1
|
Nourbakhsh N, Baniebrahimi G, Talebi S, Talebi A, Nasr Esfahani MH, Movahedian B, Manshayi M, Naghdi N, Ejeian F, Masaeli E, Mosaddad SA. Subcutaneous implantation of tooth germ stem cells over the masseter muscle in mice: An in vivo pilot study. Regen Ther 2025; 28:536-543. [PMID: 40027990 PMCID: PMC11869380 DOI: 10.1016/j.reth.2025.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/11/2025] [Accepted: 01/25/2025] [Indexed: 03/05/2025] Open
Abstract
Objectives This study aimed to explore the potential of tooth germ stem cells for regenerating tooth-like structures by subcutaneously implanting first molar tooth germ stem cells over the masseter muscle in mice. Methods Five pairs of house mice, Mus musculus, were selected for mating. At gestational day 14 (E14), the fetuses were extracted, and the first molar tooth germ at the cap stage was isolated. Tooth germ stem cells were prepared into a suspension and seeded onto scaffolds, which were then implanted subcutaneously over the masseter muscle in male mice. The control group (n = 5 male mice) received acellular scaffolds implanted at the same site. After 20 days, the regenerated tissues were resected and analyzed histologically using hematoxylin and eosin (H & E) staining, Masson's trichrome staining, and immunohistochemical (IHC) staining for cytokeratin (CK) and vimentin markers. Results H & E staining showed the formation of integrated oval structures at the implant site in all samples. Masson's trichrome staining identified dispersed accumulations of cellular mineralized matrix within the connective tissue. IHC staining was positive for vimentin, confirming the mesenchymal origin of the loose tissue at the center, indicating future dental pulp development. Positive CK staining indicated the ectodermal origin of dense peripheral tissues, suggesting the future formation of inner enamel epithelium. The combined immunohistochemical results for vimentin and CK confirmed the ecto-mesenchymal origin of the regenerated tissue, which resembled a late bell-stage tooth germ observed around gestational days 17.5-18 and showed early indications of dentin formation (D0). Conclusion The study indicates that tooth germ stem cells may have the potential to produce dense, tooth-like structures when implanted subcutaneously in mice. These findings provide preliminary insights into the possible applications of tooth germ stem cells in regenerative dental tissue engineering.
Collapse
Affiliation(s)
- Nosrat Nourbakhsh
- Department of Pediatric Dentistry, Dental Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ghazaleh Baniebrahimi
- Department of Pediatric Dentistry, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahar Talebi
- Research Committee, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ardeshir Talebi
- Department of Pathology, Medical School, Dental Research Center, Dental Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Hossein Nasr Esfahani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Bijan Movahedian
- Department of Maxillofacial Surgery, Dental Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maziar Manshayi
- Dental Science Research Center, Dentistry Faculty, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Navid Naghdi
- Department of Maxillofacial Surgery, School of Dentistry, Hamedan University of Medical Sciences, Hamedan, Iran
| | - Fatemeh Ejeian
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Elahe Masaeli
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Seyed Ali Mosaddad
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Department of Conservative Dentistry and Bucofacial Prostheses, Faculty of Odontology, University Complutense of Madrid, Madrid, Spain
| |
Collapse
|
2
|
Fan J, Wang P, Wang S, Li R, Yang Y, Jin L, Sun Y, Li D. Advances in macro-bioactive materials enhancing dentin bonding. DISCOVER NANO 2025; 20:40. [PMID: 39961978 PMCID: PMC11832989 DOI: 10.1186/s11671-025-04206-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 02/03/2025] [Indexed: 02/20/2025]
Abstract
The long-term stability of dentin bonding is equally crucial for minimally invasive aesthetic restoration. Although the dentin bonding meets clinical standards at the initial stage, its long-term efficacy remains suboptimal owing to the impact of physiological factors. Herein, we present a comprehensive analysis of macro-bioactive materials, including nanomaterials and polymer materials, to improve the longevity of dentin bonding and extend the lifespan of adhesive prosthetics through various mechanisms to achieve sustained and stable dentin bonding effects over an extended period. On the one hand, the macro-bioactive materials directly inhibit the enzymatic activity of matrix metalloproteinases (MMPs) or impede the acidogenic abilities of cariogenic microorganisms, thereby enhancing the local pH within the oral cavity. On the other hand, they indirectly prevent the activation of MMPs, thereby safeguarding the structural integrity of the resin-dentin bonding interface and efficiently improve its long-term stability. Moreover, these macro-bioactive materials establish cross-links with collagen fibers, promoting bionic remineralization and protecting the exposed collagen fibers within the hybrid layer from degradation. These processes ultimately enhance the mechanical properties of the resin-dentin bonding interface and efficiently improve its long-term stability.
Collapse
Affiliation(s)
- Junping Fan
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Provincial Key Laboratory of Oral Diseases, Nanchang, 330006, People's Republic of China
- Jiangxi Provincial Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China
| | - Pei Wang
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Provincial Key Laboratory of Oral Diseases, Nanchang, 330006, People's Republic of China
- Jiangxi Provincial Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China
| | - Shen Wang
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Provincial Key Laboratory of Oral Diseases, Nanchang, 330006, People's Republic of China
- Jiangxi Provincial Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China
| | - Rong Li
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Provincial Key Laboratory of Oral Diseases, Nanchang, 330006, People's Republic of China
- Jiangxi Provincial Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China
| | - Yaoxi Yang
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Provincial Key Laboratory of Oral Diseases, Nanchang, 330006, People's Republic of China
- Jiangxi Provincial Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China
| | - Lei Jin
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Provincial Key Laboratory of Oral Diseases, Nanchang, 330006, People's Republic of China
- Jiangxi Provincial Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China
| | - Yingying Sun
- The Affiliated Taian City Central Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Dongfang Li
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China.
- Jiangxi Provincial Key Laboratory of Oral Diseases, Nanchang, 330006, People's Republic of China.
- Jiangxi Provincial Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China.
| |
Collapse
|
3
|
Khoshbin E, Karkehabadi H, Salehi R, Farmany A, Najafi R, Abbasi R. Comparative study of nanohydroxyapatite-emdogain effects on apical papilla stem cell survival and differentiation. Biotechnol Lett 2025; 47:24. [PMID: 39907710 DOI: 10.1007/s10529-024-03557-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/26/2024] [Accepted: 12/16/2024] [Indexed: 02/06/2025]
Abstract
BACKGROUND The study was designed to explore the enhanced impact of nano-hydroxyapatite and emdogain on the survival and osteogenic/odontogenic differentiation of human stem cells isolated from the apical papilla (hSCAPs). MATERIALS AND METHODS In this in vitro trial, hSCAPS obtained from intact impacted immature third molars were confirmed to have characteristic cell surface markers, then exposed to nanohydroxyapatite, emdogain, and nanohydroxyapatite coated with emdogain for durations of 1-3 days. The survival of apical papilla stem cells was measured using a methyl thiazolyl tetrazolium assay. The quantitative reverse transcription polymerase chain reaction, alkaline phosphatase activity (ALP) and Alizarin red staining were used to evaluate osteogenic-odontogenic differentiation. Analysis of the data was done using one-way ANOVA, t-test, and Mann-Whitney test (α = 0.05). RESULTS At 1-3 days, emdogain exhibited no significant impact on the survival of human stem cells from the apical papilla. In contrast, nanohydroxyapatite (α > 0.05) and nanohydroxyapatite coated with emdogain demonstrated a notable reduction in cell survival compared to the control group (α < 0.05). The expression of dentin sialophosphoprotein, dentin matrix protein 1, and bone sialoprotein genes demonstrated a notable increase in the group treated with nanohydroxyapatite coated with emdogain compared to the other groups (α < 0.05), and furthermore, this group exhibited more pronounced mineralized nodules than the other experimental groups. CONCLUSION In contrast to nanohydroxyapatite, Emdogain did not demonstrate a detrimental effect on the survival of hSCAPs. Nanohydroxyapatite, emdogain, and nanohydroxyapatite coated with emdogain increased osteogenic/odontogenic differentiation of hSCAPs.
Collapse
Affiliation(s)
- Elham Khoshbin
- Department of Endodontics, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamed Karkehabadi
- Department of Endodontics, Dental Research Center, Avicenna Institute of Clinical Sciences, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Razieh Salehi
- Department of Endodontics, School of Dentistry, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Abbas Farmany
- Dental Research Center, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rezvan Najafi
- Department of Medical Molecular & Genetics, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Roshanak Abbasi
- Department of Endodontics, School of Dentistry, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
4
|
Dai D, Li D, Zhang C. Unraveling Nanomaterials in Biomimetic Mineralization of Dental Hard Tissue: Focusing on Advantages, Mechanisms, and Prospects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405763. [PMID: 39206945 PMCID: PMC11516058 DOI: 10.1002/advs.202405763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/31/2024] [Indexed: 09/04/2024]
Abstract
The demineralization of dental hard tissue imposes considerable health and economic burdens worldwide, but an optimal method that can repair both the chemical composition and complex structures has not been developed. The continuous development of nanotechnology has created new opportunities for the regeneration and repair of dental hard tissue. Increasingly studies have reported that nanomaterials (NMs) can induce and regulate the biomimetic mineralization of dental hard tissue, but few studies have examined how they are involved in the different stages, let alone the relevant mechanisms of action. Besides their nanoscale dimensions and excellent designability, NMs play a corresponding role in the function of the raw materials for mineralization, mineralized microenvironment, mineralization guidance, and the function of mineralized products. This review comprehensively summarizes the advantages of NMs and examines the specific mineralization mechanisms. Design strategies to promote regeneration and repair are summarized according to the application purpose of NMs in the oral cavity, and limitations and development directions in dental hard tissue remineralization are proposed. This review can provide a theoretical basis to understand the interaction between NMs and the remineralization of dental hard tissue, thereby optimizing design strategy, rational development, and clinical application of NMs in the field of remineralization.
Collapse
Affiliation(s)
- Danni Dai
- Stomatological HospitalSchool of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Dan Li
- Stomatological HospitalSchool of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Chao Zhang
- Stomatological HospitalSchool of StomatologySouthern Medical UniversityGuangzhou510280China
| |
Collapse
|
5
|
Barbaro F, Conza GD, Quartulli FP, Quarantini E, Quarantini M, Zini N, Fabbri C, Mosca S, Caravelli S, Mosca M, Vescovi P, Sprio S, Tampieri A, Toni R. Correlation between tooth decay and insulin resistance in normal weight males prompts a role for myo-inositol as a regenerative factor in dentistry and oral surgery: a feasibility study. Front Bioeng Biotechnol 2024; 12:1374135. [PMID: 39144484 PMCID: PMC11321979 DOI: 10.3389/fbioe.2024.1374135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 07/01/2024] [Indexed: 08/16/2024] Open
Abstract
Background In an era of precision and stratified medicine, homogeneity in population-based cohorts, stringent causative entry, and pattern analysis of datasets are key elements to investigate medical treatments. Adhering to these principles, we collected in vivo and in vitro data pointing to an insulin-sensitizing/insulin-mimetic effect of myo-inositol (MYO) relevant to cell regeneration in dentistry and oral surgery. Confirmation of this possibility was obtained by in silico analysis of the relation between in vivo and in vitro results (the so-called bed-to-benchside reverse translational approach). Results Fourteen subjects over the 266 screened were young adult, normal weight, euglycemic, sedentary males having normal appetite, free diet, with a regular three-times-a-day eating schedule, standard dental hygiene, and negligible malocclusion/enamel defects. Occlusal caries were detected by fluorescence videoscanning, whereas body composition and energy balance were estimated with plicometry, predictive equations, and handgrip. Statistically significant correlations (Pearson r coefficient) were found between the number of occlusal caries and anthropometric indexes predicting insulin resistance (IR) in relation to the abdominal/visceral fat mass, fat-free mass, muscular strength, and energy expenditure adjusted to the fat and muscle stores. This indicated a role for IR in affecting dentin reparative processes. Consistently, in vitro administration of MYO to HUVEC and Swiss NIH3T3 cells in concentrations corresponding to those administered in vivo to reduce IR resulted in statistically significant cell replication (ANOVA/Turkey tests), suggesting that MYO has the potential to counteract inhibitory effects of IR on dental vascular and stromal cells turnover. Finally, in in silico experiments, quantitative evaluation (WOE and information value) of a bioinformatic Clinical Outcome Pathway confirmed that in vitro trophic effects of MYO could be transferred in vivo with high predictability, providing robust credence of its efficacy for oral health. Conclusion Our reverse bed-to-benchside data indicate that MYO might antagonize the detrimental effects of IR on tooth decay. This provides feasibility for clinical studies on MYO as a regenerative factor in dentistry and oral surgery, including dysmetabolic/aging conditions, bone reconstruction in oral destructive/necrotic disorders, dental implants, and for empowering the efficacy of a number of tissue engineering methodologies in dentistry and oral surgery.
Collapse
Affiliation(s)
- Fulvio Barbaro
- Department of Medicine and Surgery - DIMEC, Laboratory of Regenerative Morphology and Bioartificial Structures (Re.Mo.Bio.S.), Museum and Historical Library of Biomedicine - BIOMED, University of Parma, Parma, Italy
| | - Giusy Di Conza
- Department of Medicine and Surgery - DIMEC, Laboratory of Regenerative Morphology and Bioartificial Structures (Re.Mo.Bio.S.), Museum and Historical Library of Biomedicine - BIOMED, University of Parma, Parma, Italy
| | - Francesca Pia Quartulli
- Department of Medicine and Surgery - DIMEC, Laboratory of Regenerative Morphology and Bioartificial Structures (Re.Mo.Bio.S.), Museum and Historical Library of Biomedicine - BIOMED, University of Parma, Parma, Italy
| | - Enrico Quarantini
- Odontostomatology Unit, and R&D Center for Artificial Intelligence in Biomedicine and Odontostomatology (A.I.B.O), Galliera Medical Center, San Venanzio di Galliera, Italy
| | - Marco Quarantini
- Odontostomatology Unit, and R&D Center for Artificial Intelligence in Biomedicine and Odontostomatology (A.I.B.O), Galliera Medical Center, San Venanzio di Galliera, Italy
| | - Nicoletta Zini
- CNR Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, Unit of Bologna, Bologna, Italy
| | - Celine Fabbri
- Course on Odontostomatology, University Vita-Salute San Raffaele, Milan, Italy
| | - Salvatore Mosca
- Course on Disorders of the Locomotor System, Fellow Program in Orthopaedics and Traumatology, University Vita-Salute San Raffaele, Milan, Italy
| | - Silvio Caravelli
- O.U. Orthopedics Bentivoglio, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Massimiliano Mosca
- O.U. Orthopedics Bentivoglio, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Paolo Vescovi
- Department of Medicine and Surgery - DIMEC, Odontostomatology Section, University of Parma, Parma, Italy
| | | | | | - Roberto Toni
- CNR - ISSMC, Faenza, Italy
- Academy of Sciences of the Institute of Bologna, Section IV - Medical Sciences, Bologna, Italy
- Endocrinology, Diabetes, and Nutrition Disorders Outpatient Clinic - OSTEONET (Osteoporosis, Nutrition, Endocrinology, and Innovative Therapies) and R&D Center A.I.B.O, Centro Medico Galliera, San Venanzio di Galliera, Italy
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Tufts Medical Center - Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
6
|
Sağır K, Aydınoğlu A, Hazar Yoruç AB. Nanoflower hydroxyapatite's effect on the properties of resin‐based dental composite. J Appl Polym Sci 2024; 141. [DOI: 10.1002/app.55347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 01/26/2024] [Indexed: 01/06/2025]
Abstract
AbstractTo investigate the reinforcing effect of nanoflower‐like hydroxyapatite (NFHA) in resin‐based dental composites, we synthesized a novel NFHA using microwave irradiation (MW), hydrothermal treatment (HT), and sonochemical synthesis (SS). Silanized NFHA was then used as the reinforcing filler in dental resin composites. We characterized the structure and morphology of various HA nanostructures using x‐ray diffraction, scanning electron microscope, and TEM. The mechanical performance of dental resin composites reinforced with silanized NFHA was measured using a universal testing machine. Spherical HA, synthesized through chemical precipitation (CP), served as the control group. One‐way analysis of variance was employed for the statistical analysis of the acquired data. The results demonstrate that the nanoflower morphology significantly was improved mechanical and physical properties. After conducting trials, the NFHA synthesized using MW and HT showed a substantial enhancement in mechanical and physical properties compared to the other structures. Therefore, it can be concluded that NFHA can serve as a novel reinforcing HA filler, providing regenerative properties to resin composites with sufficient mechanical strength.
Collapse
Affiliation(s)
- Kadir Sağır
- Department of Materials Science and Technology, Faculty of Science Turkish‐German University Istanbul Turkey
| | - Aysu Aydınoğlu
- Department of Metallurgical and Materials Engineering, Faculty of Chemical and Metallurgical Engineering Yıldız Technical University Istanbul Turkey
| | - Afife Binnaz Hazar Yoruç
- Department of Metallurgical and Materials Engineering, Faculty of Chemical and Metallurgical Engineering Yıldız Technical University Istanbul Turkey
| |
Collapse
|
7
|
Lei C, Wang KY, Ma YX, Hao DX, Zhu YN, Wan QQ, Zhang JS, Tay FR, Mu Z, Niu LN. Biomimetic Self-Maturation Mineralization System for Enamel Repair. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311659. [PMID: 38175183 DOI: 10.1002/adma.202311659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/03/2023] [Indexed: 01/05/2024]
Abstract
Enamel repair is crucial for restoring tooth function and halting dental caries. However, contemporary research often overlooks the retention of organic residues within the repair layer, which hinders the growth of dense crystals and compromises the properties of the repaired enamel. During the maturation of natural enamel, the organic matrix undergoes enzymatic processing to facilitate further crystal growth, resulting in a highly mineralized tissue. Inspired by this process, a biomimetic self-maturation mineralization system is developed, comprising ribonucleic acid-stabilized amorphous calcium phosphate (RNA-ACP) and ribonuclease (RNase). The RNA-ACP induces initial mineralization in the form of epitaxial crystal growth, while the RNase present in saliva automatically triggers a biomimetic self-maturation process. The mechanistic study further indicates that RNA degradation prompts conformational rearrangement of the RNA-ACP, effectively excluding the organic matter introduced earlier. This exclusion process promotes lateral crystal growth, resulting in the generation of denser enamel-like apatite crystals that are devoid of organic residues. This strategy of eliminating organic residues from enamel crystals enhances the mechanical and physiochemical properties of the repaired enamel. The present study introduces a conceptual biomimetic mineralization strategy for effective enamel repair in clinical practice and offers potential insights into the mechanisms of biomineral formation.
Collapse
Affiliation(s)
- Chen Lei
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Kai-Yan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yu-Xuan Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Dong-Xiao Hao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yi-Na Zhu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Qian-Qian Wan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Jiang-Shan Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Franklin R Tay
- The Dental College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Zhao Mu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Li-Na Niu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
8
|
Vahora A, Singh H, Dan A, Puthenpurackel SS, Mishra NC, Dhanka M. Nanoengineered oxygen-releasing polymeric scaffold with sustained release of dexamethasone for bone regeneration. Biomed Mater 2024; 19:035007. [PMID: 38387063 DOI: 10.1088/1748-605x/ad2c17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
Maintaining the continuous oxygen supply and proper cell growth before blood vessel ingrowth at the bone defect site are considerably significant issues in bone regeneration. Oxygen-producing scaffolds can supply oxygen and avoid hypoxia leading to expedited bone regeneration. Herein, first oxygen-producing calcium peroxide nanoparticles (CPO NPs) are synthesized, and subsequently, the various amounts of synthesized CPO NPs (0.1, 0.5, and 1 wt/v%) loaded in the scaffold composite, which is developed by simple physical blending of chitosan (CS) and polycaprolactone (PCL) polymers. To deliver the synergistic therapeutic effect, dexamethasone (DEX), known for its potential anti-inflammatory and osteogenic properties, is loaded into the nanocomposite scaffolds. The extensive physicochemical characterizations of nanocomposite scaffolds confirm the successful loading of CPO NPs, adequate porous morphology, pore size, hydrophilicity, and biodegradability.In vitro, biological studies support the antibacterial, hemocompatible, and cytocompatible (MG-63 and MC3T3-E1 cells) nature of the material when tested on respective cells. Field emission scanning electron microscopy and energy-dispersive x-ray spectroscopy confirm the successful biomineralization of the scaffolds. Scaffolds also exhibit the sustained release of DEX and efficient protein adsorption. This study revealed that a nanoengineered scaffold loaded with CPO NPs (PCL/CS/DEX/CPO 3) is a suitable candidate for bone tissue regeneration.
Collapse
Affiliation(s)
- Aatikaben Vahora
- Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, India
| | - Hemant Singh
- Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, India
- Department of Biological Sciences, Khalifa University, Main Campus, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University, Main Campus, Abu Dhabi, United Arab Emirates
- Functional Biomaterials Group, Khalifa University, San Campus, Abu Dhabi, United Arab Emirates
| | - Aniruddha Dan
- Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, India
| | - Surya Suresh Puthenpurackel
- Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, India
| | - Narayan Chandra Mishra
- Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Mukesh Dhanka
- Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, India
| |
Collapse
|
9
|
Sadrabad MJ, Saberian E, Izadi A, Emami R, Ghadyani F. Success in Tooth Bud Regeneration: A Short Communication. J Endod 2024; 50:351-354. [PMID: 38154652 DOI: 10.1016/j.joen.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/10/2023] [Accepted: 12/17/2023] [Indexed: 12/30/2023]
Abstract
INTRODUCTION Tooth caries and loss are frequent clinical diseases in dentistry. Tissue engineering is a new therapeutic choice for the complete biological regeneration of pulpal and dental tissues in regenerative dentistry. The aim of this study was to establish a protocol for in situ regeneration of a dental bud in the extracted socket. METHODS The current study examined tooth bud regeneration with dental pulp stem cells induced by a dentin derivative signal in a rabbit's jaw. RESULT A tooth bud was regenerated; the morphology and structure of it were typical, and it was post-Bell stage. CONCLUSIONS In our study, a real tooth bud was formed in the post-Bell stage with complete morphologic and biological features. However, the application of this method for tooth regeneration in humans necessitates further research.
Collapse
Affiliation(s)
- Maryam Jalili Sadrabad
- Oral Medicine Department, Dental School, Semnan University of Medical Sciences, Semnan, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| | - Elham Saberian
- Dental Medicine Faculty, Pavol Jozef Safarik University, Kosice, Slovakia
| | - Armin Izadi
- Student Research Committee, Oral Medicine Department, Dental Faculty, Semnan University of Medical Sciences, Semnan, Iran
| | - Rahele Emami
- Radiology Department, Dental School, Tehran University of Medical Sciences, Tehran, Iran
| | - Farid Ghadyani
- Student Research Committee, Dental Faculty, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
10
|
Yu C, Feng S, Li Y, Chen J. Application of Nondegradable Synthetic Materials for Tendon and Ligament Injury. Macromol Biosci 2023; 23:e2300259. [PMID: 37440424 DOI: 10.1002/mabi.202300259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023]
Abstract
Tendon and ligament injuries, prevalent requiring surgical intervention, significantly impact joint stability and function. Owing to excellent mechanical properties and biochemical stability, Nondegradable synthetic materials, including polyethylene terephthalate (PET) and polytetrafluoroethylene (PTFE), have demonstrated significant potential in the treatment of tendon and ligament injuries. These above materials offer substantial mechanical support, joint mobility, and tissue healing promotion of the shoulder, knee, and ankle joint. This review conclude the latest development and application of nondegradable materials such as artificial patches and ligaments in tendon and ligament injuries including rotator cuff tears (RCTs), anterior cruciate ligament (ACL) injuries, and Achilles tendon ruptures.
Collapse
Affiliation(s)
- Chengxuan Yu
- Department of Sports Medicine, Huashan Hospital, Fudan University; Sports Medicine Institute of Fudan University, Shanghai, 200040, China
| | - Sijia Feng
- Department of Sports Medicine, Huashan Hospital, Fudan University; Sports Medicine Institute of Fudan University, Shanghai, 200040, China
| | - Yunxia Li
- Department of Sports Medicine, Huashan Hospital, Fudan University; Sports Medicine Institute of Fudan University, Shanghai, 200040, China
| | - Jun Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University; Sports Medicine Institute of Fudan University, Shanghai, 200040, China
| |
Collapse
|
11
|
Zeng Y, Fan M, Zhou Q, Chen D, Jin T, Mu Z, Li L, Chen J, Qiu D, Zhang Y, Pan Y, Shen X, Cai X. Reactive Oxygen Species‐Activated CO Versatile Nanomedicine with Innate Gut Immune and Microbiome Remodeling Effects for Treating Inflammatory Bowel Disease. ADVANCED FUNCTIONAL MATERIALS 2023; 33. [DOI: 10.1002/adfm.202304381] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Indexed: 01/06/2025]
Abstract
AbstractAbnormal activation of the gut mucosal immune system and a highly dysregulated gut microbiota play essential roles in the progression of inflammatory bowel disease (IBD). The clinical treatment of IBD remains highly challenging, with first‐line drugs showing limited efficacy and significant side effects. A reactive oxygen species (ROS)‐activated CO versatile nanomedicine (CMPs) capable of remodeling the gut immune‐microbiota microenvironment via potent anti‐oxidant, anti‐inflammatory, and antimicrobial effects is developed. CORM‐401‐loaded mannose‐modified peptide dendrimer nanogel: CMPs preferentially congregate on the surface of damaged colon mucosa after rectal administration and are subsequently internalized by activated immune cells. CORM‐401 can release numerous CO molecules in response to high ROS levels in cells and at the site of IBD, resulting in multiple therapeutic effects. In vitro and in vivo studies have demonstrated that CMPs scavenge ROS, suppress inflammatory responses, eliminate pathogens, and alleviate colitis in mouse models. RNA sequencing reveals that CMPs successfully remodel gut mucosal immune homeostasis by scavenging ROS, inhibiting NF‐κB/p38MAPK, activating PI3K‐Akt, and inhibiting HIF‐1‐induced glycolysis. 16S ribosomal RNA sequencing shows that CMPs can remodel the gut flora composition by restraining detrimental bacteria and augmenting beneficial bacteria. This study develops a promising and versatile nanomedicine for the management of IBD.
Collapse
Affiliation(s)
- Youyun Zeng
- School and Hospital of Stomatology Wenzhou Medical University Wenzhou 325027 China
| | - Mengni Fan
- School and Hospital of Stomatology Wenzhou Medical University Wenzhou 325027 China
| | - Qiang Zhou
- Ruian People's Hospital The Third Affiliated Hospital of Wenzhou Medical University Wenzhou 325016 China
| | - Dongfan Chen
- School and Hospital of Stomatology Wenzhou Medical University Wenzhou 325027 China
| | - Ting Jin
- School and Hospital of Stomatology Wenzhou Medical University Wenzhou 325027 China
| | - Zhixiang Mu
- School and Hospital of Stomatology Wenzhou Medical University Wenzhou 325027 China
| | - Lin Li
- School and Hospital of Stomatology Wenzhou Medical University Wenzhou 325027 China
| | - Jiale Chen
- School and Hospital of Stomatology Wenzhou Medical University Wenzhou 325027 China
| | - Dongchao Qiu
- School and Hospital of Stomatology Wenzhou Medical University Wenzhou 325027 China
| | - Yanmei Zhang
- School and Hospital of Stomatology Wenzhou Medical University Wenzhou 325027 China
| | - Yihuai Pan
- School and Hospital of Stomatology Wenzhou Medical University Wenzhou 325027 China
| | - Xinkun Shen
- Ruian People's Hospital The Third Affiliated Hospital of Wenzhou Medical University Wenzhou 325016 China
| | - Xiaojun Cai
- School and Hospital of Stomatology Wenzhou Medical University Wenzhou 325027 China
| |
Collapse
|
12
|
Kumar Dewangan V, Sampath Kumar TS, Doble M, Daniel Varghese V. Fabrication of injectable antibiotic-loaded apatitic bone cements with prolonged drug delivery for treating post-surgery infections. J Biomed Mater Res A 2023; 111:1750-1767. [PMID: 37353879 DOI: 10.1002/jbm.a.37584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/25/2023]
Abstract
Antibiotic-loaded bioactive bone substitutes are widely used for treating various orthopedic diseases and prophylactically to avoid post implantation infection. Calcium deficient hydroxyapatite (also known as apatitic bone cement) is a potential bioactive bone substitute in orthopedics due to its chemical composition similar to that of natural bone minerals. In this study, fabrication of mannitol (a solid porogen) incorporated injectable synthetic (Syn) and eggshell derived (ESD) apatitic bone cements loaded with antibiotics (gentamicin/meropenem/ rifampicin/vancomycin) was investigated. The release kinetics of the antibiotics were studied by fitting them with different kinetic models. All the antibiotics-loaded apatitic bone cements set within clinically accepted setting time (20 ± 2 min) and with good injectability (>70%). The antibiotics released from these bone cements were found to be controlled and sustained throughout the study time. Weibull and Gompertz (applies in least initial burst and sustain drug release rate models) were the best models to predict the release behavior. They cements had acceptable compressive strength (6-10 MPa; in the range of trabecular bone) and were biodegradable (21%-27% within 12 weeks of incubation) in vitro in simulated body fluids at physiological conditions. These bone cements showed excellent antibacterial activity from day 1 onwards and no bacterial colony was found from day 3 onwards. The viability of MG63 cells in vitro after 72 h was significantly higher after 24 h (i.e., ~110%). The cells were well attached and spread over the surface of the cements with extended morphology. The ESD antibiotic-loaded apatitic bone cements showed better injectability, degradation and cytocompatibility compared when compared to Syn antibiotic-loaded apatitic bone cements. Thus, we believe that the ESD antibiotic-loaded apatitic bone cements are suitable as potential injectable bone substitutes to avoid post-operative implant associated and other acute or chronic bone infections.
Collapse
Affiliation(s)
- Vimal Kumar Dewangan
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai, India
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
| | - T S Sampath Kumar
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai, India
| | - Mukesh Doble
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
- Department of Cariology, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | | |
Collapse
|
13
|
Maurmann N, França FS, Girón J, Pranke P. Cell Electrospinning: a Review of Materials and Methodologies for Biofabrication. Adv Biol (Weinh) 2023; 7:e2300058. [PMID: 37271854 DOI: 10.1002/adbi.202300058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/22/2023] [Indexed: 06/06/2023]
Abstract
The process of electrohydrodynamic living cell microencapsulation inside a scaffold during the electrospinning (ES) process is called cell electrospinning (CE). Several studies demonstrate the feasibility of using cell electrospinning for biomedical applications, allowing for the direct biofabrication of living cells to be encapsulated in fibers for the formation of active biological scaffolds. In this review, a comprehensive overview of the materials and methodologies used in cell electrospinning, as well as their biomedical application in tissue engineering, is provided. Cell ES represents an innovative technique for automated application in regenerative medicine.
Collapse
Affiliation(s)
- Natasha Maurmann
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga 2752/304G, Porto Alegre, 90.610-000, Brazil
| | - Fernanda S França
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga 2752/304G, Porto Alegre, 90.610-000, Brazil
| | - Juliana Girón
- Center for Information Technology Renato Archer, Rodovia Dom Pedro I (SP-65), Km 143,6, Amarais, Campinas, SP, 13069-901, Brazil
| | - Patricia Pranke
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga 2752/304G, Porto Alegre, 90.610-000, Brazil
- Stem Cell Research Institute, Rua dos Andradas, 1464/133, Porto Alegre, 90.020-010, Brazil
| |
Collapse
|
14
|
Zhao Q, Du X, Wang M. Electrospinning and Cell Fibers in Biomedical Applications. Adv Biol (Weinh) 2023; 7:e2300092. [PMID: 37166021 DOI: 10.1002/adbi.202300092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/29/2023] [Indexed: 05/12/2023]
Abstract
Human body tissues such as muscle, blood vessels, tendon/ligaments, and nerves have fiber-like fascicle morphologies, where ordered organization of cells and extracellular matrix (ECM) within the bundles in specific 3D manners orchestrates cells and ECM to provide tissue functions. Through engineering cell fibers (which are fibers containing living cells) as living building blocks with the help of emerging "bottom-up" biomanufacturing technologies, it is now possible to reconstitute/recreate the fiber-like fascicle morphologies and their spatiotemporally specific cell-cell/cell-ECM interactions in vitro, thereby enabling the modeling, therapy, or repair of these fibrous tissues. In this article, a concise review is provided of the "bottom-up" biomanufacturing technologies and materials usable for fabricating cell fibers, with an emphasis on electrospinning that can effectively and efficiently produce thin cell fibers and with properly designed processes, 3D cell-laden structures that mimic those of native fibrous tissues. The importance and applications of cell fibers as models, therapeutic platforms, or analogs/replacements for tissues for areas such as drug testing, cell therapy, and tissue engineering are highlighted. Challenges, in terms of biomimicry of high-order hierarchical structures and complex dynamic cellular microenvironments of native tissues, as well as opportunities for cell fibers in a myriad of biomedical applications, are discussed.
Collapse
Affiliation(s)
- Qilong Zhao
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xuemin Du
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Min Wang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong
| |
Collapse
|
15
|
Xie C, Luo J, Luo Y, Zhou J, Guo X, Lu X. Electroactive Hydrogels with Photothermal/Photodynamic Effects for Effective Wound Healing Assisted by Polydopamine-Modified Graphene Oxide. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42329-42340. [PMID: 37646460 DOI: 10.1021/acsami.3c09860] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Antibacterial hydrogel wound dressings have attracted considerable attention in recent years. However, bacterial infections can occur at any point during the wound-healing process. There is a demand for hydrogels that possess on-demand antibacterial and excellent wound repair properties. Herein, we report a near-infrared (NIR)-light-responsive indocyanine green (ICG)-loaded polydopamine (PDA)-mediated graphene oxide (PGO) and amorphous calcium phosphate (CaP)-incorporated poly(vinyl alcohol) (PVA) hydrogel using a mussel-inspired approach. PGO was reduced by PDA, which endowed the hydrogel with electroactivity and provided abundant sites for loading ICG. Amorphous CaP was formed in situ in the PVA hydrogel to enhance its mechanical properties and biocompatibility. Taking advantage of the high photothermal and photodynamic efficiency of ICG-PGO, the ICG-PGO-CaP-PVA hydrogel exhibited fascinating on-demand antibacterial activity through NIR light irradiation. Moreover, the thermally induced gel-sol conversion of PVA accelerated the release of Ca ions and allowed the hydrogel to adapt to irregular wounds. Meanwhile, PGO endows the hydrogel with conductivity and cell affinity, which facilitate endogenous electrical signal transfer to control cell behavior. In vitro and in vivo studies demonstrated that the ICG-PGO-CaP-PVA hydrogel exhibited a strong tissue repair activity under NIR light irradiation. This mussel-inspired strategy offers a novel way to design hydrogel dressings for wound healing.
Collapse
Affiliation(s)
- Chaoming Xie
- The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Jiaqing Luo
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Yongjie Luo
- The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Jie Zhou
- The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Xiaochuan Guo
- The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Xiong Lu
- The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| |
Collapse
|
16
|
Yang Q, Miao Y, Luo J, Chen Y, Wang Y. Amyloid Fibril and Clay Nanosheet Dual-Nanoengineered DNA Dynamic Hydrogel for Vascularized Bone Regeneration. ACS NANO 2023; 17:17131-17147. [PMID: 37585498 DOI: 10.1021/acsnano.3c04816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Dynamic hydrogels have attracted enormous interest for bone tissue engineering as they demonstrate reversible mechanics to better mimic biophysical cues of natural extracellular matrix (ECM) compared to traditional static hydrogels. However, the facile development of therapeutic dynamic hydrogels that simultaneously recapitulate the filamentous architecture of the ECM of living tissues and induce both osteogenesis and angiogenesis to augment vascularized bone regeneration remains challenging. Herein, we report a dual nanoengineered DNA dynamic hydrogel developed through the supramolecular coassembly of amyloid fibrils and clay nanosheets with DNA strands. The nanoengineered ECM-like fibrillar hydrogel network is facilely formed without a complicated and tedious molecular synthesis. Amyloid fibrils together with clay nanosheets synergistically enhance the mechanical strength and stability of the dynamic hydrogel and, more remarkably, endow the matrix with an array of tunable features, including shear-thinning, injectability, self-healing, self-supporting, and 3D printable properties. The QK peptide is further chemically grafted onto amyloid fibrils, and its sustainable release from the hydrogel matrix stimulates the tube formation and migration with human umbilical vein endothelial cells. Meanwhile, the nanoengineered hydrogel matrix promotes osteogenic differentiation of bone marrow mesenchymal stem cells due to the sustainable release of Si4+ and Mg2+ derived from clay nanosheets. Furthermore, the manipulation of enhanced vascularized bone regeneration by the dynamic hydrogel is revealed in a rat cranial bone defect model. This dual nanoengineered strategy envisions great promise in developing therapeutic dynamic hydrogels for improved and customizable bone regeneration.
Collapse
Affiliation(s)
- Qian Yang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Yali Miao
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Jinshui Luo
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Yunhua Chen
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Yingjun Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
17
|
Chen C, Bi S, He C, Liu R, Zhao X, Liu J, Chen S, Gu J, Yan B. Rapid on-demand in-situ gelling and dissociation of PEG bottlebrush hydrogel via light-mediated grafting-through polymerization for full-thickness skin wound repair. POLYMER 2023; 283:126255. [DOI: 10.1016/j.polymer.2023.126255] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
18
|
Gao Y, Liu K, Zhang Y, Sun Z, Song B, Wang Y, Zhang B, Chen X, Hu D, Wen J, Wang H, Wang K, Wang L. Hyaluronic acid-modified curcumin-copper complex nano delivery system for rapid healing of bacterial prostatitis. Carbohydr Polym 2023; 310:120668. [PMID: 36925265 DOI: 10.1016/j.carbpol.2023.120668] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/18/2023] [Accepted: 02/02/2023] [Indexed: 02/19/2023]
Abstract
Bacterial prostatitis is a bacterial infection of the prostate gland presenting with lower quadrant abdominal pain, urination disorders and poor fertility. In recent years, reports have emerged on the significantly reduced efficacy of fluoroquinolone drugs attributed to multiple drug-resistant bacteria, emphasizing the need for new drugs. In this study, we designed a targeting drug delivery system via curcumin copper complex grafted with hyaluronic acid. Subsequently, the prepared system was characterized using FT-IR, XRD, SEM, XPS and 1H NMR methods. In addition to the substantial improvement in the solubility of the carrier, its antibacterial performance and targeting ability were improved. Interestingly, the grafting of hyaluronic acid endowed the carrier with excellent CD44 receptor targeting function and good water solubility, and the complexation of copper ions greatly enhanced its antibacterial capability, especially the inhibitory effect on E. coli. The anti-prostatitis effect of the drug was evaluated comprehensively by establishing a bacterial prostatitis model infected by E. coli. Assessment of the anti-prostatitis effects in vivo indicated that the Cur-Cu@HA delivery system could effectively promote recovery from bacterial prostatitis by downregulating inflammation. In conclusion, our Cur-Cu@HA delivery system has great potential for treating bacterial prostatitis.
Collapse
Affiliation(s)
- Yanyao Gao
- Department of Urology, Tangdu Hospital, Air Force Medical University, Xi'an 710038, China
| | - Kailai Liu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yuchen Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhenye Sun
- Department of Urology, Tangdu Hospital, Air Force Medical University, Xi'an 710038, China
| | - Bin Song
- Department of Urology, Tangdu Hospital, Air Force Medical University, Xi'an 710038, China
| | - Yong Wang
- Department of Urology, Tangdu Hospital, Air Force Medical University, Xi'an 710038, China
| | - Bo Zhang
- Department of Urology, Tangdu Hospital, Air Force Medical University, Xi'an 710038, China
| | - Xi Chen
- Pharmaceutical Department, the Second Affiliated Hospital of Air Force Military Medical University, Xi'an 710038, China
| | - Datao Hu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jinpeng Wen
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - He Wang
- Department of Urology, Tangdu Hospital, Air Force Medical University, Xi'an 710038, China
| | - Ke Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China.
| | - Lei Wang
- Department of Urology, Tangdu Hospital, Air Force Medical University, Xi'an 710038, China.
| |
Collapse
|
19
|
Zeng J, Sun Z, Zeng F, Gu C, Chen X. M2 macrophage-derived exosome-encapsulated microneedles with mild photothermal therapy for accelerated diabetic wound healing. Mater Today Bio 2023; 20:100649. [PMID: 37206877 PMCID: PMC10189292 DOI: 10.1016/j.mtbio.2023.100649] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/13/2023] [Accepted: 04/28/2023] [Indexed: 05/21/2023] Open
Abstract
Due to local overactive inflammatory response and impaired angiogenesis, current treatments for diabetic wounds remain unsatisfactory. M2 macrophage-derived exosomes (MEs) have shown considerable potential in biomedical applications, especially since they have anti-inflammatory properties that modulate macrophage phenotypes. However, exosome-based strategies still have limitations, such as short half-lives and instability. Herein, we develop a double-layer microneedle-based wound dressing system (MEs@PMN) by encapsulating MEs in the needle tips and polydopamine (PDA) nanoparticles in backing layer to simultaneously suppress inflammation and improve angiogenesis at the wound site. In vitro, released MEs increased macrophage polarization towards the M2 phenotype. In addition, mild heat (40 °C) generated by the photosensitive PMN backing layer contributed to improved angiogenesis. More importantly, MEs@PMN also showed promising effects in diabetic rats. The uncontrolled inflammatory response at the wound site was inhibited by MEs@PMN during a 14-day period; in addition, MEs and the photothermal effects produced by PMN provided a combined proangiogenic effect by improving the expression of CD31 and vWF. Collectively, this study provides a simple and efficient cell-free strategy for suppressing inflammation and promoting vascular regeneration to treat diabetic wounds.
Collapse
Affiliation(s)
- Junkai Zeng
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, PR China
| | - Zhenyu Sun
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, PR China
| | - Feihui Zeng
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, 350001, PR China
| | - Changjiang Gu
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, PR China
| | - Xiongsheng Chen
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, PR China
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao tong University School of Medicine, Shanghai, PR China
| |
Collapse
|
20
|
Dai Y, Wang W, Zhou X, li L, Tang Y, Shao M, Lyu F. Biomimetic Electrospun PLLA/PPSB Nanofibrous Scaffold Combined with Human Neural Stem Cells for Spinal Cord Injury Repair. ACS APPLIED NANO MATERIALS 2023; 6:5980-5993. [DOI: 10.1021/acsanm.3c00374] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Yuan Dai
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Weizhong Wang
- Shanghai Fifth People’s Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200240, China
| | - Xiaojun Zhou
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Linli li
- Department of Orthopedics, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
| | - Yuyi Tang
- Shanghai Fifth People’s Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200240, China
| | - Minghao Shao
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Feizhou Lyu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, China
- Department of Orthopedics, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
| |
Collapse
|
21
|
Geng T, Wang Y, Lin K, Zhang C, Wang J, Liu Y, Yuan C, Wang P. Strontium-doping promotes bone bonding of titanium implants in osteoporotic microenvironment. Front Bioeng Biotechnol 2022; 10:1011482. [PMID: 36185426 PMCID: PMC9520299 DOI: 10.3389/fbioe.2022.1011482] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoporosis is a major challenge to oral implants, and this study focused on improving the osseointegration ability of titanium (Ti) implants in osteoporosis environment via surface modification, including doping of strontium ion and preparation of nanoscale surface feature. Our previous studies have shown that strontium (Sr) ions can enhance osteogenic activity. Therefore, we aimed to comprehensively evaluate the effect of hydrothermal treatment of Sr-doped titanium implant coating on bone-binding properties in the microenvironment of osteoporosis in this study. We fabricated Sr-doped nanocoating (AHT-Sr) onto the surface of titanium implants via hydrothermal reaction. The rough Sr-doping had good biological functions and could apparently promote osteogenic differentiation of osteoporotic bone marrow mesenchymal stem cells (OVX-BMSCs). Most importantly, AHT-Sr significantly promoted bone integration in the osteoporosis environment. This study provides an effective approach to implant surface modification for better osseointegration in an osteoporotic environment.
Collapse
Affiliation(s)
- Tengyu Geng
- School of Stomatology, Xuzhou Medical University, Xuzhou, China
- Department of Dental Implant, The Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yiru Wang
- School of Stomatology, Xuzhou Medical University, Xuzhou, China
- Department of Dental Implant, The Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
| | - Kaili Lin
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Cheng Zhang
- School of Stomatology, Xuzhou Medical University, Xuzhou, China
| | - Jing Wang
- School of Stomatology, Xuzhou Medical University, Xuzhou, China
| | - Ya Liu
- School of Stomatology, Xuzhou Medical University, Xuzhou, China
| | - Changyong Yuan
- School of Stomatology, Xuzhou Medical University, Xuzhou, China
- Department of Dental Implant, The Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
- *Correspondence: Penglai Wang, ; Changyong Yuan,
| | - Penglai Wang
- School of Stomatology, Xuzhou Medical University, Xuzhou, China
- Department of Dental Implant, The Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
- *Correspondence: Penglai Wang, ; Changyong Yuan,
| |
Collapse
|