1
|
Manissorn J, Promsuk J, Wangkanont K, Thongnuek P. Biomimetic peptide conjugates as emerging strategies for controlled release from protein-based materials. Drug Deliv 2025; 32:2449703. [PMID: 39782014 PMCID: PMC11721625 DOI: 10.1080/10717544.2025.2449703] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/06/2024] [Accepted: 12/20/2024] [Indexed: 01/12/2025] Open
Abstract
Biopolymers, such as collagens, elastin, silk fibroin, spider silk, fibrin, keratin, and resilin have gained significant interest for their potential biomedical applications due to their biocompatibility, biodegradability, and mechanical properties. This review focuses on the design and integration of biomimetic peptides into these biopolymer platforms to control the release of bioactive molecules, thereby enhancing their functionality for drug delivery, tissue engineering, and regenerative medicine. Elastin-like polypeptides (ELPs) and silk fibroin repeats, for example, demonstrate how engineered peptides can mimic natural protein domains to modulate material properties and drug release profiles. Recombinant spider silk proteins, fibrin-binding peptides, collagen-mimetic peptides, and keratin-derived structures similarly illustrate the ability to engineer precise interactions and to design controlled release systems. Additionally, the use of resilin-like peptides showcases the potential for creating highly elastic and resilient biomaterials. This review highlights current achievements and future perspectives in the field, emphasizing the potential of biomimetic peptides to transform biopolymer-based biomedical applications.
Collapse
Affiliation(s)
- Juthatip Manissorn
- Biomedical Materials and Devices for Revolutionary Integrative Systems Engineering (BMD-RISE) Research Unit, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Jaturong Promsuk
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Kittikhun Wangkanont
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Peerapat Thongnuek
- Biomedical Materials and Devices for Revolutionary Integrative Systems Engineering (BMD-RISE) Research Unit, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
- Biomedical Engineering Program, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
- Biomedical Engineering Research Center, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
2
|
Chen G, Wang X, Li J, Xu Y, Lin Y, Wang F. Intelligent hydrogels for treating malignant melanoma. ENGINEERED REGENERATION 2024; 5:295-305. [DOI: 10.1016/j.engreg.2024.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
|
3
|
Shafiee S, Hong W, Lucas J, Khampang P, Runge CL, Wells C, Yan K, Kerschner JE, Joshi A. In vivo biodistribution and ototoxicity assessment of cationic liposomal-ceftriaxone via noninvasive trans-tympanic delivery in chinchilla models: Implications for otitis media therapy. Int J Pediatr Otorhinolaryngol 2024; 178:111894. [PMID: 38350381 PMCID: PMC10939715 DOI: 10.1016/j.ijporl.2024.111894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/15/2024]
Abstract
OBJECTIVES We report the in vivo biodistribution and ototoxicity of cationic liposomal-ceftriaxone (CFX) delivered via ear drop formulation in adult chinchilla. METHODS CFX was encapsulated in liposomes with size of ∼100 nm and surface charge of +20 mV. 100 μl liposomes or free drug was applied twice daily in both external ear canals of adult chinchillas for either 3 or 10 days. Study groups included free ceftriaxone (CFX, Day 3: n = 4, Day 10: n = 8), liposomal ceftriaxone (CFX-Lipo, Day 3: n = 4, Day 10: n = 8), and a systemic control group (Day 3: n = 4, Day 10: n = 4). Ceftriaxone delivery to the middle ear and systemic circulation was quantified by HPLC assays. Liposome transport was visualized via confocal microscopy. Auditory brainstem response (ABR) tests and cochlear histology were used to assess ototoxicity. RESULTS Liposomal ceftriaxone (CFX-Lipo) displayed a ∼658-fold increase in drug delivery efficiency in the middle ear relative to the free CFX (8.548 ± 0.4638% vs. 0.013 ± 0.0009%, %Injected dose, Mean ± SEM). CFX measured in blood serum (48.2 ± 7.78 ng/ml) following CFX-Lipo treatment in ear was 41-fold lower compared to systemic free-CFX treatment (1990.7 ± 617.34 ng/ml). ABR tests and histological analysis indicated no ototoxicity due to the treatment. CONCLUSION Cationic liposomal encapsulation results in potent drug delivery across the tympanic membrane to the middle ear with minimal systemic exposure and no ototoxicity.
Collapse
Affiliation(s)
- Shayan Shafiee
- Joint Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, WI, USA
| | - Wenzhou Hong
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Pawjai Khampang
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Christina L Runge
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Clive Wells
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ke Yan
- Department of Pediatrics Quantitative Health Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Joseph E Kerschner
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Amit Joshi
- Joint Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, WI, USA.
| |
Collapse
|
4
|
Rizvi SF, Zhang L, Zhang H, Fang Q. Peptide-Drug Conjugates: Design, Chemistry, and Drug Delivery System as a Novel Cancer Theranostic. ACS Pharmacol Transl Sci 2024; 7:309-334. [PMID: 38357281 PMCID: PMC10863443 DOI: 10.1021/acsptsci.3c00269] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 02/16/2024]
Abstract
The emergence of peptide-drug conjugates (PDCs) that utilize target-oriented peptide moieties as carriers of cytotoxic payloads, interconnected with various cleavable/noncleavable linkers, resulted in the key-foundation of the new era of targeted therapeutics. They are capable of retaining the integrity of conjugates in the blood circulatory system as well as releasing the drugs at the tumor microenvironment. Other valuable advantages are specificity and selectivity toward targeted-receptors, higher penetration ability, and drug-loading capacity, making them a suitable candidate to play their vital role as promising carrier agents. In this review, we summarized the types of cell-targeting (CTPs) and cell-penetrating peptides (CPPs) that have broad applications in the advancement of targeted drug-delivery systems (DDS). Moreover, the techniques to overcome the limitations of peptide-chemistry for their extensive implementation to construct the PDCs. Besides this, the diversified breakthrough of linker chemistry, and ample knowledge of various cytotoxic payloads used in PDCs in recent years, as well as the mechanism of action of PDCs was critically discussed. The principal aim is to provide scattered and diversified knowledge in one place and to help researchers understand the pinching knots in the science of PDC development, also their progression toward a bright future for PDCs as novel theranostics in clinical practice.
Collapse
Affiliation(s)
- Syed Faheem
Askari Rizvi
- Key
Laboratory of Preclinical Study for New Drugs of Gansu Province, and
Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, Gansu P.R. China
- State
Key Laboratory of Applied Organic Chemistry, College of Chemistry
and Chemical Engineering, Lanzhou University, Lanzhou, 730000, Gansu P.R. China
- Institute
of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore, 54000, Punjab Pakistan
| | - Linjie Zhang
- State
Key Laboratory of Applied Organic Chemistry, College of Chemistry
and Chemical Engineering, Lanzhou University, Lanzhou, 730000, Gansu P.R. China
| | - Haixia Zhang
- State
Key Laboratory of Applied Organic Chemistry, College of Chemistry
and Chemical Engineering, Lanzhou University, Lanzhou, 730000, Gansu P.R. China
| | - Quan Fang
- Key
Laboratory of Preclinical Study for New Drugs of Gansu Province, and
Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, Gansu P.R. China
| |
Collapse
|
5
|
Ledwoń P, Goldeman W, Hałdys K, Jewgiński M, Calamai G, Rossowska J, Papini AM, Rovero P, Latajka R. Tripeptides conjugated with thiosemicarbazones: new inhibitors of tyrosinase for cosmeceutical use. J Enzyme Inhib Med Chem 2023; 38:2193676. [PMID: 37146256 PMCID: PMC10165932 DOI: 10.1080/14756366.2023.2193676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023] Open
Abstract
The development of skin-care products is recently growing. Cosmetic formulas containing active ingredients with proven efficacy, namely cosmeceuticals, are based on various compounds, including peptides. Different whitening agents featuring anti-tyrosinase activity have been applied in the cosmeceutical field. Despite their availability, their applicability is often limited due to several drawbacks including toxicity, lack of stability, and other factors. In this work, we present the inhibitory effect on diphenolase activity of thiosemicarbazone (TSC)-peptide conjugates. Tripeptides FFY, FWY, and FYY were conjugated with three TSCs bearing one or two aromatic rings via amide bond formation in a solid phase. Compounds were then examined as tyrosinase and melanogenesis inhibitors in murine melanoma B16F0 cell line, followed by the cytotoxicity assays of these cells. In silico investigations explained the differences in the activity, observed among tested compounds. Mushroom tyrosinase was inhibited by TSC1-conjugates at micromolar level, with IC50 lower than this for kojic acid, a widely used reference compound. Up to now, this is the first report regarding thiosemicarbazones conjugated with tripeptides, synthesised for the purpose of tyrosinase inhibition.
Collapse
Affiliation(s)
- Patrycja Ledwoń
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wrocław, Poland
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Neurosciences, Psychology, Drug Research and Child Health Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, Sesto Fiorentino, Italy
| | - Waldemar Goldeman
- Department of Organic and Medicinal Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wrocław, Poland
| | - Katarzyna Hałdys
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wrocław, Poland
| | - Michał Jewgiński
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wrocław, Poland
| | - Greta Calamai
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Neurosciences, Psychology, Drug Research and Child Health Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, Sesto Fiorentino, Italy
| | - Joanna Rossowska
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Science, Wrocław, Poland
| | - Anna Maria Papini
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Paolo Rovero
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Neurosciences, Psychology, Drug Research and Child Health Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, Sesto Fiorentino, Italy
| | - Rafał Latajka
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wrocław, Poland
| |
Collapse
|
6
|
Zhu D, Kong H, Yang G, He P, Luan X, Guo L, Wei G. Peptide Nanosheet-Inspired Biomimetic Synthesis of CuS Nanoparticles on Ti 3C 2 Nanosheets for Electrochemical Biosensing of Hydrogen Peroxide. BIOSENSORS 2022; 13:14. [PMID: 36671849 PMCID: PMC9855856 DOI: 10.3390/bios13010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Hydrogen peroxide (H2O2) is one of the intermediates or final products of biological metabolism and participates in many important biological processes of life activities. The detection of H2O2 is of great significance in clinical disease monitoring, environmental protection, and bioanalysis. In this study, Ti3C2-based nanohybrids are prepared by the biological modification and self-assembled peptide nanosheets (PNSs)-based biomimetic synthesis of copper sulfide nanoparticles (CuS NPs), which show potential application in the fabrication of low-cost and high-performance electrochemical H2O2 biosensors. The synthesized CuS-PNSs/Ti3C2 nanohybrids exhibit excellent electrochemical performance towards H2O2, in which CuS NPs can catalyze the decomposition of H2O2 and realize the transformation from a chemical signal to an electrical signal to achieve the purpose of H2O2 detection. The prepared CuS-PNSs/Ti3C2-based electrochemical biosensor platform exhibits a wide detection range (5 μM-15 mM) and a low detection limit (0.226 μM). In addition, it reveals good selectivity and stability and can realize the monitoring of H2O2 in a complex environment. The successful biomimetic synthesis of CuS-PNSs/Ti3C2 hybrid nanomaterials provides a green and friendly strategy for the design and synthesis of functional nanomaterials and also provides a new inspiration for the construction of highly effective electrochemical biosensors for practical detection of H2O2 in various environments.
Collapse
Affiliation(s)
- Danzhu Zhu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Hao Kong
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Guozheng Yang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Peng He
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Xin Luan
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Lei Guo
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, China
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| |
Collapse
|
7
|
New Advances in Biomedical Application of Polymeric Micelles. Pharmaceutics 2022; 14:pharmaceutics14081700. [PMID: 36015325 PMCID: PMC9416043 DOI: 10.3390/pharmaceutics14081700] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/29/2022] [Accepted: 08/07/2022] [Indexed: 12/20/2022] Open
Abstract
In the last decade, nanomedicine has arisen as an emergent area of medicine, which studies nanometric systems, namely polymeric micelles (PMs), that increase the solubility and the stability of the encapsulated drugs. Furthermore, their application in dermal drug delivery is also relevant. PMs present unique characteristics because of their unique core-shell architecture. They are colloidal dispersions of amphiphilic compounds, which self-assemble in an aqueous medium, giving a structure-type core-shell, with a hydrophobic core (that can encapsulate hydrophobic drugs), and a hydrophilic shell, which works as a stabilizing agent. These features offer PMs adequate steric protection and determine their hydrophilicity, charge, length, and surface density properties. Furthermore, due to their small size, PMs can be absorbed by the intestinal mucosa with the drug, and they transport the drug in the bloodstream until the therapeutic target. Moreover, PMs improve the pharmacokinetic profile of the encapsulated drug, present high load capacity, and are synthesized by a reproducible, easy, and low-cost method. In silico approaches have been explored to improve the physicochemical properties of PMs. Based on this, a computer-aided strategy was developed and validated to enable the delivery of poorly soluble drugs and established critical physicochemical parameters to maximize drug loading, formulation stability, and tumor exposure. Poly(2-oxazoline) (POx)-based PMs display unprecedented high loading concerning water-insoluble drugs and over 60 drugs have been incorporated in POx PMs. Among various stimuli, pH and temperature are the most widely studied for enhanced drug release at the site of action. Researchers are focusing on dual (pH and temperature) responsive PMs for controlled and improved drug release at the site of action. These dual responsive systems are mainly evaluated for cancer therapy as certain malignancies can cause a slight increase in temperature and a decrease in the extracellular pH around the tumor site. This review is a compilation of updated therapeutic applications of PMs, such as PMs that are based on Pluronics®, micelleplexes and Pox-based PMs in several biomedical applications.
Collapse
|
8
|
Furman O, Zaporozhets A, Tobi D, Bazylevich A, Firer MA, Patsenker L, Gellerman G, Lubin BCR. Novel Cyclic Peptides for Targeting EGFR and EGRvIII Mutation for Drug Delivery. Pharmaceutics 2022; 14:1505. [PMID: 35890400 PMCID: PMC9318536 DOI: 10.3390/pharmaceutics14071505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 02/05/2023] Open
Abstract
The epidermal growth factor-epidermal growth factor receptor (EGF-EGFR) pathway has become the main focus of selective chemotherapeutic intervention. As a result, two classes of EGFR inhibitors have been clinically approved, namely monoclonal antibodies and small molecule kinase inhibitors. Despite an initial good response rate to these drugs, most patients develop drug resistance. Therefore, new treatment approaches are needed. In this work, we aimed to find a new EGFR-specific, short cyclic peptide, which could be used for targeted drug delivery. Phage display peptide technology and biopanning were applied to three EGFR expressing cells, including cells expressing the EGFRvIII mutation. DNA from the internalized phage was extracted and the peptide inserts were sequenced using next-generation sequencing (NGS). Eleven peptides were selected for further investigation using binding, internalization, and competition assays, and the results were confirmed by confocal microscopy and peptide docking. Among these eleven peptides, seven showed specific and selective binding and internalization into EGFR positive (EGFR+ve) cells, with two of them-P6 and P9-also demonstrating high specificity for non-small cell lung cancer (NSCLC) and glioblastoma cells, respectively. These peptides were chemically conjugated to camptothecin (CPT). The conjugates were more cytotoxic to EGFR+ve cells than free CPT. Our results describe a novel cyclic peptide, which can be used for targeted drug delivery to cells overexpressing the EGFR and EGFRvIII mutation.
Collapse
Affiliation(s)
- Olga Furman
- Department of Chemical Engineering, Biotechnology and Materials, Ariel University, Ariel 40700, Israel; (O.F.); (M.A.F.)
- Agriculture and Oenology Department, Eastern Regional R&D Center, Ariel 40700, Israel
| | - Alisa Zaporozhets
- Department of Chemical Sciences, Ariel University, Ariel 40700, Israel; (A.Z.); (A.B.); (L.P.); (G.G.)
| | - Dror Tobi
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
- Department of Molecular Biology, Ariel University, Ariel 40700, Israel
| | - Andrii Bazylevich
- Department of Chemical Sciences, Ariel University, Ariel 40700, Israel; (A.Z.); (A.B.); (L.P.); (G.G.)
| | - Michael A. Firer
- Department of Chemical Engineering, Biotechnology and Materials, Ariel University, Ariel 40700, Israel; (O.F.); (M.A.F.)
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
- Ariel Center for Applied Cancer Research, Ariel 40700, Israel
| | - Leonid Patsenker
- Department of Chemical Sciences, Ariel University, Ariel 40700, Israel; (A.Z.); (A.B.); (L.P.); (G.G.)
| | - Gary Gellerman
- Department of Chemical Sciences, Ariel University, Ariel 40700, Israel; (A.Z.); (A.B.); (L.P.); (G.G.)
- Ariel Center for Applied Cancer Research, Ariel 40700, Israel
| | - Bat Chen R. Lubin
- Department of Chemical Engineering, Biotechnology and Materials, Ariel University, Ariel 40700, Israel; (O.F.); (M.A.F.)
- Agriculture and Oenology Department, Eastern Regional R&D Center, Ariel 40700, Israel
| |
Collapse
|