1
|
Komal J, Gowrisankar R, G. V. V, Nadaf H, Samal I, Dinesh Kumar PV, Selvaraj C, Reddy BT, Selvakumar T, Mahanta DK, Bhoi TK. Bibliometric trends and patterns in Tasar silkworm ( Antheraea mylitta) research: a data report (1980-2024). FRONTIERS IN INSECT SCIENCE 2025; 5:1533267. [PMID: 40371212 PMCID: PMC12075178 DOI: 10.3389/finsc.2025.1533267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 04/07/2025] [Indexed: 05/16/2025]
Abstract
This study presents a bibliometric analysis of publication trends in Tasar silkworm (Antheraea mylitta) research from 1980 to 2024. A comprehensive search was conducted using the Scopus database with keywords related to Tasar silkworm. A total of 741 relevant articles were identified and analyzed using VOSviewer, Bibliometrix, and Biblioshiny in R to examine statistical patterns. Over the decades, research focus has transitioned from fundamental silk characterization to biomedical applications, including tissue engineering, biodegradation studies, and antioxidant properties. Publication trends indicate peak research activity between 2007 and 2010, followed by a decline post-2018, likely due to shifting priorities toward commercially dominant silkworm species. Indian institutions have been the primary contributors, reflecting strong domestic expertise, while global collaborations remain limited. Keyword analysis highlights the growing interdisciplinary nature of Tasar silk research, extending into biomaterials and sustainable technology. Future research directions emphasize biotechnological advancements, biomedical applications, eco-friendly processing, climate resilience, and commercialization strategies. Strengthening international collaborations and integrating innovative technologies will be crucial for advancing Tasar silk research in both scientific and industrial domains.
Collapse
Affiliation(s)
- J. Komal
- Basic Seed Multiplication and Training Centre, Central Silk Board, Kharaswan, Jharkhand, India
| | - R. Gowrisankar
- Basic Seed Multiplication and Training Centre, Central Silk Board, Nabarangpur, Odisha, India
| | - Vishaka G. V.
- Basic Tasar Silkworm Seed Organization, Central Silk Board, Bilaspur, Chhattisgarh, India
| | - H. Nadaf
- Basic Tasar Silkworm Seed Organization, Central Silk Board, Bilaspur, Chhattisgarh, India
| | - Ipsita Samal
- Indian Council of Agricultural Research – National Research Centre on Litchi, Muzaffarpur, Bihar, India
| | | | - C. Selvaraj
- Basic Seed Multiplication and Training Centre, Central Silk Board, Madhupur, Jharkhand, India
| | - B. Thirupam Reddy
- Basic Seed Multiplication and Training Centre, Central Silk Board, Parsada, Chhattisgarh, India
| | - T. Selvakumar
- Basic Tasar Silkworm Seed Organization, Central Silk Board, Bilaspur, Chhattisgarh, India
| | - Deepak Kumar Mahanta
- Forest Protection Division, Indian Council of Forestry Research and Education – Forest Research Institute (ICFRE-FRI), Dehradun, Uttarakhand, India
| | - Tanmaya Kumar Bhoi
- Forest Protection Division, Indian Council of Forestry Research and Education – Arid Forest Research Institute (ICFRE-AFRI), Jodhpur, Rajasthan, India
| |
Collapse
|
2
|
Nimo J, Borketey MA, Appoh EKE, Morrison AK, Ibrahim-Anyass Y, Owusu Tawiah A, Arku RE, Amoah S, Tetteh EN, Brown T, Presto AA, Subramanian R, Westervelt DM, Giordano MR, Hughes AF. Low-Cost PM 2.5 Sensor Performance Characteristics against Meteorological Influence in Sub-Saharan Africa: Evidence from the Air Sensor Evaluation and Training Facility for the West Africa Project. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:6623-6635. [PMID: 40129254 DOI: 10.1021/acs.est.4c09752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Fine particulate matter (PM2.5) pollution represents a major environmental health risk in Africa. The use of low-cost sensors (LCS) for air quality monitoring for policy and civic engagement in sub-Saharan Africa (SSA) has become paramount, as access to traditional reference-grade instruments is still sparse. Yet, studies pertaining to sensor performance under SSA's meteorological conditions and diverse emission sources are limited. Hence, we tested eight low-cost PM2.5 sensors on the market from different manufacturers containing Plantower PMS, Alphasense OPC-N3, and AVO-Sensor sensors by collocating them with the federal equivalent method Teledyne T640 to ascertain data accuracy, reliability, and responsiveness during wet and dry periods. After 6 months of collocation, PM2.5 concentrations from the LCS showed low intrasensor variability in both the wet and dry periods, but high intersensor variability with the Teledyne T640. A strong relationship existed between the LCS and Teledyne T640, with average coefficient of determination (R2) values of 0.7 (range: 05-0.9) and 0.8 (0.64-0.97) in the wet and dry periods, respectively. Larger errors were also associated with LCS data during the dry than the wet period, with the average mean absolute error and root mean squared error, respectively, 4.5 and 5.3 times higher in the dry period. Uncertainties with large errors were also observed with high PM2.5 measured in the wet period, levels that were more common during the dry period typically characterized by long-range transport of PM2.5 pollution. The results show that season significantly affects LCS performance and data quality and that care must be taken during deployment and data usage in SSA, with regular maintenance, particularly in the dry season. Strong collaborative efforts between governmental agencies, industries, and civil society are needed to come up with an effective framework for their application.
Collapse
Affiliation(s)
- James Nimo
- Department of Environmental and Sustainable Engineering, State University of New York, Albany, New York 12203, United States
- The Air Sensor Evaluation and Training Facility for West Africa, Department of Physics, University of Ghana, Legon, LG 25 Accra, Ghana
- Department of Physics, University of Ghana, Legon, LG 25 Accra, Ghana
| | - Mathias A Borketey
- The Air Sensor Evaluation and Training Facility for West Africa, Department of Physics, University of Ghana, Legon, LG 25 Accra, Ghana
| | - Emmanuel K-E Appoh
- The Air Sensor Evaluation and Training Facility for West Africa, Department of Physics, University of Ghana, Legon, LG 25 Accra, Ghana
| | - Abena Kyerewaa Morrison
- The Air Sensor Evaluation and Training Facility for West Africa, Department of Physics, University of Ghana, Legon, LG 25 Accra, Ghana
| | - Yussif Ibrahim-Anyass
- The Air Sensor Evaluation and Training Facility for West Africa, Department of Physics, University of Ghana, Legon, LG 25 Accra, Ghana
| | - Audrey Owusu Tawiah
- The Air Sensor Evaluation and Training Facility for West Africa, Department of Physics, University of Ghana, Legon, LG 25 Accra, Ghana
| | - Raphael E Arku
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Selina Amoah
- Ghana Environmental Protection Authority, Box M.326, Accra GA-107-1998, Ghana
| | - Esi Nerquaye Tetteh
- Ghana Environmental Protection Authority, Box M.326, Accra GA-107-1998, Ghana
| | - Tim Brown
- Kigali Collaborative Research Centre, BP6150 Kigali, Rwanda
| | - Albert A Presto
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - R Subramanian
- Center for Study of Science, Technology and Policy (CSTEP), Bengaluru 560094, India
| | - Daniel M Westervelt
- Lamont-Doherty Earth Observatory, Columbia University, New York, New York 10964, United States
- Université Mohammed VI Polytechnic, Benguerir 43150, Morocco
| | - Michael R Giordano
- The Air Sensor Evaluation and Training Facility for West Africa, Department of Physics, University of Ghana, Legon, LG 25 Accra, Ghana
- Kigali Collaborative Research Centre, BP6150 Kigali, Rwanda
- AfriqAir, BP6150 Kigali, Rwanda
| | - Allison Felix Hughes
- The Air Sensor Evaluation and Training Facility for West Africa, Department of Physics, University of Ghana, Legon, LG 25 Accra, Ghana
- Department of Physics, University of Ghana, Legon, LG 25 Accra, Ghana
| |
Collapse
|
3
|
Villacura L, Sánchez LF, Catalán F, Toro A R, Leiva G MA. An overview of air pollution research in Chile: Bibliometric analysis and scoping review, challenger and future directions. Heliyon 2024; 10:e25431. [PMID: 38327474 PMCID: PMC10847656 DOI: 10.1016/j.heliyon.2024.e25431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 02/09/2024] Open
Abstract
This study provides a comprehensive overview and bibliometric analysis of air pollution research in Chile from 1980 to 2022. The analysis reveals a significant increase in scientific production, a 9.2 annual growth rate, and an H-index of 60. The research spans 33 countries and is influenced by environmental sciences, meteorology, and atmospheric sciences journals. The top ten authors account for 33.49 % of all publications, with local institutions contributing more than 35 %. The University of Chile and the Pontifical Catholic University of Chile are significant contributors. The most cited articles focus on health impacts and various pollutant sources, emphasizing air pollution as a critical public health concern. The study also emphasizes environmental science, meteorology, and atmospheric science, focusing on topics such as air pollution and health, pollutants, models, sources and chemistry, and social sciences. The findings are affirmed through rigorous discussion and review, providing a roadmap for future research, guiding decision-making processes, and expanding the knowledge frontier in the field.
Collapse
Affiliation(s)
- Loreto Villacura
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile
| | - Luis Felipe Sánchez
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile
| | - Francisco Catalán
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile
| | - Richard Toro A
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile
| | - Manuel A. Leiva G
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile
| |
Collapse
|
4
|
Pippal PS, Kumar R, Singh A, Kumar R. A bibliometric and visualization analysis of the aerosol research on the Himalayan glaciers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:104998-105011. [PMID: 37721676 DOI: 10.1007/s11356-023-29710-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 08/31/2023] [Indexed: 09/19/2023]
Abstract
This research focuses on a bibliometric analysis of research on aerosols' impact on the glaciers in the Himalayan glacier region published in journals from all subject categories based on the Science Citation Index Expanded, collected from the Web of Science and Scopus database between January 2002 and April 2022. The indexing phrases like "aerosol," "glacier," and "snow" are commonly used terms and have been utilized to collect the related publications for this investigation. The document selections were based on years of publication, authorship, the scientific output of authors, distribution of publication by country, categories of the subjects, and names of journals in which scholarly papers were published. The number of articles on aerosols accelerating the melting of glaciers shows a notable increase in recent years, along with more glacier melting results from countries involved in climate science research. People's Republic of China (382) was the country with the highest publication output on aerosols impacting the melting of glaciers. The USA (367) was the most cited country, with about 17,500 total citations and 80.40 average citations per year from January 2002 to April 2022. The results reveal that research trends in the glaciers on aerosols' impact on the glaciers have been attractive in recent years, and the number of articles in this field keeps increasing fast. This study offers opportunities to track research trends, identify collaboration prospects, and inform climate policy. Integrating data sources and engaging the public will further enhance the impact and relevance of this critical research field.
Collapse
Affiliation(s)
- Prity Singh Pippal
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer, India
| | - Ramesh Kumar
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer, India
| | - Atar Singh
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer, India
| | - Rajesh Kumar
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer, India.
| |
Collapse
|
5
|
Matandirotya NR, Anoruo CM. An assessment of aerosol optical depth over three AERONET sites in South Africa during the year 2020. SCIENTIFIC AFRICAN 2023; 19:e01446. [PMID: 36448048 PMCID: PMC9683855 DOI: 10.1016/j.sciaf.2022.e01446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/23/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
It is important to notice that the world health organization (WHO) on the 11th of March 2020, declared COVID-19 a global pandemic and in response governments around the world introduced lockdowns that restricted human and traffic movements including South Africa. This pandemic resulted in a total lockdown from 26 March until 16 April 2020 in South Africa with expected decrease in atmospheric aerosols. In this present study, the aerosol optical depth (AOD) over Southern Africa based on ground-based remotely sensed data derived from three AERONET sites (Durban, Skukuza and Upington) during 2020 were used to detrermine the restriction resopnse on atmospheric aerosol pollution The study used data from 2019, 2018 and 2017 as base years. The AERONET derived data was complemented with the HYSPLIT Model and NCEP/NCAR Reanalysis data. The study findings show that peak increase of AOD corresponds to Angstrom exponent (AE) enhancement for two sites Durban and Skukuza during winter (JJA) while the Upington site showed a different trend where peak AOD were observed in spring (SON). The study also observed the influence of long transport airmasses particularly those originating from the Atlantic and Indian ocean moreso for the Durban and Skukuza sites (summer and autumn) thus these sites received fresh marine aerosols however this was not the case for Upington which fell under the influence of short-range inland airmasses and was likely to receive anthropogenic and dust aerosols. The major results suggest that the lockdowns did not translate into a significant decrease in AOD levels compared to previous immediate years. The results has presented restriction response of AOD over South Africa but additional analysis is required using more locations to compare results.
Collapse
Affiliation(s)
- Newton R Matandirotya
- Derpatment of Geosciences, Faculty of Science, Nelson Mandela University, Port Elizabeth, 6000, South Africa
- Centre for Climate Change Adaptation and Resilience, Kgotso Development Trust,P.O.Box 5, Beitbridge, Zimbabwe
| | | |
Collapse
|
6
|
Matandirotya NR, Filho WL, Mahed G, Maseko B, Murandu CV. Edible Insects Consumption in Africa towards Environmental Health and Sustainable Food Systems: A Bibliometric Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14823. [PMID: 36429542 PMCID: PMC9690926 DOI: 10.3390/ijerph192214823] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/05/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Africa is home to an estimated wild edible insect population of 1000 species that offer an opportunity for sustainable food systems while also improving food and nutrition security on the continent. Edible insect consumption has been part of African communities for a long time and forms part of their diets and cuisines, particularly within low-income households with limited resources. The purpose of our study was to investigate and review the contribution that edible insects can make towards the realisation of sustainable food systems, and environmental/planetary health including the fulfilment of Sustainable Development Goal number 2 (zero hunger). Our study applied a bibliometric analysis approach using VOS Viewer, a data mining software. The study established that the consumption of edible insects is still widespread across many African countries and therefore can be used as an avenue for improving environmental health and enhancing food systems on the continent through a reduction in meat-based diets. This, in the long term, will also reduce the emission of greenhouse gases such as carbon dioxide and methane from livestock production-related activities. Edible insects are also known to contain a high percentage nutrient content of proteins, fats and iron and, thus, can also play a vital role in reducing food insecurity and malnutrition, particularly within low-income households. Due to the existence of a high number of edible insect species on the continent, communities in Africa can easily access sources that can further be preserved using various indigenous techniques while also having minimal impact on the environment. In addition, being a source of nutritious food, edible insects can also be a source of establishing sustainable livelihoods, as well as being able to be commercialised, thus further creating employment opportunities and economic growth. Some of the notable edible insects in abundance on the continent include termites, ants, crickets and caterpillars. Our study recommends that Africa should commercialise edible insect production, in addition to preservation processing that leads to the eradication of perennial food insecurity and malnutrition and improves environmental health, as well as developing sustainable food systems. We also further recommend the establishment of food safety guidelines on edible insects as most African countries do not have such a plan in place currently.
Collapse
Affiliation(s)
- Newton R. Matandirotya
- Department of Geosciences, Faculty of Science, Nelson Mandela University, Port Elizabeth 6000, South Africa
- Centre for Climate Change Adaptation & Resilience, Kgotso Development Trust, Beitbridge P.O. Box 5, Zimbabwe
| | - Walter Leal Filho
- Research and Transfer Centre “Sustainable Development and Climate Change Management”, Hamburg University of Applied Sciences, Ulmenliet 20, D-21033 Hamburg, Germany
- Department of Natural Sciences, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK
| | - Gaathier Mahed
- Department of Geosciences, Faculty of Science, Nelson Mandela University, Port Elizabeth 6000, South Africa
| | - Basil Maseko
- Department of Food Science and Nutrition, Midlands State University, Gweru Private Bag 9055, Zimbabwe
| | - Cleophas V. Murandu
- National Anglican Theological College of Zimbabwe, 11 Thornburg Avenue, Mount Pleasant, Harare Private Bag 2503, Zimbabwe
| |
Collapse
|