxococcota phylum, are of great interest for their biotechnological applications due to their ability to synthesize a wide range of natural products and lytic enzymes. These traits are essential for the development of robust expression systems. However, myxobacteria have remained an underexploited resource with industrial relevance. Nevertheless, a growing number of food and industrial enzymes have been identified, highlighting myxobacteria as suitable platforms for exploring enzymes with commercial applications, including biomass conversion. Yet, the discovered lytic enzymes are just the tip of the iceberg given their large genomes and diversity across myxobacteria taxa. Despite holding much promise, challenges in genetic engineering, slow growth, and limitations in metabolic remodeling and expression strategies have limited the construction of myxobacterial cell factories. In this review, we highlight recent advances in the discovery of new myxobacterial enzymes and biomass conversion resources, focusing on their potential applications in agriculture and industry. We describe how myxobacteria and their enzymes can be identified through bioprospecting and computational approaches and summarize current biotechnological applications and synthetic biology strategies for bio-manufacturing. Finally, we discuss the promising potential of myxobacteria as industrial cell factories and address open research questions and future directions.
Collapse
Affiliation(s)
- Zhoukun Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Lei Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xianfeng Ye
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Huang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanling Ji
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuezhong Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Daniel Wall
- Department of Molecular Biology, University of Wyoming, 1000 E University Avenue, Laramie, WY 82071, USA.
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
3
|
Campos‐Magaña MA, Martins dos Santos VAP, Garcia‐Morales L. Enabling Access to Novel Bacterial Biosynthetic Potential From ONT Draft Genomic Data. Microb Biotechnol 2025; 18:e70104. [PMID: 40034067 PMCID: PMC11876861 DOI: 10.1111/1751-7915.70104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 12/19/2024] [Accepted: 01/25/2025] [Indexed: 03/05/2025] Open
Abstract
Natural products comprise a wide diversity of compounds with a range of biological activities, including antibiotics, anti-inflammatory and anti-tumoral molecules. However, we can only access a small portion of these compounds due to various technical difficulties. We have herein developed a novel and efficient approach for accessing biosynthetic gene clusters (BGCs) that encode natural products from soil bacteria. The pipeline uses a combination of long-read sequencing, antiSMASH for BGC identification and Transformation-associated recombination (TAR) for cloning the BGCs. We hypothesized that a genome assembly using Oxford Nanopore Technology (ONT) sequencing could facilitate the detection of large BGCs at a relatively fast and low-cost DNA sequencing. Despite the relative low accuracy and sequence mistakes due to high GC content and sequence repetitions frequently found in BGC containing bacteria, we demonstrate that ONT long-read sequencing and antiSMASH are effective for identifying novel BGCs and enabling TAR cloning to isolate the BGC in a desired vector. We applied this pipeline on a previously non-sequenced myxobacteria Aetherobacter fasciculatus SBSr002. Our approach enabled us to clone a previously unknown BGC into a genome engineering-ready vector, illustrating the capabilities of this powerful and cost-effective strategy.
Collapse
Affiliation(s)
- Marco A. Campos‐Magaña
- Dept. Bioprocess EngineeringWageningen University and ResearchWageningenthe Netherlands
- Dept. Systems and Synthetic BiologyWageningen University and ResearchWageningenthe Netherlands
| | | | | |
Collapse
|
4
|
Kang X, Yue XR, Wang CX, Wang JR, Zhao JN, Yang ZP, Fu QK, Wu CS, Hu W, Li YZ, Yue XJ. Ribosome engineering of Myxococcus xanthus for enhancing the heterologous production of epothilones. Microb Cell Fact 2024; 23:346. [PMID: 39725983 DOI: 10.1186/s12934-024-02627-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Ribosome engineering is a semi-empirical technique used to select antibiotic-resistant mutants that exhibit altered secondary metabolism. This method has been demonstrated to effectively select mutants with enhanced synthesis of natural products in many bacterial species, including actinomycetes. Myxobacteria are recognized as fascinating producers of natural active products. However, it remains uncertain whether this technique is similarly effective in myxobacteria, especially for the heterologous production of epothilones in Myxococcus xanthus. RESULTS Antibiotics that target the ribosome and RNA polymerase (RNAP) were evaluated for ribosome engineering of the epothilone-producing strain M. xanthus ZE9. The production of epothilone was dramatically altered in different resistant mutants. We screened the mutants resistant to neomycin and rifampicin and found that the yield of epothilones in the resistant mutant ZE9N-R22 was improved by sixfold compared to that of ZE9. Our findings indicate that the improved growth of the mutants, the upregulation of epothilone biosynthetic genes, and specific mutations identified through genome re-sequencing may collectively contribute to the yield improvement. Ultimately, the total titer of epothilones achieved in a 10 L bioreactor reached 93.4 mg/L. CONCLUSIONS Ribosome engineering is an efficient approach to obtain M. xanthus strains with enhanced production of epothilones through various interference mechanisms. Here, we discuss the potential mechanisms of the semi-empirical method.
Collapse
Affiliation(s)
- Xu Kang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
- Taishan College, Shandong University, Jinan, 250100, China
| | - Xiao-Ran Yue
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Chen-Xi Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Jia-Rui Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Jun-Ning Zhao
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Zhao-Peng Yang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Qin-Ke Fu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Chang-Sheng Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Wei Hu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Xin-Jing Yue
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China.
| |
Collapse
|
5
|
Zhao L, Zhou SY, Fu Y, Shen JL, Yin BC, You D, Ye BC. A dual program for CRP-mediated regulation in bacterial alarmone (p)ppGpp. mBio 2024; 15:e0243024. [PMID: 39365062 PMCID: PMC11559003 DOI: 10.1128/mbio.02430-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/13/2024] [Indexed: 10/05/2024] Open
Abstract
Gene expression and proper downstream cellular functions upon facing environmental shifts depend on the combined and cooperative regulation of genetic networks. Here, we identified cAMP receptor protein (CRP) as a master regulator of (p)ppGpp (guanosine tetra- and penta-phosphate) homeostasis. Via CRP-mediated direct transcriptional regulation of the (p)ppGpp synthetase/hydrolase RelA and SpoT, cAMP-CRP stimulates pervasive accumulation of (p)ppGpp under glucose-limiting conditions. Notably, CRP exerts a nonclassical property as a translational regulator through YfiQ-dependent acetylation of ribosome protein S1 at K247, which further enhances the translation of RelA, SpoT, and CRP itself. From a synthetic biology perspective, this self-activating feedback loop for (p)ppGpp synthesis highlights the function of CRP-mediated dual enhancement (CMDE) in controlling bacterial gene expression, which enables stable activation of genetic circuits. CMDE applied in synthetic circuits leads to a stable increase in p-coumaric acid, cinnamic acid, and pinosylvin production. Our findings showed that CRP-mediated dual circuits for (p)ppGpp regulation enable robust activation that could address bioproduction and other biotechnological needs.IMPORTANCETranscriptional-translational coordination is fundamental for rapid and efficient gene expression in most bacteria. Here, we uncovered the roles of cAMP-CRP in this process. We found that CRP distinctly increases RelA and SpoT transcription and translation, and that acetylation of S1 at K247 accelerates the self-activation of the leading CRP under glucose-limiting conditions. We further found that elevated (p)ppGpp significantly impedes the formation of the cAMP-CRP complex, an active form responsible for transcriptional activation. A model was created in which cAMP-CRP and (p)ppGpp cooperate to dynamically modulate the efficiency of transcriptional-translational coordination responses to stress. More broadly, productive activation in synthetic circuits was achieved through the application of CRP-mediated dual enhancement (CMDE), promising to inspire new approaches for the development of cell-based biotechnologies.
Collapse
Affiliation(s)
- Li Zhao
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Shi-Yu Zhou
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yu Fu
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jin-Long Shen
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Bin-Cheng Yin
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Di You
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Bang-Ce Ye
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Sourice M, Simmler C, Maresca M, Py B, Aubert C. Combining culture optimization and synthetic biology to improve production and detection of secondary metabolites in Myxococcus xanthus: application to myxoprincomide. Microbiol Spectr 2024; 12:e0174024. [PMID: 39431896 PMCID: PMC11619377 DOI: 10.1128/spectrum.01740-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/19/2024] [Indexed: 10/22/2024] Open
Abstract
Microbial secondary metabolites play crucial ecological roles in governing species interactions and contributing to their defense strategies. Their unique structures and potent bioactivities have been key in discovering antibiotics and anticancer drugs. Genome sequencing has undoubtedly revealed that myxobacteria constitute a huge reservoir of secondary metabolites as the well-known producers, actinomycetes. However, because most secondary metabolites are not produced in the laboratory context, the natural products from myxobacteria characterized to date represent only the tip of the iceberg. By combining the engineering of a dedicated Myxococcus xanthus DZ2 chassis strain with a two-step growth medium protocol, we provide a new approach called two-step Protocol for Resource Integration and Maximization-Biomolecules Overproduction and Optimal Screening Therapeutics (2PRIM-BOOST) for the production of non-ribosomal peptides synthetases (NRPS)/polyketides synthases (PKS) secondary metabolites from myxobacteria. We further show that the 2PRIM-BOOST strategy will facilitate the screening of secondary metabolites for biological activities of medical interest. As proof of concept, using a constitutive strong promoter, the myxoprincomide from M. xanthus DZ2 has been efficiently produced and its biosynthesis has been enhanced using the 2PRIM-BOOST approach, allowing the identification of new features of myxoprincomide. This strategy should allow the chances to produce and discover new NRPS, PKS, and mixed NRPS/PKS hybrid natural metabolites that are currently considered as cryptic and are the most represented in myxobacteria.IMPORTANCEMicrobial secondary metabolites are important in species interactions and are also a prolific source of drugs. Myxobacteria are ubiquitous soil-dwelling bacteria constituting a huge reservoir of secondary metabolites. However, because most of these molecules are not produced in the laboratory context, one can estimate that only one-tenth have been characterized to date. Here, we developed a new strategy called two-step Protocol for Resource Integration and Maximization-Biomolecules Overproduction and Optimal Screening Therapeutics (2PRIM-BOOST) that combines the engineering of a dedicated Myxococcus xanthus chassis strain together with growth medium optimization. By combining these strategies with the insertion of a constitutive promoter upstream the biosynthetic gene cluster (BGC), the production of myxoprincomide, a characterized low-produced secondary metabolite, was successfully and significantly increased. The 2PRIM-BOOST enriches the toolbox used to produce previously cryptic metabolites, unveil their ecological role, and provide new molecules of medical interest.
Collapse
Affiliation(s)
- Mathieu Sourice
- Laboratoire de Chimie Bactérienne, UMR7283, Centre National de la Recherche Scientifique, Aix-Marseille Université, IM2B, IMM, Marseille, France
| | - Charlotte Simmler
- Institut Méditerranéen de Biodiversité et d’Ecologie Marine et Continentale, UMR7263, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France
| | - Marc Maresca
- Aix-Marseille Université, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Béatrice Py
- Laboratoire de Chimie Bactérienne, UMR7283, Centre National de la Recherche Scientifique, Aix-Marseille Université, IM2B, IMM, Marseille, France
| | - Corinne Aubert
- Laboratoire de Chimie Bactérienne, UMR7283, Centre National de la Recherche Scientifique, Aix-Marseille Université, IM2B, IMM, Marseille, France
| |
Collapse
|
7
|
Hu W, Wang Y, Yue X, Xue W, Hu W, Yue X, Li Y. An upgraded Myxococcus xanthus chassis with enhanced growth characteristics for efficient genetic manipulation. ENGINEERING MICROBIOLOGY 2024; 4:100155. [PMID: 39629111 PMCID: PMC11611028 DOI: 10.1016/j.engmic.2024.100155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/02/2024] [Accepted: 06/02/2024] [Indexed: 12/06/2024]
Abstract
Myxobacteria are well known for multicellular social behaviors and valued for biosynthesis of natural products. Myxobacteria social behaviors such as clumping growth severely hamper strain cultivation and genetic manipulation. Using Myxococcus xanthus DK1622, we engineered Hu04, which is deficient in multicellular behavior and pigmentation. Hu04, while maintaining nutritional growth and a similar metabolic background, exhibits improved dispersed growth, streamlining operational procedures. It achieves high cell densities in culture and is promising for synthetic biology applications.
Collapse
Affiliation(s)
- Weifeng Hu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yan Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xiaoran Yue
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Weiwei Xue
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Wei Hu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xinjing Yue
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yuezhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
8
|
Yue XJ, Wang JR, Zhao JN, Pan Z, Li YZ. Determination of the chromosomal position effects for plug-and-play application in the Myxococcus xanthus chassis cells. Synth Syst Biotechnol 2024; 9:540-548. [PMID: 38680947 PMCID: PMC11046052 DOI: 10.1016/j.synbio.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/30/2024] [Accepted: 04/08/2024] [Indexed: 05/01/2024] Open
Abstract
The chromosomal position effect can significantly affect the transgene expression, which may provide an efficient strategy for the inauguration of alien genes in new hosts, but has been less explored rationally. The bacterium Myxococcus xanthus harbors a large circular high-GC genome, and the position effect in this chassis may result in a thousand-fold expression variation of alien natural products. In this study, we conducted transposon insertion at TA sites on the M. xanthus genome, and used enrichment and dilution indexes to respectively appraise high and low expression potentials of alien genes at insertion sites. The enrichment sites are characteristically distributed along the genome, and the dilution sites are overlapped well with the horizontal transfer genes. We experimentally demonstrated the enrichment sites as high expression integration sites (HEISs), and the dilution sites unsuitable for gene integration expression. This work highlights that HEISs are the plug-and-play sites for efficient expression of integrated genes.
Collapse
Affiliation(s)
- Xin-jing Yue
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, PR China
| | - Jia-rui Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, PR China
| | - Jun-ning Zhao
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, PR China
| | - Zhuo Pan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, PR China
| | - Yue-zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, PR China
| |
Collapse
|
9
|
Wang CY, Hu JQ, Wang DG, Li YZ, Wu C. Recent advances in discovery and biosynthesis of natural products from myxobacteria: an overview from 2017 to 2023. Nat Prod Rep 2024; 41:905-934. [PMID: 38390645 DOI: 10.1039/d3np00062a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Covering: 2017.01 to 2023.11Natural products biosynthesized by myxobacteria are appealing due to their sophisticated chemical skeletons, remarkable biological activities, and intriguing biosynthetic enzymology. This review aims to systematically summarize the advances in the discovery methods, new structures, and bioactivities of myxobacterial NPs reported in the period of 2017-2023. In addition, the peculiar biosynthetic pathways of several structural families are also highlighted.
Collapse
Affiliation(s)
- Chao-Yi Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, P.R. China.
| | - Jia-Qi Hu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, P.R. China.
| | - De-Gao Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, P.R. China.
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, P.R. China.
| | - Changsheng Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, P.R. China.
| |
Collapse
|
10
|
Radford EJ, Whitworth DE. The genetic basis of predation by myxobacteria. Adv Microb Physiol 2024; 85:1-55. [PMID: 39059819 DOI: 10.1016/bs.ampbs.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Myxobacteria (phylum Myxococcota) are abundant and virtually ubiquitous microbial predators. Facultatively multicellular organisms, they are able to form multicellular fruiting bodies and swarm across surfaces, cooperatively hunting for prey. Myxobacterial communities are able to kill a wide range of prey microbes, assimilating their biomass to fuel population growth. Their mechanism of predation is exobiotic - hydrolytic enzymes and toxic metabolites are secreted into the extracellular environment, killing and digesting prey cells from without. However, recent observations of single-cell predation and contact-dependent prey killing challenge the dogma of myxobacterial predation being obligately cooperative. Regardless of their predatory mechanisms, myxobacteria have a broad prey range, which includes Gram-negative bacteria, Gram-positive bacteria and fungi. Pangenome analyses have shown that their extremely large genomes are mainly composed of accessory genes, which are not shared by all members of their species. It seems that the diversity of accessory genes in different strains provides the breadth of activity required to prey upon such a smorgasbord of microbes, and also explains the considerable strain-to-strain variation in predatory efficiency against specific prey. After providing a short introduction to general features of myxobacterial biology which are relevant to predation, this review brings together a rapidly growing body of work into the molecular mechanisms and genetic basis of predation, presenting a summary of current knowledge, highlighting trends in research and suggesting strategies by which we can potentially exploit myxobacterial predation in the future.
Collapse
Affiliation(s)
- Emily J Radford
- Department of Life Sciences, Aberystwyth University, Aberystwyth, Ceredigion, United Kingdom
| | - David E Whitworth
- Department of Life Sciences, Aberystwyth University, Aberystwyth, Ceredigion, United Kingdom.
| |
Collapse
|
11
|
Lee SQE, Ma GL, Candra H, Khandelwal S, Pang LM, Low ZJ, Cheang QW, Liang ZX. Streptomyces sungeiensis SD3 as a Microbial Chassis for the Heterologous Production of Secondary Metabolites. ACS Synth Biol 2024; 13:1259-1272. [PMID: 38513222 DOI: 10.1021/acssynbio.3c00750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
We present the newly isolated Streptomyces sungeiensis SD3 strain as a promising microbial chassis for heterologous production of secondary metabolites. S. sungeiensis SD3 exhibits several advantageous traits as a microbial chassis, including genetic tractability, rapid growth, susceptibility to antibiotics, and metabolic capability supporting secondary metabolism. Genomic and transcriptomic sequencing unveiled the primary metabolic capabilities and secondary biosynthetic pathways of S. sungeiensis SD3, including a previously unknown pathway responsible for the biosynthesis of streptazone B1. The unique placement of S. sungeiensis SD3 in the phylogenetic tree designates it as a type strain, setting it apart from other frequently employed Streptomyces chassis. This distinction makes it the preferred chassis for expressing biosynthetic gene clusters (BGCs) derived from strains within the same phylogenetic or neighboring phylogenetic clade. The successful expression of secondary biosynthetic pathways from a closely related yet slow-growing strain underscores the utility of S. sungeiensis SD3 as a heterologous expression chassis. Validation of CRISPR/Cas9-assisted genetic tools for chromosomal deletion and insertion paved the way for further strain improvement and BGC refactoring through rational genome editing. The addition of S. sungeiensis SD3 to the heterologous chassis toolkit will facilitate the discovery and production of secondary metabolites.
Collapse
Affiliation(s)
- Sean Qiu En Lee
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Guang-Lei Ma
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hartono Candra
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Srashti Khandelwal
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Li Mei Pang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Zhen Jie Low
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Qing Wei Cheang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Zhao-Xun Liang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| |
Collapse
|
12
|
Zhu LL, Yang Q, Wang DG, Niu L, Pan Z, Li S, Li YZ, Zhang W, Wu C. Deciphering the Biosynthesis and Physiological Function of 5-Methylated Pyrazinones Produced by Myxobacteria. ACS CENTRAL SCIENCE 2024; 10:555-568. [PMID: 38559311 PMCID: PMC10979478 DOI: 10.1021/acscentsci.3c01363] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/25/2023] [Accepted: 01/16/2024] [Indexed: 04/04/2024]
Abstract
Myxobacteria are a prolific source of secondary metabolites with sheer chemical complexity, intriguing biosynthetic enzymology, and diverse biological activities. In this study, we report the discovery, biosynthesis, biomimetic total synthesis, physiological function, structure-activity relationship, and self-resistance mechanism of the 5-methylated pyrazinone coralinone from a myxobacterium Corallococcus exiguus SDU70. A single NRPS/PKS gene corA was genetically and biochemically demonstrated to orchestrate coralinone, wherein the integral PKS part is responsible for installing the 5-methyl group. Intriguingly, coralinone exacerbated cellular aggregation of myxobacteria grown in liquid cultures by enhancing the secretion of extracellular matrix, and the 5-methylation is indispensable for the alleged activity. We provided an evolutionary landscape of the corA-associated biosynthetic gene clusters (BGCs) distributed in the myxobacterial realm, revealing the divergent evolution for the diversity-oriented biosynthesis of 5-alkyated pyrazinones. This phylogenetic contextualization provoked us to identify corB located in the proximity of corA as a self-resistance gene. CorB was experimentally verified to be a protease that hydrolyzes extracellular proteins to antagonize the agglutination-inducing effect of coralinone. Overall, we anticipate these findings will provide new insights into the chemical ecology of myxobacteria and lay foundations for the maximal excavation of these largely underexplored resources.
Collapse
Affiliation(s)
| | | | | | - Luo Niu
- State Key Laboratory of Microbial Technology,
Institute of Microbial Technology, Shandong
University, 266237 Qingdao, P.R. China
| | - Zhuo Pan
- State Key Laboratory of Microbial Technology,
Institute of Microbial Technology, Shandong
University, 266237 Qingdao, P.R. China
| | - Shengying Li
- State Key Laboratory of Microbial Technology,
Institute of Microbial Technology, Shandong
University, 266237 Qingdao, P.R. China
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology,
Institute of Microbial Technology, Shandong
University, 266237 Qingdao, P.R. China
| | - Wei Zhang
- State Key Laboratory of Microbial Technology,
Institute of Microbial Technology, Shandong
University, 266237 Qingdao, P.R. China
| | - Changsheng Wu
- State Key Laboratory of Microbial Technology,
Institute of Microbial Technology, Shandong
University, 266237 Qingdao, P.R. China
| |
Collapse
|
13
|
Bai X, Chen H, Ren X, Zhong L, Wang X, Ji X, Zhang Y, Wang Y, Bian X. Heterologous Biosynthesis of Complex Bacterial Natural Products in Burkholderia gladioli. ACS Synth Biol 2023; 12:3072-3081. [PMID: 37708405 DOI: 10.1021/acssynbio.3c00389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Bacterial natural products (NPs) are an indispensable source of drugs and biopesticides. Heterologous expression is an essential method for discovering bacterial NPs and the efficient biosynthesis of valuable NPs, but the chassis for Gram-negative bacterial NPs remains inadequate. In this study, we built a Burkholderiales mutant Burkholderia gladioli Δgbn::attB by introducing an integrated site (attB) to inactivate the native gladiolin (gbn) biosynthetic gene cluster, which stabilizes large foreign gene clusters and reduces the native metabolite profile. The growth and successful heterologous production of high-value NPs such as phylogenetically close Burkholderiales-derived antitumor polyketides (PKs) rhizoxins, phylogenetically distant Gammaproteobacteria-derived anti-MRSA (methicillin-resistant Staphylococcus aureus) antibiotics WAP-8294As, and Deltaproteobacteria-derived antitumor PKs disorazols demonstrate that this strain is a potential chassis for Gram-negative bacterial NPs. We further improved the yields of WAP-8294As through promoter insertions and precursor pathway overexpression based on heterologous expression in this strain. This study provides a robust bacterial chassis for genome mining, efficient production, and molecular engineering of bacterial NPs.
Collapse
Affiliation(s)
- Xianping Bai
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Hanna Chen
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Xiangmei Ren
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Lin Zhong
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Xingyan Wang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Xiaoqi Ji
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Youming Zhang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Yan Wang
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong 266100, China
| | - Xiaoying Bian
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
- Key Laboratory of Tobacco Pest Monitoring & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| |
Collapse
|