1
|
Thapa A, Hasan MR, Kabir AH. Trichoderma afroharzianum T22 Induces Rhizobia and Flavonoid-Driven Symbiosis to Promote Tolerance to Alkaline Stress in Garden Pea. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40298200 DOI: 10.1111/pce.15581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 04/30/2025]
Abstract
Soil alkalinity is a limiting factor for crops, yet the role of beneficial fungi in mitigating this abiotic stress in garden pea is understudied. In this study, Trichoderma afroharzianum T22 colonised the roots of garden pea cultivars exposed to soil alkalinity in a host-specific manner. In alkaline-exposed Sugar Snap, T22 improved growth parameters, consistent with increased tissue mineral content, particularly Fe and Mn, as well as enhanced rhizosphere siderophore levels. The split-root assay demonstrated that the beneficial effects of T22 on alkaline stress mitigation are the result of a whole-plant association rather than localised root-specific effects. RNA-seq analysis showed 575 and 818 differentially expressed genes upregulated and downregulated in the roots inoculated with T22 under alkaline conditions. The upregulated genes were mostly involved in the flavonoid biosynthetic pathway (monooxygenase activity, ammonia-lyase activity, 4-coumarate-CoA ligase), along with genes related to mineral transport and redox homoeostasis. Further, a flavonoid precursor restored plant health even in the absence of T22, confirming the role of microbial symbiosis in mitigating alkaline stress. Interestingly, T22 restored the abundance of rhizobia, particularly Rhizobium leguminosarum and Rhizobium indicum, along with the induction of NifA, NifD, and NifH in nodules, suggesting a connection between T22 and rhizobia under soil alkalinity. Further, the elevated rhizosphere siderophore, root flavonoid, expression of PsCoA (4-coumarate-CoA ligase) as well as the relative abundance of TaAOX1 and R. leguminosarum diminished when T22 was substituted with exogenous Fe. This suggests that exogenous Fe eliminates the need for microbiome-driven mineral mobilisation, while T22-mediated alkaline stress mitigation depends on flavonoid-driven symbiosis and R. leguminosarum abundance. It was further supported by the positive interaction of T22 on R. leguminosarum growth in alkaline media. Thus, the beneficial effect of T22 on rhizobia likely stems from their interactions, not solely from the improved mineral status, particularly Fe, in plants. This study provides the first mechanistic insights into T22 interactions with host and rhizobia, advancing microbiome strategies to alleviate soil alkalinity in peas and other legumes.
Collapse
Affiliation(s)
- Asha Thapa
- School of Sciences, University of Louisiana at Monroe, Monroe, Louisiana, USA
| | - Md Rokibul Hasan
- School of Sciences, University of Louisiana at Monroe, Monroe, Louisiana, USA
| | - Ahmad H Kabir
- School of Sciences, University of Louisiana at Monroe, Monroe, Louisiana, USA
| |
Collapse
|
2
|
Thapa A, Hasan MR, Kabir AH. Transcriptional reprogramming and microbiome dynamics in garden pea exposed to high pH stress during vegetative stage. PLANTA 2025; 261:83. [PMID: 40059228 DOI: 10.1007/s00425-025-04656-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/20/2025] [Indexed: 03/29/2025]
Abstract
MAIN CONCLUSION High soil pH induces the upregulation of genes involved in oxidative stress and nutrient transport, while the enrichment of beneficial microbes (Variovorax, Chaetomium, and Pseudomonas) highlights their potential role in promoting stress adaptation. High soil pH severely impacts plant growth and productivity, yet the transcriptomic changes and microbial dynamics underlying stress adaptation in garden pea (Pisum sativum ssp. hortense) remain unclear. This study demonstrates that high soil pH leads to stunted growth, reduced biomass, impaired photosynthesis, and nutrient status in garden pea. Further, disruption in key nitrogen-fixing bacteria (Rhizobium indicum, R. leguminosarum, and R. redzepovicii), along with the downregulation of NifA and NifD genes and upregulation of NifH in nodules highlights the critical role of micronutrient balance in legume-microbe symbiosis and a compensatory response to maintain nitrogen status. RNA seq analysis revealed extensive transcriptional reprogramming in roots, characterized by the upregulation of oxidative stress response genes (e.g., oxidoreductase and glutathione transferase activities, metal ion transporters) and the downregulation of genes related to ammonia-lyase activity and ion binding, reflecting broader disruptions in nutrient homeostasis. KEGG pathway analysis identified enrichment of MAPK signaling pathway, likely interacting with other pathways associated with stress tolerance, metabolic adjustment, and structural reorganization as part of adaptive responses to high pH. Root microbiome analysis showed significant enrichment of Variovorax, Shinella, and Chaetomium, suggesting host-driven recruitment under high pH stress. Stable genera, such as Pseudomonas, Novosphingobium, Mycobacterium, Herbaspirillum, and Paecilomyces, displayed resilience to stress conditions, potentially forming core microbiome components for adaptation to high pH. In a targeted study, inoculation of plants with an enriched microbiome, particularly C. globosum, under high pH conditions improved growth parameters and increased the abundance of Stenotrophomonas and Pseudomonas in the roots. It suggests that these bacterial genera may act as helper microbes to C. globosum, collectively promoting stress resilience in pea plants suffering from high pH. These findings provide a foundation for microbiome-aided breeding programs and the development of microbial consortia to enhance the adaptation of pea plants to high pH conditions.
Collapse
Affiliation(s)
- Asha Thapa
- School of Sciences, University of Louisiana at Monroe, Monroe, LA, 71209, USA
| | - Md Rokibul Hasan
- School of Sciences, University of Louisiana at Monroe, Monroe, LA, 71209, USA
| | - Ahmad H Kabir
- School of Sciences, University of Louisiana at Monroe, Monroe, LA, 71209, USA.
| |
Collapse
|
3
|
Ansari A, Amiri J, Norouzi P, Fattahi M, Rasouli-Sadaghiani M, Alipour H. Assessing the efficacy of different nano-iron sources for alleviating alkaline soil challenges in goji berry trees (Lycium barbarum L.). BMC PLANT BIOLOGY 2024; 24:1153. [PMID: 39614137 DOI: 10.1186/s12870-024-05870-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
Alkalinity is a significant environmental factor affecting crop production, which is exacerbated by the current climate change scenario. In alkaline soils, iron availability is severely reduced due to its low solubility at high pH levels and bicarbonate concentrations, which hinders plant iron absorption by rendering it inactive. In modern agriculture, green-synthesized nanoparticles have attracted considerable attention due to their environmental compatibility, cost-effectiveness, and enhanced potential for foliar uptake. This study explores the effects of various iron sources and concentrations, including FeSO4.7H2O, Fe-EDDHA, Nano-Fe, and green-synthesized nano-Fe, at three concentrations (0, 0.25, and 0.5 g L- 1) on the growth, physiological, biochemical parameters, and nutrient uptake of goji berry. The evaluated parameters included leaf area, fresh and dry weight of leaves and fruits, chlorophyll a, b, and a/b ratio, carotenoids, total soluble sugar in leaves and fruits, catalase, guaiacol peroxidase, ascorbate peroxidase enzymes, and the concentrations of nutrient elements (N, P, K, Ca, Mg, Cu, Mn, Zn, and Fe). Results demonstrated that increasing iron concentrations led to enhanced fresh and dry weights of leaves and fruits, with the highest values recorded at 0.5 g L⁻¹ of all iron sources. Nano-Fe significantly boosted fresh and dry weight of leaves, resulting in a 4.95 to 4.84-fold increase compared to the control. The highest fresh (1.267 g) and dry (0.815 g) fruit weights were observed at 0.5 g L⁻¹ of green-synthesized nano-Fe. Regarding photosynthetic pigments, the chlorophyll a/b ratio peaked at 1.62 mg g⁻¹ FW under the 0.5 g L⁻¹ green-synthesized nano-Fe treatment, while the control exhibited the lowest ratio (1.31 mg g⁻¹ FW). A similar trend was observed in nutrient uptake, with the highest leaf iron content (0.189 mg g⁻¹ DW) recorded in the 0.5 g L⁻¹ nano-Fe treatment, and the lowest (0.116 mg g⁻¹ DW) in the control. Although iron concentration positively influenced most traits, it led to a decline in zinc and manganese levels. Overall, these results highlight the potential of green-synthesized nano-Fe as an efficient, cost-effective iron source for improving vegetative growth, photosynthetic pigment levels, and nutrient uptake in goji berries grown in alkaline soils.
Collapse
Affiliation(s)
- Afsaneh Ansari
- Department of Horticultural Science, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Jafar Amiri
- Department of Horticultural Science, Faculty of Agriculture, Urmia University, Urmia, Iran.
| | - Parviz Norouzi
- Department of Horticultural Science, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Mohammad Fattahi
- Department of Horticultural Science, Faculty of Agriculture, Urmia University, Urmia, Iran
| | | | - Hadi Alipour
- Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran
| |
Collapse
|
4
|
Gupta R, Verma N, Tewari RK. Micronutrient deficiency-induced oxidative stress in plants. PLANT CELL REPORTS 2024; 43:213. [PMID: 39133336 DOI: 10.1007/s00299-024-03297-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024]
Abstract
Micronutrients like iron (Fe), zinc (Zn), copper (Cu), manganese (Mn), boron (B), nickel (Ni), and molybdenum (Mo) perform significant roles in the regulation of plant metabolism, growth, and development. Micronutrients, namely Fe, Zn, Cu, Mn, and Ni, are involved in oxidative stress and antioxidant defense as they are cofactors or activators of various antioxidant enzymes, viz., superoxide dismutase (Fe, Cu/Zn, Mn, and Ni), catalase (Fe), and ascorbate peroxidase (Fe). An effort has been made to incorporate recent advances along with classical work done on the micronutrient deficiency-induced oxidative stress and associated antioxidant responses of plants. Deficiency of a micronutrient produces ROS in the cellular compartments. Enzymatic and non-enzymatic antioxidant defense systems are often modulated by micronutrient deficiency to regulate redox balance and scavenge deleterious ROS for the safety of cellular constituents. ROS can strike cellular constituents such as lipids, proteins, and nucleic acids and can destruct cellular membranes and proteins. ROS might act as a signaling molecule and activate the antioxidant proteins by interacting with signaling partners such as respiratory burst oxidase homolog (RBOH), G-proteins, Ca2+, mitogen activated protein kinases (MAPKs), and various transcription factors (TFs). Opinions on probable ROS signaling under micronutrient deficiency have been described in this review. However, further research is required to decipher micronutrient deficiency-induced ROS generation, perception, and associated downstream signaling events, leading to the development of antioxidant responses in plants.
Collapse
Affiliation(s)
- Roshani Gupta
- Department of Botany, University of Lucknow, Lucknow, 226007, India
| | - Nikita Verma
- Department of Botany, University of Lucknow, Lucknow, 226007, India
| | | |
Collapse
|
5
|
Kabir AH, Bennetzen JL. Molecular insights into the mutualism that induces iron deficiency tolerance in sorghum inoculated with Trichoderma harzianum. Microbiol Res 2024; 281:127630. [PMID: 38295681 DOI: 10.1016/j.micres.2024.127630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/16/2024]
Abstract
Iron (Fe) deficiency is a common mineral stress in plants, including sorghum. Although the soil fungus Trichoderma harzianum has been shown to mitigate Fe deficiency in some circumstances, neither the range nor mechanism(s) of this process are well understood. In this study, high pH-induced Fe deficiency in sorghum cultivated in pots with natural field soil exhibited a significant decrease in biomass, photosynthetic rate, transpiration rate, stomatal conductance, water use efficiency, and Fe-uptake in both the root and shoot. However, the establishment of T. harzianum colonization in roots of Fe-deprived sorghum showed significant improvements in morpho-physiological traits, Fe levels, and redox status. Molecular detection of the fungal ThAOX1 (L-aminoacid oxidase) gene showed the highest colonization of T. harzianum in the root tips of Fe-deficient sorghum, a location thus targeted for further analysis. Expression studies by RNA-seq and qPCR in sorghum root tips revealed a significant upregulation of several genes associated with Fe uptake (SbTOM2), auxin synthesis (SbSAURX15), nicotianamine synthase 3 (SbNAS3), and a phytosiderophore transporter (SbYS1). Also induced was the siderophore synthesis gene (ThSIT1) in T. harzianum, a result supported by biochemical evidence for elevated siderophore and IAA (indole acetic acid) levels in roots. Given the high affinity of fungal siderophore to chelate insoluble Fe3+ ions, it is likely that elevated siderophore released by T. harzianum led to Fe(III)-siderophore complexes in the rhizosphere that were then transported into roots by the induced SbYS1 (yellow-stripe 1) transporter. In addition, the observed induction of several plant peroxidase genes and ABA (abscisic acid) under Fe deficiency after inoculation with T. harzianum may have helped induce tolerance to Fe-deficiency-induced oxidative stress and adaptive responses. This is the first mechanistic explanation for T. harzianum's role in helping alleviate Fe deficiency in sorghum and suggests that biofertilizers using T. harzianum will improve Fe availability to crops in high pH environments.
Collapse
Affiliation(s)
- Ahmad H Kabir
- School of Sciences, University of Louisiana at Monroe, LA 71209, USA; Department of Genetics, University of Georgia, Athens, GA 30602, USA.
| | | |
Collapse
|
6
|
Aleksza D, Spiridon A, Tarkka M, Hauser MT, Hann S, Causon T, Kratena N, Stanetty C, George TS, Russell J, Oburger E. Phytosiderophore pathway response in barley exposed to iron, zinc or copper starvation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 339:111919. [PMID: 37992897 DOI: 10.1016/j.plantsci.2023.111919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/04/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023]
Abstract
Efficient micronutrient acquisition is a critical factor in selecting micronutrient dense crops for human consumption. Enhanced exudation and re-uptake of metal chelators, so-called phytosiderophores, by roots of graminaceous plants has been implicated in efficient micronutrient acquisition. We compared PS biosynthesis and exudation as a response mechanism to either Fe, Zn or Cu starvation. Two barley (Hordeum vulgare L.) lines with contrasting micronutrient grain yields were grown hydroponically and PS exudation (LC-MS) and root gene expression (RNAseq) were determined after either Fe, Zn, or Cu starvation. The response strength of the PS pathway was micronutrient dependent and decreased in the order Fe > Zn > Cu deficiency. We observed a stronger expression of PS pathway genes and greater PS exudation in the barley line with large micronutrient grain yield suggesting that a highly expressed PS pathway might be an important trait involved in high micronutrient accumulation. In addition to several metal specific transporters, we also found that the expression of IRO2 and bHLH156 transcription factors was not only induced under Fe but also under Zn and Cu deficiency. Our study delivers important insights into the role of the PS pathway in the acquisition of different micronutrients.
Collapse
Affiliation(s)
- David Aleksza
- University of Natural Resources and Life Sciences, Department of Forest and Soil Science, Institute of Soil Research, Konrad-Lorenz Strasse 24, Tulln an der Donau 3430, Austria; University of Natural Resources and Life Sciences, Department of Applied Genetics and Cell Biology, Institute of Molecular Plant Biology, Muthgasse 18, 1190 Vienna, Austria
| | - Andreea Spiridon
- University of Natural Resources and Life Sciences, Department of Forest and Soil Science, Institute of Soil Research, Konrad-Lorenz Strasse 24, Tulln an der Donau 3430, Austria
| | - Mika Tarkka
- Helmholtz Centre for Environmental Research - UFZ, Department of Soil Ecology, Theodor-Lieser-Strasse 4, D-06120 Halle (Saale), Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, D-04103 Leipzig, Germany
| | - Marie-Theres Hauser
- University of Natural Resources and Life Sciences, Department of Applied Genetics and Cell Biology, Institute of Molecular Plant Biology, Muthgasse 18, 1190 Vienna, Austria
| | - Stephan Hann
- University of Natural Resources and Life Sciences, Department of Chemistry, Institute of Analytical Chemistry, Muthgasse 18, 1190 Vienna, Austria
| | - Tim Causon
- University of Natural Resources and Life Sciences, Department of Chemistry, Institute of Analytical Chemistry, Muthgasse 18, 1190 Vienna, Austria
| | - Nicolas Kratena
- TU Wien, Institute of Applied Synthetic Chemistry, Getreidemarkt 9, 1060 Vienna, Austria
| | - Christian Stanetty
- TU Wien, Institute of Applied Synthetic Chemistry, Getreidemarkt 9, 1060 Vienna, Austria
| | | | - Joanne Russell
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Eva Oburger
- University of Natural Resources and Life Sciences, Department of Forest and Soil Science, Institute of Soil Research, Konrad-Lorenz Strasse 24, Tulln an der Donau 3430, Austria.
| |
Collapse
|
7
|
Manzoor M, Khan MZ, Ahmad S, Alqahtani MD, Shabaan M, Sarwar S, Hameed MA, Zulfiqar U, Hussain S, Ali MF, Ahmad M, Haider FU. Optimizing Sugarcane Growth, Yield, and Quality in Different Ecological Zones and Irrigation Sources Amidst Environmental Stressors. PLANTS (BASEL, SWITZERLAND) 2023; 12:3526. [PMID: 37895990 PMCID: PMC10609903 DOI: 10.3390/plants12203526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023]
Abstract
The imbalanced use of fertilizers and irrigation water, particularly supplied from groundwater, has adversely affected crop yield and harvest quality in sugarcane (Saccharum officinarum L.). In this experiment, we evaluated the impact of potassium (K) and micronutrients [viz. Zinc (Zn), Iron (Fe), and Boron (B)] application and irrigation water from two sources, viz. canal, and tube well water on sugarcane growth, yield, and cane quality under field trails. Water samples from Mardan (canal water) and Rahim Yar Khan (tube well water) were analyzed for chemical and nutritional attributes. The results revealed that tube well water's electrical conductivity (EC) was three-fold that of canal water. Based on the EC and total dissolved salts (TDS), 83.33% of the samples were suitable for irrigation, while the sodium adsorption ratio (SAR) indicated only a 4.76% fit and a 35.71% marginal fit compared with canal water. Furthermore, the application of K along with B, Fe, and Zn had led to a significant increase in cane height (12.8%, 9.8%, and 10.6%), cane girth (15.8%, 15.6%, and 11.6%), cane yield (13.7%, 12.3%, and 11.5%), brix contents (14%, 12.2%, and 13%), polarity (15.4%, 1.4%, and 14%), and sugar recovery (7.3%, 5.9%, and 6%) in the tube well irrigation system. For the canal water system, B, Fe, and Zn increased cane height by 15.3%, 13.42%, and 11.6%, cane girth by 13.9%, 9.9%, and 6.5%, cane yield by 42.9%, 43.5%, and 42%, brix content by 10.9%, 7.7%, and 8%, polarity by 33.4%, 28%, and 30%, and sugar recovery by 4.0%, 3.9%, and 2.0%, respectively, compared with sole NPK application. In conclusion, the utilization of tube well water in combination with canal water has shown better results in terms of yield and quality compared with the sole application of canal water. In addition, the combined application of K and B significantly improved sugarcane yields compared with Zn and Fe, even with marginally suitable irrigation water.
Collapse
Affiliation(s)
- Muhammad Manzoor
- Land Resources Research Institute, National Agricultural Research Centre, Islamabad 44000, Pakistan; (M.M.); (M.Z.K.); (M.S.); (S.S.); (M.A.H.)
| | - Muhammad Zameer Khan
- Land Resources Research Institute, National Agricultural Research Centre, Islamabad 44000, Pakistan; (M.M.); (M.Z.K.); (M.S.); (S.S.); (M.A.H.)
| | - Sagheer Ahmad
- Pakistan Agricultural Research Council, Islamabad 45500, Pakistan;
| | - Mashael Daghash Alqahtani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Muhammad Shabaan
- Land Resources Research Institute, National Agricultural Research Centre, Islamabad 44000, Pakistan; (M.M.); (M.Z.K.); (M.S.); (S.S.); (M.A.H.)
| | - Sair Sarwar
- Land Resources Research Institute, National Agricultural Research Centre, Islamabad 44000, Pakistan; (M.M.); (M.Z.K.); (M.S.); (S.S.); (M.A.H.)
| | - Muhammad Asad Hameed
- Land Resources Research Institute, National Agricultural Research Centre, Islamabad 44000, Pakistan; (M.M.); (M.Z.K.); (M.S.); (S.S.); (M.A.H.)
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Sadam Hussain
- College of Agronomy, Northwest A&F University, Xianyang 712100, China; (S.H.); (M.F.A.)
| | - Muhammad Fraz Ali
- College of Agronomy, Northwest A&F University, Xianyang 712100, China; (S.H.); (M.F.A.)
| | - Muhammad Ahmad
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan;
| | - Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;
- University of Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|
8
|
Chang S, Wang P, Han Y, Ma Q, Liu Z, Zhong S, Lu Y, Chen R, Sun L, Wu Q, Gao G, Wang X, Chang YZ. Ferrodifferentiation regulates neurodevelopment via ROS generation. SCIENCE CHINA. LIFE SCIENCES 2023; 66:1841-1857. [PMID: 36929272 DOI: 10.1007/s11427-022-2297-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 02/16/2023] [Indexed: 03/18/2023]
Abstract
Iron is important for life, and iron deficiency impairs development, but whether the iron level regulates neural differentiation remains elusive. In this study, with iron-regulatory proteins (IRPs) knockout embryonic stem cells (ESCs) that showed severe iron deficiency, we found that the Pax6- and Sox2-positive neuronal precursor cells and Tuj1 fibers in IRP1-/-IRP2-/- ESCs were significantly decreased after inducing neural differentiation. Consistently, in vivo study showed that the knockdown of IRP1 in IRP2-/- fetal mice remarkably affected the differentiation of neuronal precursors and the migration of neurons. These findings suggest that low intracellular iron status significantly inhibits neurodifferentiation. When supplementing IRP1-/-IRP2-/- ESCs with iron, these ESCs could differentiate normally. Further investigations revealed that the underlying mechanism was associated with an increase in reactive oxygen species (ROS) production caused by the substantially low level of iron and the down-regulation of iron-sulfur cluster protein ISCU, which, in turn, affected the proliferation and differentiation of stem cells. Thus, the appropriate amount of iron is crucial for maintaining normal neural differentiation that is termed ferrodifferentiation.
Collapse
Affiliation(s)
- Shiyang Chang
- Laboratory of Molecular Iron Metabolism, Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry, and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
- College of Basic Medicine, Hebei Medical University, Shijiazhuang, 050017, China
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences (CAS), BNU IDG/McGovern Institute for Brain Research, Beijing, 100101, China
| | - Peina Wang
- Laboratory of Molecular Iron Metabolism, Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry, and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
- College of Basic Medicine, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yingying Han
- Laboratory of Molecular Iron Metabolism, Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry, and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Qiang Ma
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences (CAS), BNU IDG/McGovern Institute for Brain Research, Beijing, 100101, China
| | - Zeyuan Liu
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences (CAS), BNU IDG/McGovern Institute for Brain Research, Beijing, 100101, China
| | - Suijuan Zhong
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Yufeng Lu
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences (CAS), BNU IDG/McGovern Institute for Brain Research, Beijing, 100101, China
| | - Ruiguo Chen
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences (CAS), BNU IDG/McGovern Institute for Brain Research, Beijing, 100101, China
| | - Le Sun
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Qian Wu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Guofen Gao
- Laboratory of Molecular Iron Metabolism, Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry, and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Xiaoqun Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences (CAS), BNU IDG/McGovern Institute for Brain Research, Beijing, 100101, China.
| | - Yan-Zhong Chang
- Laboratory of Molecular Iron Metabolism, Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry, and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| |
Collapse
|
9
|
Gao G, You L, Zhang J, Chang YZ, Yu P. Brain Iron Metabolism, Redox Balance and Neurological Diseases. Antioxidants (Basel) 2023; 12:1289. [PMID: 37372019 DOI: 10.3390/antiox12061289] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The incidence of neurological diseases, such as Parkinson's disease, Alzheimer's disease and stroke, is increasing. An increasing number of studies have correlated these diseases with brain iron overload and the resulting oxidative damage. Brain iron deficiency has also been closely linked to neurodevelopment. These neurological disorders seriously affect the physical and mental health of patients and bring heavy economic burdens to families and society. Therefore, it is important to maintain brain iron homeostasis and to understand the mechanism of brain iron disorders affecting reactive oxygen species (ROS) balance, resulting in neural damage, cell death and, ultimately, leading to the development of disease. Evidence has shown that many therapies targeting brain iron and ROS imbalances have good preventive and therapeutic effects on neurological diseases. This review highlights the molecular mechanisms, pathogenesis and treatment strategies of brain iron metabolism disorders in neurological diseases.
Collapse
Affiliation(s)
- Guofen Gao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan'erhuan Eastern Road, Shijiazhuang 050024, China
| | - Linhao You
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan'erhuan Eastern Road, Shijiazhuang 050024, China
| | - Jianhua Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan'erhuan Eastern Road, Shijiazhuang 050024, China
| | - Yan-Zhong Chang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan'erhuan Eastern Road, Shijiazhuang 050024, China
| | - Peng Yu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan'erhuan Eastern Road, Shijiazhuang 050024, China
| |
Collapse
|
10
|
Tola AJ, Missihoun TD. Iron Availability Influences Protein Carbonylation in Arabidopsis thaliana Plants. Int J Mol Sci 2023; 24:ijms24119732. [PMID: 37298684 DOI: 10.3390/ijms24119732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Protein carbonylation is an irreversible form of post-translational modification triggered by reactive oxygen species in animal and plant cells. It occurs either through the metal-catalyzed oxidation of Lys, Arg, Pro, and Thr side chains or the addition of α, β-unsaturated aldehydes and ketones to the side chains of Cys, Lys, and His. Recent genetic studies concerning plants pointed to an implication of protein carbonylation in gene regulation through phytohormones. However, for protein carbonylation to stand out as a signal transduction mechanism, such as phosphorylation and ubiquitination, it must be controlled in time and space by a still unknown trigger. In this study, we tested the hypothesis that the profile and extent of protein carbonylation are influenced by iron homeostasis in vivo. For this, we compared the profile and the contents of the carbonylated proteins in the Arabidopsis thaliana wild-type and mutant-deficient in three ferritin genes under normal and stress conditions. Additionally, we examined the proteins specifically carbonylated in wild-type seedlings exposed to iron-deficient conditions. Our results indicated that proteins were differentially carbonylated between the wild type and the triple ferritin mutant Fer1-3-4 in the leaves, stems, and flowers under normal growth conditions. The profile of the carbonylated proteins was also different between the wild type and the ferritin triple mutant exposed to heat stress, thus pointing to the influence of iron on the carbonylation of proteins. Consistent with this, the exposure of the seedlings to iron deficiency and iron excess greatly influenced the carbonylation of certain proteins involved in intracellular signal transduction, translation, and iron deficiency response. Overall, the study underlined the importance of iron homeostasis in the occurrence of protein carbonylation in vivo.
Collapse
Affiliation(s)
- Adesola J Tola
- Groupe de Recherche en Biologie Végétale (GRBV), Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 Boul. des Forges, Trois-Rivières, QC G9A 5H7, Canada
| | - Tagnon D Missihoun
- Groupe de Recherche en Biologie Végétale (GRBV), Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 Boul. des Forges, Trois-Rivières, QC G9A 5H7, Canada
| |
Collapse
|
11
|
Teixeira GCM, Prado RDM, Rocha AMS, Princi MB, de Andrade CS. Silicon mitigates iron deficiency in two energy cane cultivars by modulating physiological and nutritional mechanisms. FRONTIERS IN PLANT SCIENCE 2023; 14:1204836. [PMID: 37324691 PMCID: PMC10264767 DOI: 10.3389/fpls.2023.1204836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023]
Abstract
Introduction Alkaline soils with iron (Fe) deficiency are found in many regions of the world, and the use of silicon (Si) can mitigate the damages caused by such deficiency. The aim of this study was to evaluate the effect of Si in mitigating a moderate deficiency of Fe in two energy cane cultivars. Methods Two experiments were performed, one with the VX2 cultivar and the other with the VX3 cultivar of energy cane, which were cultivated in pots with sand and a nutrient solution. In both experiments, treatments followed a factorial scheme 2x2, designed based on the sufficiency and deficiency of Fe, being combined with the absence or presence of Si (2.5 mmol L-1), disposed in a randomized blocks design with six replicates. In the condition of Fe sufficiency, plants were cultivated in a solution containing 368 µmol L-1 of Fe, while plants cultivated under deficiency were initially submitted to cultivation with a 54 µmol L-1 concentration of Fe for 30 days, and later, with Fe complete omission for 60 days. The supply of Si was carried out by applying 15 fertirrigations with Si (via root and leaf) during the initial stage of seedling development, and after transplanting, the nutrient solution was added daily (via root). Results and discussion Both cultivars of energy cane were sensitive to Fe deficiency in the absence of Si, impairing its growth by causing stress and pigment degradation, thus reducing the photosynthesis efficiency. The supply of Si mitigated the damages caused by Fe deficiency in both cultivars, by increasing Fe accumulation in new and intermediate leaves, stem, and roots in the VX2 cultivar, and in new, intermediate, and old leaves and stem in the VX3 cultivar, which in turn reduced stress and favored both the nutritional and photosynthesis efficiency, while increasing the dry matter production. Si by modulating physiological and nutritional mechanisms, mitigates Fe deficiency in two energy cane cultivars. It was concluded that Si can be used as a strategy to improve growth and nutrition of energy cane in environments that are susceptible to Fe deficiency.
Collapse
Affiliation(s)
- Gelza Carliane Marques Teixeira
- Laboratory of Plant Nutrition, Department of Agricultural Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - Renato de Mello Prado
- Laboratory of Plant Nutrition, Department of Agricultural Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - Antonio Márcio Souza Rocha
- Laboratory of Biogeochemistry, Department of Technology, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - Murilo Bassan Princi
- Laboratory of Plant Nutrition, Department of Agricultural Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - Caio Soares de Andrade
- Laboratory of Plant Nutrition, Department of Agricultural Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| |
Collapse
|
12
|
Bakirbas A, Walker EL. CAN OF SPINACH, a novel long non-coding RNA, affects iron deficiency responses in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:1005020. [PMID: 36275516 PMCID: PMC9581158 DOI: 10.3389/fpls.2022.1005020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Long non-coding RNAs (lncRNAs) are RNA molecules with functions independent of any protein-coding potential. A whole transcriptome (RNA-seq) study of Arabidopsis shoots under iron sufficient and deficient conditions was carried out to determine the genes that are iron-regulated in the shoots. We identified two previously unannotated transcripts on chromosome 1 that are significantly iron-regulated. We have called this iron-regulated lncRNA, CAN OF SPINACH (COS). cos mutants have altered iron levels in leaves and seeds. Despite the low iron levels in the leaves, cos mutants have higher chlorophyll levels than WT plants. Moreover, cos mutants have abnormal development during iron deficiency. Roots of cos mutants are longer than those of WT plants, when grown on iron deficient medium. In addition, cos mutant plants accumulate singlet oxygen during iron deficiency. The mechanism through which COS affects iron deficiency responses is unclear, but small regions of sequence similarity to several genes involved in iron deficiency responses occur in COS, and small RNAs from these regions have been detected. We hypothesize that COS is required for normal adaptation to iron deficiency conditions.
Collapse
Affiliation(s)
- Ahmet Bakirbas
- Plant Biology Graduate Program, Department of Biology, University of Massachusetts Amherst, Amherst, MA, United States
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, United States
| | - Elsbeth L. Walker
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
13
|
Singh P, Chauhan PK, Upadhyay SK, Singh RK, Dwivedi P, Wang J, Jain D, Jiang M. Mechanistic Insights and Potential Use of Siderophores Producing Microbes in Rhizosphere for Mitigation of Stress in Plants Grown in Degraded Land. Front Microbiol 2022; 13:898979. [PMID: 35898908 PMCID: PMC9309559 DOI: 10.3389/fmicb.2022.898979] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/09/2022] [Indexed: 12/20/2022] Open
Abstract
Plant growth performance under a stressful environment, notably in the agriculture field, is directly correlated with the rapid growth of the human population, which triggers the pressure on crop productivity. Plants perceived many stresses owing to degraded land, which induces low plant productivity and, therefore, becomes a foremost concern for the future to face a situation of food scarcity. Land degradation is a very notable environmental issue at the local, regional, and global levels for agriculture. Land degradation generates global problems such as drought desertification, heavy metal contamination, and soil salinity, which pose challenges to achieving many UN Sustainable Development goals. The plant itself has a varied algorithm for the mitigation of stresses arising due to degraded land; the rhizospheric system of the plant has diverse modes and efficient mechanisms to cope with stress by numerous root-associated microbes. The suitable root-associated microbes and components of root exudate interplay against stress and build adaptation against stress-mediated mechanisms. The problem of iron-deficient soil is rising owing to increasing degraded land across the globe, which hampers plant growth productivity. Therefore, in the context to tackle these issues, the present review aims to identify plant-stress status owing to iron-deficient soil and its probable eco-friendly solution. Siderophores are well-recognized iron-chelating agents produced by numerous microbes and are associated with the rhizosphere. These siderophore-producing microbes are eco-friendly and sustainable agents, which may be managing plant stresses in the degraded land. The review also focuses on the molecular mechanisms of siderophores and their chemistry, cross-talk between plant root and siderophores-producing microbes to combat plant stress, and the utilization of siderophores in plant growth on degraded land.
Collapse
Affiliation(s)
- Pratiksha Singh
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Prabhat K. Chauhan
- Department of Environmental Science, Veer Bahadur Singh Purvanchal University, Jaunpur, India
| | - Sudhir K. Upadhyay
- Department of Environmental Science, Veer Bahadur Singh Purvanchal University, Jaunpur, India
- Sudhir K. Upadhyay
| | - Rajesh Kumar Singh
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Padmanabh Dwivedi
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Jing Wang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Devendra Jain
- Department of Molecular Biology and Biotechnology, Maharana Pratap University of Agriculture and Technology, Udaipur, India
| | - Mingguo Jiang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
- *Correspondence: Mingguo Jiang
| |
Collapse
|
14
|
Interdependent iron and phosphorus availability controls photosynthesis through retrograde signaling. Nat Commun 2021; 12:7211. [PMID: 34893639 PMCID: PMC8664907 DOI: 10.1038/s41467-021-27548-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 11/18/2021] [Indexed: 11/08/2022] Open
Abstract
Iron deficiency hampers photosynthesis and is associated with chlorosis. We recently showed that iron deficiency-induced chlorosis depends on phosphorus availability. How plants integrate these cues to control chlorophyll accumulation is unknown. Here, we show that iron limitation downregulates photosynthesis genes in a phosphorus-dependent manner. Using transcriptomics and genome-wide association analysis, we identify two genes, PHT4;4 encoding a chloroplastic ascorbate transporter and bZIP58, encoding a nuclear transcription factor, which prevent the downregulation of photosynthesis genes leading to the stay-green phenotype under iron-phosphorus deficiency. Joint limitation of these nutrients induces ascorbate accumulation by activating expression of an ascorbate biosynthesis gene, VTC4, which requires bZIP58. Furthermore, we demonstrate that chloroplastic ascorbate transport prevents the downregulation of photosynthesis genes under iron-phosphorus combined deficiency through modulation of ROS homeostasis. Our study uncovers a ROS-mediated chloroplastic retrograde signaling pathway to adapt photosynthesis to nutrient availability.
Collapse
|
15
|
Benevenuto RF, Zanatta CB, Guerra MP, Nodari RO, Agapito-Tenfen SZ. Proteomic Profile of Glyphosate-Resistant Soybean under Combined Herbicide and Drought Stress Conditions. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112381. [PMID: 34834744 PMCID: PMC8622064 DOI: 10.3390/plants10112381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 05/14/2023]
Abstract
While some genetically modified (GM) plants have been targeted to confer tolerance to abiotic stressors, transgenes are impacted by abiotic stressors, causing adverse effects on plant physiology and yield. However, routine safety analyses do not assess the response of GM plants under different environmental stress conditions. In the context of climate change, the combination of abiotic stressors is a reality in agroecosystems. Therefore, the aim of this study was to analyze the metabolic cost by assessing the proteomic profiles of GM soybean varieties under glyphosate spraying and water deficit conditions compared to their non-transgenic conventional counterparts. We found evidence of cumulative adverse effects that resulted in the reduction of enzymes involved in carbohydrate metabolism, along with the expression of amino acids and nitrogen metabolic enzymes. Ribosomal metabolism was significantly enriched, particularly the protein families associated with ribosomal complexes L5 and L18. The interaction network map showed that the affected module representing the ribosome pathway interacts strongly with other important proteins, such as the chloro-plastic gamma ATP synthase subunit. Combined, these findings provide clear evidence for increasing the metabolic costs of GM soybean plants in response to the accumulation of stress factors. First, alterations in the ribosome pathway indicate that the GM plant itself carries a metabolic burden associated with the biosynthesis of proteins as effects of genetic transformation. GM plants also showed an imbalance in energy demand and production under controlled conditions, which was increased under drought conditions. Identifying the consequences of altered metabolism related to the interaction between plant transgene stress responses allows us to understand the possible effects on the ecology and evolution of plants in the medium and long term and the potential interactions with other organisms when these organisms are released in the environment.
Collapse
Affiliation(s)
- Rafael Fonseca Benevenuto
- Crop Science Department, Federal University of Santa Catarina, Florianopolis 88034000, Brazil; (R.F.B.); (C.B.Z.); (M.P.G.); (R.O.N.)
| | - Caroline Bedin Zanatta
- Crop Science Department, Federal University of Santa Catarina, Florianopolis 88034000, Brazil; (R.F.B.); (C.B.Z.); (M.P.G.); (R.O.N.)
| | - Miguel Pedro Guerra
- Crop Science Department, Federal University of Santa Catarina, Florianopolis 88034000, Brazil; (R.F.B.); (C.B.Z.); (M.P.G.); (R.O.N.)
| | - Rubens Onofre Nodari
- Crop Science Department, Federal University of Santa Catarina, Florianopolis 88034000, Brazil; (R.F.B.); (C.B.Z.); (M.P.G.); (R.O.N.)
| | - Sarah Z. Agapito-Tenfen
- GenØk Centre for Biosafety, Siva Innovasjonssenter Postboks 6418, 9294 Tromsø, Norway
- Correspondence:
| |
Collapse
|
16
|
Huang T, Suen D. Iron insufficiency in floral buds impairs pollen development by disrupting tapetum function. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:244-267. [PMID: 34310779 PMCID: PMC9292431 DOI: 10.1111/tpj.15438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 06/25/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Reduction of crop yield due to iron (Fe) deficiency has always been a concern in agriculture. How Fe insufficiency in floral buds affects pollen development remains unexplored. Here, plants transferred to Fe-deficient medium at the reproductive stage had reduced floral Fe content and viable pollen and showed a defective pollen outer wall, all restored by supplying floral buds with Fe. A comparison of differentially expressed genes (DEGs) in Fe-deficient leaves, roots, and anthers suggested that changes in several cellular processes were unique to anthers, including increased lipid degradation. Co-expression analysis revealed that ABORTED MICROSPORES (AMS), DEFECTIVE IN TAPETAL DEVELOPMENT AND FUNCTION1, and BASIC HELIX-LOOP-HELIX 089/091/010 encode key upstream transcription factors of Fe deficiency-responsive DEGs involved in tapetum function and development, including tapetal ROS homeostasis, programmed cell death, and pollen outer wall formation-related lipid metabolism. Analysis of RESPIRATORY-BURST OXIDASE HOMOLOG E (RBOHE) gain- and loss-of-function under Fe deficiency indicated that RBOHE- and Fe-dependent regulation cooperatively control anther reactive oxygen species levels and pollen development. Since DEGs in Fe-deficient anthers were not significantly enriched in genes related to mitochondrial function, the changes in mitochondrial status under Fe deficiency, including respiration activity, density, and morphology, were probably because the Fe amount was insufficient to maintain proper mitochondrial protein function in anthers. To sum up, Fe deficiency in anthers may affect Fe-dependent protein function and impact upstream transcription factors and their downstream genes, resulting in extensively impaired tapetum function and pollen development.
Collapse
Affiliation(s)
- Tzu‐Hsiang Huang
- Agricultural Biotechnology Research CenterAcademia SinicaTaipei11529Taiwan
- Molecular and Biological Agricultural Sciences ProgramTaiwan International Graduate ProgramAcademia Sinica and National Chung‐Hsing UniversityTaipei11529Taiwan
- Graduate Institute of BiotechnologyNational Chung‐Hsing UniversityTaichung40227Taiwan
| | - Der‐Fen Suen
- Agricultural Biotechnology Research CenterAcademia SinicaTaipei11529Taiwan
- Molecular and Biological Agricultural Sciences ProgramTaiwan International Graduate ProgramAcademia Sinica and National Chung‐Hsing UniversityTaipei11529Taiwan
- Biotechnology CenterNational Chung‐Hsing UniversityTaichung40227Taiwan
| |
Collapse
|
17
|
Nitric Oxide Prevents Fe Deficiency-Induced Photosynthetic Disturbance, and Oxidative Stress in Alfalfa by Regulating Fe Acquisition and Antioxidant Defense. Antioxidants (Basel) 2021; 10:antiox10101556. [PMID: 34679691 PMCID: PMC8533379 DOI: 10.3390/antiox10101556] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 12/17/2022] Open
Abstract
Iron (Fe) deficiency impairs photosynthetic efficiency, plant growth and biomass yield. This study aimed to reveal the role of nitric oxide (NO) in restoring Fe-homeostasis and oxidative status in Fe-deficient alfalfa. In alfalfa, a shortage of Fe negatively affected the efficiency of root andshoot length, leaf greenness, maximum quantum yield PSII (Fv/Fm), Fe, S, and Zn accumulation, as well as an increase in H2O2 accumulation. In contrast, in the presence of sodium nitroprusside (SNP), a NO donor, these negative effects of Fe deficiency were largely reversed. In response to the SNP, the expression of Fe transporters (IRT1, NRAMP1) and S transporter (SULTR1;2) genes increased in alfalfa. Additionally, the detection of NO generation using fluorescence microscope revealed that SNP treatment increased the level of NO signal, indicating that NO may act as regulatory signal in response to SNP in plants. Interestingly, the increase of antioxidant genes and their related enzymes (Fe-SOD, APX) in response to SNP treatment suggests that Fe-SOD and APX are key contributors to reducing ROS (H2O2) accumulation and oxidative stress in alfalfa. Furthermore, the elevation of Ascorbate-glutathione (AsA-GSH) pathway-related genes (GR and MDAR) Fe-deficiency with SNP implies that the presence of NO relates to enhanced antioxidant defense against Fe-deficiency stress.
Collapse
|
18
|
Kar S, Mai HJ, Khalouf H, Ben Abdallah H, Flachbart S, Fink-Straube C, Bräutigam A, Xiong G, Shang L, Panda SK, Bauer P. Comparative Transcriptomics of Lowland Rice Varieties Uncovers Novel Candidate Genes for Adaptive Iron Excess Tolerance. PLANT & CELL PHYSIOLOGY 2021; 62:624-640. [PMID: 33561287 PMCID: PMC8462385 DOI: 10.1093/pcp/pcab018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/29/2021] [Indexed: 05/19/2023]
Abstract
Iron (Fe) toxicity is a major challenge for plant cultivation in acidic waterlogged soil environments, where lowland rice is a major staple food crop. Only few studies have addressed the molecular characterization of excess Fe tolerance in rice, and these highlight different mechanisms for Fe tolerance. Out of 16 lowland rice varieties, we identified a pair of contrasting lines, Fe-tolerant Lachit and -susceptible Hacha. The two lines differed in their physiological and morphological responses to excess Fe, including leaf growth, leaf rolling, reactive oxygen species generation and Fe and metal contents. These responses were likely due to genetic origin as they were mirrored by differential gene expression patterns, obtained through RNA sequencing, and corresponding gene ontology term enrichment in tolerant vs. susceptible lines. Thirty-five genes of the metal homeostasis category, mainly root expressed, showed differential transcriptomic profiles suggestive of an induced tolerance mechanism. Twenty-two out of these 35 metal homeostasis genes were present in selection sweep genomic regions, in breeding signatures, and/or differentiated during rice domestication. These findings suggest that Fe excess tolerance is an important trait in the domestication of lowland rice, and the identified genes may further serve to design the targeted Fe tolerance breeding of rice crops.
Collapse
Affiliation(s)
- Saradia Kar
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, Düsseldorf 40225, Germany
- Plant Molecular Biotechnology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, India
| | - Hans-Jörg Mai
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, Düsseldorf 40225, Germany
| | - Hadeel Khalouf
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, Düsseldorf 40225, Germany
| | - Heithem Ben Abdallah
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, Düsseldorf 40225, Germany
| | - Samantha Flachbart
- Institute of Plant Biochemistry, Heinrich Heine University, Universitätsstr. 1, Düsseldorf 40225, Germany
| | | | - Andrea Bräutigam
- Faculty of Biology, Bielefeld University, Universitätsstr. 27, Bielefeld 33615, Germany
| | - Guosheng Xiong
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Lianguang Shang
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Sanjib Kumar Panda
- Plant Molecular Biotechnology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, India
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan 305817, India
| | - Petra Bauer
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, Düsseldorf 40225, Germany
- Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
19
|
Eldesouky HE, Lanman NA, Hazbun TR, Seleem MN. Aprepitant, an antiemetic agent, interferes with metal ion homeostasis of Candida auris and displays potent synergistic interactions with azole drugs. Virulence 2021; 11:1466-1481. [PMID: 33100149 PMCID: PMC7588212 DOI: 10.1080/21505594.2020.1838741] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
With the rapid increase in the frequency of azole-resistant species, combination therapy appears to be a promising tool to augment the antifungal activity of azole drugs against resistant Candida species. Here, we report the effect of aprepitant, an antiemetic agent, on the antifungal activities of azole drugs against the multidrug-resistant Candida auris. Aprepitant reduced the minimum inhibitory concentration (MIC) of itraconazole in vitro, by up to eight-folds. Additionally, the aprepitant/itraconazole combination interfered significantly with the biofilm-forming ability of C. auris by 95 ± 0.13%, and significantly disrupted mature biofilms by 52 ± 0.83%, relative to the untreated control. In a Caenorhabditis elegans infection model, the aprepitant/itraconazole combination significantly prolonged the survival of infected nematodes by ~90% (five days post-infection) and reduced the fungal burden by ~92% relative to the untreated control. Further, this novel drug combination displayed broad-spectrum synergistic interactions against other medically important Candida species such as C. albicans, C. krusei, C. tropicalis, and C. parapsilosis (ƩFICI ranged from 0.08 to 0.31). Comparative transcriptomic profiling and mechanistic studies indicated aprepitant/itraconazole interferes significantly with metal ion homeostasis and compromises the ROS detoxification ability of C. auris. This study presents aprepitant as a novel, potent, and broad-spectrum azole chemosensitizing agent that warrants further investigation.
Collapse
Affiliation(s)
- Hassan E Eldesouky
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University , West Lafayette, IN, USA.,Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University , Blacksburg, VA, USA
| | - Nadia A Lanman
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University , West Lafayette, IN, USA.,Purdue University Center for Cancer Research, Purdue University , West Lafayette, IN, USA
| | - Tony R Hazbun
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University , West Lafayette, IN, USA
| | - Mohamed N Seleem
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University , West Lafayette, IN, USA.,Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University , Blacksburg, VA, USA
| |
Collapse
|
20
|
Tavanti TR, Melo AARD, Moreira LDK, Sanchez DEJ, Silva RDS, Silva RMD, Reis ARD. Micronutrient fertilization enhances ROS scavenging system for alleviation of abiotic stresses in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 160:386-396. [PMID: 33556754 DOI: 10.1016/j.plaphy.2021.01.040] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 01/26/2021] [Indexed: 05/06/2023]
Abstract
Reactive oxygen species (ROS) such as hydrogen peroxide at low concentrations act as signaling of several abiotic stresses. Overproduction of hydrogen peroxide causes the oxidation of plant cell lipid phosphate layer promoting senescence and cell death. To mitigate the effect of ROS, plants develop antioxidant defense mechanisms (superoxide dismutase, catalase, guaiacol peroxidase), ascorbate-glutathione cycle enzymes (ASA-GSH) (ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase and glutathione reductase), which have the function of removing and transforming ROS into non-toxic substances to maintain cellular homeostasis. Foliar or soil application of fertilizers containing B, Cu, Fe, Mn, Mo, Ni, Se and Zn at low concentrations has the ability to elicit and activate antioxidative enzymes, non-oxidizing metabolism, as well as sugar metabolism to mitigate damage by oxidative stress. Plants treated with micronutrients show higher tolerance to abiotic stress and better nutritional status. In this review, we summarized results indicating micronutrient actions in order to reduce ROS resulting the increase of photosynthetic capacity of plants for greater crop yield. This meta-analysis provides information on the mechanism of action of micronutrients in combating ROS, which can make plants more tolerant to several types of abiotic stress such as extreme temperatures, salinity, heavy metals and excess light.
Collapse
Affiliation(s)
- Tauan Rimoldi Tavanti
- São Paulo State University "Júlio de Mesquita Filho" (UNESP), 15385-000, Ilha Solteira, SP, Brazil
| | | | | | | | - Rafael Dos Santos Silva
- São Paulo State University "Júlio de Mesquita Filho" (UNESP), 15385-000, Ilha Solteira, SP, Brazil
| | - Ricardo Messias da Silva
- São Paulo State University "Júlio de Mesquita Filho" (UNESP), 15385-000, Ilha Solteira, SP, Brazil
| | - André Rodrigues Dos Reis
- São Paulo State University "Júlio de Mesquita Filho" (UNESP), Rua Domingos da Costa Lopes 780, 17602-496, Tupã, SP, Brazil.
| |
Collapse
|
21
|
Tewari RK, Horemans N, Watanabe M. Evidence for a role of nitric oxide in iron homeostasis in plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:990-1006. [PMID: 33196822 DOI: 10.1093/jxb/eraa484] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/13/2020] [Indexed: 05/27/2023]
Abstract
Nitric oxide (NO), once regarded as a poisonous air pollutant, is now understood as a regulatory molecule essential for several biological functions in plants. In this review, we summarize NO generation in different plant organs and cellular compartments, and also discuss the role of NO in iron (Fe) homeostasis, particularly in Fe-deficient plants. Fe is one of the most limiting essential nutrient elements for plants. Plants often exhibit Fe deficiency symptoms despite sufficient tissue Fe concentrations. NO appears to not only up-regulate Fe uptake mechanisms but also makes Fe more bioavailable for metabolic functions. NO forms complexes with Fe, which can then be delivered into target cells/tissues. NO generated in plants can alleviate oxidative stress by regulating antioxidant defense processes, probably by improving functional Fe status and by inducing post-translational modifications in the enzymes/proteins involved in antioxidant defense responses. It is hypothesized that NO acts in cooperation with transcription factors such as bHLHs, FIT, and IRO to regulate the expression of enzymes and proteins essential for Fe homeostasis. However, further investigations are needed to disentangle the interaction of NO with intracellular target molecules that leads to enhanced internal Fe availability in plants.
Collapse
Affiliation(s)
| | - Nele Horemans
- Biosphere Impact Studies, Belgian Nuclear Research Center (SCK•CEN), Boeretang, Mol, Belgium
- Centre for Environmental Sciences, Hasselt University, Agoralaan gebouw D, Diepenbeek, Belgium
| | - Masami Watanabe
- Laboratory of Plant Biochemistry, Chiba University, Inage-ward, Yayoicho, Chiba, Japan
| |
Collapse
|
22
|
Kroh GE, Pilon M. Regulation of Iron Homeostasis and Use in Chloroplasts. Int J Mol Sci 2020; 21:E3395. [PMID: 32403383 PMCID: PMC7247011 DOI: 10.3390/ijms21093395] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 01/20/2023] Open
Abstract
Iron (Fe) is essential for life because of its role in protein cofactors. Photosynthesis, in particular photosynthetic electron transport, has a very high demand for Fe cofactors. Fe is commonly limiting in the environment, and therefore photosynthetic organisms must acclimate to Fe availability and avoid stress associated with Fe deficiency. In plants, adjustment of metabolism, of Fe utilization, and gene expression, is especially important in the chloroplasts during Fe limitation. In this review, we discuss Fe use, Fe transport, and mechanisms of acclimation to Fe limitation in photosynthetic lineages with a focus on the photosynthetic electron transport chain. We compare Fe homeostasis in Cyanobacteria, the evolutionary ancestors of chloroplasts, with Fe homeostasis in green algae and in land plants in order to provide a deeper understanding of how chloroplasts and photosynthesis may cope with Fe limitation.
Collapse
Affiliation(s)
| | - Marinus Pilon
- Department of Biology, Colorado State University Department of Biology, Fort Collins, CO 80523, USA;
| |
Collapse
|
23
|
Carrasco-Gil S, Rodríguez-Menéndez S, Fernández B, Pereiro R, de la Fuente V, Hernandez-Apaolaza L. Silicon induced Fe deficiency affects Fe, Mn, Cu and Zn distribution in rice (Oryza sativa L.) growth in calcareous conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 125:153-163. [PMID: 29453092 DOI: 10.1016/j.plaphy.2018.01.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/30/2018] [Accepted: 01/30/2018] [Indexed: 05/07/2023]
Abstract
A protective effect by silicon in the amelioration of iron chlorosis has recently been proved for Strategy 1 species, at acidic pH. However in calcareous conditions, the Si effect on Fe acquisition and distribution is still unknown. In this work, the effect of Si on Fe, Mn, Cu and Zn distribution was studied in rice (Strategy 2 species) under Fe sufficiency and deficiency. Plants (+Si or-Si) were grown initially with Fe, and then Fe was removed from the nutrient solution. The plants were then analysed using a combined approach including LA-ICP-MS images for each element of interest, the analysis of the Fe and Si concentration at different cell layers of root and leaf cross sections by SEM-EDX, and determining the apoplastic Fe, total micronutrient concentration and oxidative stress indexes. A different Si effect was observed depending on plant Fe status. Under Fe sufficiency, Si supply increased Fe root plaque formation, decreasing Fe concentration inside the root and increasing the oxidative stress in the plants. Therefore, Fe acquisition strategies were activated, and Fe translocation rate to the aerial parts was increased, even under an optimal Fe supply. Under Fe deficiency, +Si plants absorbed Fe from the plaque more rapidly than -Si plants, due to the previous activation of Fe deficiency strategies during the growing period (+Fe + Si). Higher Fe plaque formation due to Si supply during the growing period reduced Fe uptake and could activate Fe deficiency strategies in rice, making it more efficient against Fe chlorosis alterations. Silicon influenced Mn and Cu distribution in root.
Collapse
Affiliation(s)
- Sandra Carrasco-Gil
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, Av. Francisco Tomás y Valiente 7, 28049 Madrid, Spain.
| | - Sara Rodríguez-Menéndez
- Department of Physical and Analytical Chemistry, Facultad de Química, Universidad de Oviedo, Julian Clavería, 8, E-33006 Oviedo, Spain
| | - Beatriz Fernández
- Department of Physical and Analytical Chemistry, Facultad de Química, Universidad de Oviedo, Julian Clavería, 8, E-33006 Oviedo, Spain
| | - Rosario Pereiro
- Department of Physical and Analytical Chemistry, Facultad de Química, Universidad de Oviedo, Julian Clavería, 8, E-33006 Oviedo, Spain
| | - Vicenta de la Fuente
- Department of Biology, Universidad Autónoma de Madrid, Calle Darwin 2, 28049 Madrid, Spain
| | - Lourdes Hernandez-Apaolaza
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, Av. Francisco Tomás y Valiente 7, 28049 Madrid, Spain.
| |
Collapse
|
24
|
Potassium: A Vital Regulator of Plant Responses and Tolerance to Abiotic Stresses. AGRONOMY-BASEL 2018. [DOI: 10.3390/agronomy8030031] [Citation(s) in RCA: 202] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Among the plant nutrients, potassium (K) is one of the vital elements required for plant growth and physiology. Potassium is not only a constituent of the plant structure but it also has a regulatory function in several biochemical processes related to protein synthesis, carbohydrate metabolism, and enzyme activation. Several physiological processes depend on K, such as stomatal regulation and photosynthesis. In recent decades, K was found to provide abiotic stress tolerance. Under salt stress, K helps to maintain ion homeostasis and to regulate the osmotic balance. Under drought stress conditions, K regulates stomatal opening and helps plants adapt to water deficits. Many reports support the notion that K enhances antioxidant defense in plants and therefore protects them from oxidative stress under various environmental adversities. In addition, this element provides some cellular signaling alone or in association with other signaling molecules and phytohormones. Although considerable progress has been made in understanding K-induced abiotic stress tolerance in plants, the exact molecular mechanisms of these protections are still under investigation. In this review, we summarized the recent literature on the biological functions of K, its uptake, its translocation, and its role in plant abiotic stress tolerance.
Collapse
|
25
|
Andresen E, Peiter E, Küpper H. Trace metal metabolism in plants. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:909-954. [PMID: 29447378 DOI: 10.1093/jxb/erx465] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 12/04/2017] [Indexed: 05/18/2023]
Abstract
Many trace metals are essential micronutrients, but also potent toxins. Due to natural and anthropogenic causes, vastly different trace metal concentrations occur in various habitats, ranging from deficient to toxic levels. Therefore, one focus of plant research is on the response to trace metals in terms of uptake, transport, sequestration, speciation, physiological use, deficiency, toxicity, and detoxification. In this review, we cover most of these aspects for the essential micronutrients copper, iron, manganese, molybdenum, nickel, and zinc to provide a broader overview than found in other recent reviews, to cross-link aspects of knowledge in this very active research field that are often seen in a separated way. For example, individual processes of metal usage, deficiency, or toxicity often were not mechanistically interconnected. Therefore, this review also aims to stimulate the communication of researchers following different approaches, such as gene expression analysis, biochemistry, or biophysics of metalloproteins. Furthermore, we highlight recent insights, emphasizing data obtained under physiologically and environmentally relevant conditions.
Collapse
Affiliation(s)
- Elisa Andresen
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Department of Plant Biophysics and Biochemistry, Branišovská, Ceské Budejovice, Czech Republic
| | - Edgar Peiter
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Plant Nutrition Laboratory, Betty-Heimann-Strasse, Halle (Saale), Germany
| | - Hendrik Küpper
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Department of Plant Biophysics and Biochemistry, Branišovská, České Budějovice, Czech Republic
- University of South Bohemia, Faculty of Science, Department of Experimental Plant Biology, Branišovská, České Budějovice, Czech Republic
| |
Collapse
|
26
|
Ma T, Duan XH, Yang YY, Yao J, Gao TP. Zinc-alleviating effects on iron-induced phytotoxicity in roots of Triticum aestivum. BIOLOGIA PLANTARUM 2017; 61:733-740. [DOI: 10.1007/s10535-017-0720-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
|
27
|
Sebastian A, Nangia A, Prasad MNV. Carbon-Bound Iron Oxide Nanoparticles Prevent Calcium-Induced Iron Deficiency in Oryza sativa L. . JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:557-564. [PMID: 28048936 DOI: 10.1021/acs.jafc.6b04634] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Iron-based nanocomposites can be a practical solution to combat iron deficiency in calcareous agricultural soil. In the present study, a carbon-bound iron oxide nanoparticle is synthesized by mixing ferric chloride and caffeic acid and tested to correct Ca-inducible Fe deficiency in rice. Physicochemical characterization points that the nanoparticle is carbon-coated semi-crystalline Fe3O4. It is found that nanoparticle amendment enhances bioproductivity, photosynthetic electron transport, antioxidant enzyme activity, and Fe accumulation under Ca stress. Reduction in Ca accumulation via physical adsorption, Fe release from the particles, and maintenance of molecular responses related to Fe acquisition were the reasons for the above progressive growth effects. Thus, it is concluded that nanoparticles synthesized in the study act as a potential ameliorant to correct Ca-induced Fe deficiency in rice plants.
Collapse
Affiliation(s)
- Abin Sebastian
- School of Chemistry and ‡Department of Plant Sciences, University of Hyderabad , Prof. C. R. Rao Road, Central University Post Office, Hyderabad, Telangana 500 046, India
| | - Ashwini Nangia
- School of Chemistry and ‡Department of Plant Sciences, University of Hyderabad , Prof. C. R. Rao Road, Central University Post Office, Hyderabad, Telangana 500 046, India
| | - M N V Prasad
- School of Chemistry and ‡Department of Plant Sciences, University of Hyderabad , Prof. C. R. Rao Road, Central University Post Office, Hyderabad, Telangana 500 046, India
| |
Collapse
|
28
|
Hou X, Shen W, Huang X, Ai Z, Zhang L. Ascorbic acid enhanced activation of oxygen by ferrous iron: A case of aerobic degradation of rhodamine B. JOURNAL OF HAZARDOUS MATERIALS 2016; 308:67-74. [PMID: 26808244 DOI: 10.1016/j.jhazmat.2016.01.031] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 01/05/2016] [Accepted: 01/12/2016] [Indexed: 06/05/2023]
Abstract
Molecular oxygen activation by ferrous ions (Fe(II)) in aqueous solution could generate reactive oxygen species (ROS) with high oxidation potential via reaction between Fe(II) and oxygen molecules (Fe(II)/air), however, ROS yielded in the Fe(II)/air process is insufficient for removal of organic pollutants due to the irreversible ferric ions (Fe(III)) accumulation. In this study, we demonstrate that ascorbic acid (AA) could enhance ROS generation via oxygen activation by ferrous irons (AA/Fe(II)/air) and thus improve the degradation of rhodamine (RhB) significantly. It was found that the first-order aerobic degradation rate of RhB in the AA/Fe(II)/air process in the presence of ascorbic acid is more than 4 times that of the Fe(II)/Air system without adding ascorbic acid. The presence of ascorbic acid could relieve the accumulation of Fe(III) by reductive accelerating the Fe(III)/Fe(II) cycles, as well as lower the redox potential of Fe(III)/Fe(II) through chelating effect, leading to enhanced ROS generation for promoting RhB degradation. This study not only sheds light on the effect of ascorbic acid on aerobic Fe(II) oxidation, but also provides a green method for effective remediation of organic pollutants.
Collapse
Affiliation(s)
- Xiaojing Hou
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Wenjuan Shen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Xiaopeng Huang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Zhihui Ai
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental Chemistry, Central China Normal University, Wuhan 430079, PR China.
| | - Lizhi Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental Chemistry, Central China Normal University, Wuhan 430079, PR China
| |
Collapse
|
29
|
Zhu W, Zuo R, Zhou R, Huang J, Tang M, Cheng X, Liu Y, Tong C, Xiang Y, Dong C, Liu S. Vacuolar Iron Transporter BnMEB2 Is Involved in Enhancing Iron Tolerance of Brassica napus. FRONTIERS IN PLANT SCIENCE 2016; 7:1353. [PMID: 27679642 DOI: 10.3389/fpls201601353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/24/2016] [Indexed: 05/22/2023]
Abstract
Iron toxicity is a nutrient disorder that severely affects crop development and yield in some soil conditions. Vacuolar detoxification of metal stress is an important strategy for plants to survive and adapt to this adverse environment. Vacuolar iron transporter (VIT) members are involved in this process and play essential roles in iron storage and transport. In this study, we identified a rapeseed VIT gene BnMEB2 (BnaC07g30170D) homologs to Arabidopsis MEB2 (At5g24290). Transient expression analysis revealed that BnMEB2 was localized to the vacuolar membrane. Q-PCR detection showed a high expression of BnMEB2 in mature (60-day-old) leaves and could be obviously induced by exogenous iron stress in both roots and leaves. Over-expressed BnMEB2 in both Arabidopsis wild type and meb2 mutant seedlings resulted in greatly improved iron tolerability with no significant changes in the expression level of other VIT genes. The mutant meb2 grew slowly and its root hair elongation was inhibited under high iron concentration condition while BnMEB2 over-expressed transgenic plants of the mutant restored the phenotypes with apparently higher iron storage in roots and dramatically increased iron content in the whole plant. Taken together, these results suggested that BnMEB2 was a VIT gene in rapeseed which was necessary for safe storage and vacuole detoxification function of excess iron to enhance the tolerance of iron toxicity. This research sheds light on a potentially new strategy for attenuating hazardous metal stress from environment and improving iron biofortification in Brassicaceae crops.
Collapse
Affiliation(s)
- Wei Zhu
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agriculture Sciences Wuhan, China
| | - Rong Zuo
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agriculture SciencesWuhan, China; Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei UniversityWuhan, China
| | - Rongfang Zhou
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agriculture Sciences Wuhan, China
| | - Junyan Huang
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agriculture SciencesWuhan, China; Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei UniversityWuhan, China
| | - Minqiang Tang
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agriculture Sciences Wuhan, China
| | - Xiaohui Cheng
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agriculture Sciences Wuhan, China
| | - Yueying Liu
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agriculture Sciences Wuhan, China
| | - Chaobo Tong
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agriculture SciencesWuhan, China; Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei UniversityWuhan, China
| | - Yang Xiang
- Guizhou Rapeseed Institute, Guizhou Academy of Agricultural Sciences Guiyang, China
| | - Caihua Dong
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agriculture SciencesWuhan, China; Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei UniversityWuhan, China
| | - Shengyi Liu
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agriculture SciencesWuhan, China; Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei UniversityWuhan, China
| |
Collapse
|
30
|
Zhu W, Zuo R, Zhou R, Huang J, Tang M, Cheng X, Liu Y, Tong C, Xiang Y, Dong C, Liu S. Vacuolar Iron Transporter BnMEB2 Is Involved in Enhancing Iron Tolerance of Brassica napus. FRONTIERS IN PLANT SCIENCE 2016; 7:1353. [PMID: 27679642 PMCID: PMC5020681 DOI: 10.3389/fpls.2016.01353] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/24/2016] [Indexed: 05/05/2023]
Abstract
Iron toxicity is a nutrient disorder that severely affects crop development and yield in some soil conditions. Vacuolar detoxification of metal stress is an important strategy for plants to survive and adapt to this adverse environment. Vacuolar iron transporter (VIT) members are involved in this process and play essential roles in iron storage and transport. In this study, we identified a rapeseed VIT gene BnMEB2 (BnaC07g30170D) homologs to Arabidopsis MEB2 (At5g24290). Transient expression analysis revealed that BnMEB2 was localized to the vacuolar membrane. Q-PCR detection showed a high expression of BnMEB2 in mature (60-day-old) leaves and could be obviously induced by exogenous iron stress in both roots and leaves. Over-expressed BnMEB2 in both Arabidopsis wild type and meb2 mutant seedlings resulted in greatly improved iron tolerability with no significant changes in the expression level of other VIT genes. The mutant meb2 grew slowly and its root hair elongation was inhibited under high iron concentration condition while BnMEB2 over-expressed transgenic plants of the mutant restored the phenotypes with apparently higher iron storage in roots and dramatically increased iron content in the whole plant. Taken together, these results suggested that BnMEB2 was a VIT gene in rapeseed which was necessary for safe storage and vacuole detoxification function of excess iron to enhance the tolerance of iron toxicity. This research sheds light on a potentially new strategy for attenuating hazardous metal stress from environment and improving iron biofortification in Brassicaceae crops.
Collapse
Affiliation(s)
- Wei Zhu
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agriculture SciencesWuhan, China
| | - Rong Zuo
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agriculture SciencesWuhan, China
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei UniversityWuhan, China
| | - Rongfang Zhou
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agriculture SciencesWuhan, China
| | - Junyan Huang
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agriculture SciencesWuhan, China
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei UniversityWuhan, China
| | - Minqiang Tang
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agriculture SciencesWuhan, China
| | - Xiaohui Cheng
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agriculture SciencesWuhan, China
| | - Yueying Liu
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agriculture SciencesWuhan, China
| | - Chaobo Tong
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agriculture SciencesWuhan, China
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei UniversityWuhan, China
| | - Yang Xiang
- Guizhou Rapeseed Institute, Guizhou Academy of Agricultural SciencesGuiyang, China
| | - Caihua Dong
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agriculture SciencesWuhan, China
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei UniversityWuhan, China
- *Correspondence: Caihua Dong,
| | - Shengyi Liu
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agriculture SciencesWuhan, China
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei UniversityWuhan, China
| |
Collapse
|
31
|
Ciniglia C, Mastrobuoni F, Scortichini M, Petriccione M. Oxidative damage and cell-programmed death induced in Zea mays L. by allelochemical stress. ECOTOXICOLOGY (LONDON, ENGLAND) 2015; 24:926-37. [PMID: 25736610 DOI: 10.1007/s10646-015-1435-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/23/2015] [Indexed: 05/09/2023]
Abstract
The allelochemical stress on Zea mays was analyzed by using walnut husk washing waters (WHWW), a by-product of Juglans regia post-harvest process, which possesses strong allelopathic potential and phytotoxic effects. Oxidative damage and cell-programmed death were induced by WHWW in roots of maize seedlings. Treatment induced ROS burst, with excess of H2O2 content. Enzymatic activities of catalase were strongly increased during the first hours of exposure. The excess in malonildialdehyde following exposure to WHWW confirmed that oxidative stress severely damaged maize roots. Membrane alteration caused a decrease in NADPH oxidase activity along with DNA damage as confirmed by DNA laddering. The DNA instability was also assessed through sequence-related amplified polymorphism assay, thus suggesting the danger of walnut processing by-product and focusing the attention on the necessity of an efficient treatment of WHWW.
Collapse
Affiliation(s)
- Claudia Ciniglia
- Department of Environmental, Biological and Pharmaceutical Science and Technology Second University of Naples, Via Vivaldi 43, 81100, Caserta, Italy
| | | | | | | |
Collapse
|
32
|
Singh N, Mishra A, Jha B. Over-expression of the peroxisomal ascorbate peroxidase (SbpAPX) gene cloned from halophyte Salicornia brachiata confers salt and drought stress tolerance in transgenic tobacco. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2014; 16:321-32. [PMID: 24197564 DOI: 10.1007/s10126-013-9548-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 09/19/2013] [Indexed: 05/20/2023]
Abstract
Salicornia brachiata Roxb., an extreme halophyte, is a naturally adapted higher plant model for additional gene resources to engineer salt tolerance in plants. Ascorbate peroxidase (APX) plays a key role in protecting plants against oxidative stress and thus confers abiotic stress tolerance. A full-length SbpAPX cDNA, encoding peroxisomal ascorbate peroxidase, was cloned from S. brachiata. The open reading frame encodes for a polypeptide of 287 amino acid residues (31.3-kDa protein). The deduced amino acid sequence of the SbpAPX gene showed characteristic peroxisomal targeting sequences (RKRAI) and a C-terminal hydrophobic region of 39 amino acid residues containing a transmembrane domain (TMD) of 23 amino acid residues. Northern blot analysis showed elevated SbpAPX transcript in response to salt, cold, abscisic acid and salicylic acid stress treatments. The SbpAPX gene was transformed to tobacco for their functional validation under stresses. Transgenic plants over-expressing SbpAPX gene showed enhanced salt and drought stress tolerance compared to wild-type plants. Transgenic plants showed enhanced vegetative growth and germination rate both under normal and stressed conditions. Present study revealed that the SbpAPX gene is a potential candidate, which not only confers abiotic stress tolerance to plants but also seems to be involved in plant growth.
Collapse
Affiliation(s)
- Natwar Singh
- Discipline of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, 362 002, Gujarat, India,
| | | | | |
Collapse
|