1
|
Tu Y, Yao Z, Guo J, Yang L, Zhu Y, Yang X, Shi Z, Indree T. Predicting the potential risk of Caragana shrub encroachment in the Eurasian steppe under anthropogenic climate change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173925. [PMID: 38866162 DOI: 10.1016/j.scitotenv.2024.173925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/09/2024] [Accepted: 06/09/2024] [Indexed: 06/14/2024]
Abstract
Climate change and human activities drive widespread shrub encroachment in global grassland ecosystems, particularly in the Eurasian steppe. Caragana shrubs, the primary contributors to shrub encroachment in this region, play a crucial role in shaping the ecosystem's structure and function. Future changes in the suitable distribution range of Caragana species will directly affect the ecological security and sustainable socio-economic development of the Eurasian steppe ecosystem. We used an ensemble modeling approach to predict Caragana shrub-dominated plant communities' current and future distribution in three major steppe subregions: the Black Sea-Kazakhstan steppe, the Tibetan Plateau steppe, and the Central Asian steppe. We assessed the potential risk of Caragana shrub encroachment by predicting changes in the suitable distribution area of 19 Caragana shrub species under future climate changes. Our research findings suggest that the expansion of Caragana species in different subregions of the Eurasian steppe is influenced by the effects of climate change in various ways. The distribution of Caragana species is primarily influenced by precipitation and temperature, and the global human modification (ghm) has a significant impact on the Central Asian and Tibetan Plateau subregions. Minimal changes are expected in the Black Sea-Kazakhstan subregion, a slight increase on the Tibetan Plateau, and a substantial rise in the Central Asian subregion, which suggests a higher potential risk of Caragana species shrub encroachment in that area. Our research provides valuable insights into the response of Caragana shrub encroachment to changing climates and human activities. It also has implications for the sustainable management of different areas of the vast Eurasian steppe ecosystem.
Collapse
Affiliation(s)
- Ya Tu
- Yinshanbeilu Grassland Eco-hydrology National Observation and Research Station, China Institute of Water Resources and Hydropower Research, Beijing 100038, China; Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China; Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China.
| | - Zhenyu Yao
- Yinshanbeilu Grassland Eco-hydrology National Observation and Research Station, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Jianying Guo
- Yinshanbeilu Grassland Eco-hydrology National Observation and Research Station, China Institute of Water Resources and Hydropower Research, Beijing 100038, China.
| | - Liu Yang
- Inner Mongolia Geological Exploration Institute of China Chemical Geology and Mine Bureau, Hohhot 010020, China
| | - Yuanjun Zhu
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China; Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China.
| | - Xiaohui Yang
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China; Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China.
| | - Zhongjie Shi
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China; Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China
| | - Tuvshintogtokh Indree
- Botanic Garden and Research Institute, Mongolian Academy of Sciences, Ulaanbaatar 13330, Mongolia
| |
Collapse
|
2
|
Legesse TG, Dong G, Dong X, Qu L, Chen B, Daba NA, Sorecha EM, Zhu W, Lei T, Shao C. The extreme wet and large precipitation size increase carbon uptake in Eurasian meadow steppes: Evidence from natural and manipulated precipitation experiments. ENVIRONMENTAL RESEARCH 2023; 237:117029. [PMID: 37659645 DOI: 10.1016/j.envres.2023.117029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/04/2023]
Abstract
The distribution of seasonal precipitation would profoundly affect the dynamics of carbon fluxes in terrestrial ecosystems. However, little is known about the impacts of extreme precipitation and size events on ecosystem carbon cycle when compared to the effects of average precipitation amount. The study involved an analysis of carbon fluxes and water exchange using the eddy covariance and chamber based techniques during the growing seasons of 2015-2017 in Bayan, Mongolia and 2019-2021 in Hulunbuir, Inner Mongolia, respectively. The components of carbon fluxes and water exchange at each site were normalized to evaluate of relative response among carbon fluxes and water exchange. The investigation delved into the relationship between carbon fluxes and extreme precipitation over five gradients (control, dry spring, dry summer, wet spring and wet summer) in Hulunbuir meadow steppe and distinct four precipitation sizes (0.1-2, 2-5, 5-10, and 10-25 mm d-1) in Bayan meadow steppe. The wet spring and summer showed the greatest ecosystem respiration (ER) relative response values, 76.2% and 73.5%, respectively, while the dry spring (-16.7%) and dry summer (14.2%) showed the lowest values. Gross primary production (GPP) relative response improved with wet precipitation gradients, and declined with dry precipitation gradients in Hulunbuir meadow steppe. The least value in net ecosystem CO2 exchange (NEE) was found at 10-25 mm d-1 precipitation size in Bayan meadow steppe. Similarly, the ER and GPP increased with size of precipitation events. The structural equation models (SEM) satisfactorily fitted the data (χ2 = 43.03, d.f. = 11, p = 0.215), with interactive linkages among soil microclimate, water exchange and carbon fluxes components regulating NEE. Overall, this study highlighted the importance of extreme precipitation and event size in influencing ecosystem carbon exchange, which is decisive to further understand the carbon cycle in meadow steppes.
Collapse
Affiliation(s)
- Tsegaye Gemechu Legesse
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Gang Dong
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Xiaobing Dong
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems (SKLHIGA), College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Luping Qu
- Forest Ecology Stable Isotope Center, Forestry College, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Baorui Chen
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Nano Alemu Daba
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Eba Muluneh Sorecha
- State Engineering Laboratory of Efficient Water Use of Crops and Disaster Loss Mitigation/Key Laboratory of Dryland Agriculture, Ministry of Agriculture and Rural Affairs of China, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wen Zhu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tinajie Lei
- State Engineering Laboratory of Efficient Water Use of Crops and Disaster Loss Mitigation/Key Laboratory of Dryland Agriculture, Ministry of Agriculture and Rural Affairs of China, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Changliang Shao
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
3
|
Yang Y, Shi Y, Wei X, Han J, Wang J, Mu C, Zhang J. Changes in mass allocation play a more prominent role than morphology in resource acquisition of the rhizomatous Leymus chinensis under drought stress. ANNALS OF BOTANY 2023; 132:121-132. [PMID: 37279964 PMCID: PMC10550271 DOI: 10.1093/aob/mcad073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 06/05/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND AND AIMS Plants can respond to drought by changing their relative investments in the biomass and morphology of each organ. The aims of this study were to quantify the relative contribution of changes in morphology vs. allocation and determine how they affect each other. These results should help us understand the mechanisms that plants use to respond to drought events. METHODS In a glasshouse experiment, we applied a drought treatment (well-watered vs. drought) at early and late stages of plant growth, leading to four treatment combinations (well-watered in both early and late periods, WW; drought in the early period and well-watered in the late period, DW; well-watered in the early period and drought in the late period, WD; drought in both early and late periods, DD). We used the variance partitioning method to compare the contribution of organ (leaf and root) biomass allocation and morphology to the leaf area ratio, root length ratio and root area ratio, for the rhizomatous grass Leymus chinensis (Trin.) Tzvelev. KEY RESULTS Compared with the continuously well-watered treatment, the leaf area ratio, root length ratio and root area ratio showed increasing trends under various drought treatments. The contribution of leaf mass allocation to leaf area ratio differed among the drought treatments and was 2.1- to 5.3-fold greater than leaf morphology, and the contribution of root mass allocation to root length ratio was ~2-fold greater than that of root morphology. In contrast, root morphology contributed more to the root area ratio than biomass allocation under drought in both the early and late periods. There was a negative correlation between the ratio of leaf mass fraction to root mass fraction and the ratio of specific leaf area to specific root length (or specific root area). CONCLUSIONS This study suggested that organ biomass allocation drove a larger proportion of variation than morphological traits for the absorption of resources in this rhizomatous grass. These findings should help us understand the adaptive mechanisms of plants when they are confronted with drought stress.
Collapse
Affiliation(s)
- Yuheng Yang
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun 130024, China
| | - Yujie Shi
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun 130024, China
| | - Xiaowei Wei
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun 130024, China
| | - Jiayu Han
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun 130024, China
| | - Junfeng Wang
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun 130024, China
| | - Chunsheng Mu
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun 130024, China
| | - Jinwei Zhang
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
4
|
The effect of precipitation timing on phylogenetic and functional community structure in a semi-arid steppe. Oecologia 2023; 201:173-182. [PMID: 36512080 DOI: 10.1007/s00442-022-05298-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 11/08/2022] [Indexed: 12/14/2022]
Abstract
Changes in the amount and timing of precipitation may affect plant species coexistence. However, little is known about how these changes in precipitation structure plant communities. Here, we conducted a 6-year field precipitation manipulation experiment in the semi-arid steppe of Inner Mongolia, China, to assess the importance of species extinction and colonization in community assembly by incorporating information on phylogenetic and functional relatedness. Our results demonstrated that the decline in plant species richness under decreasing precipitation in the late and entire growing season could be attributed to a decrease in species colonization and an increase in species loss, respectively. The increase in species richness under increasing precipitation in the late growing season was mainly caused by increases in colonizing species. The loss of species that were more closely related to other residents under decreasing precipitation in the late growing season did not alter patterns of phylogenetic overdispersion, and the colonization of species that were more distantly related to residents under increasing precipitation in the late growing season shifted functional relatedness from clustering to randomness. Increasing precipitation may weaken the strength of environmental filtering induced by water stress in this semi-arid steppe and thus increase the probability of successful colonization of functionally dissimilar species relative to residents. Our study suggests that incorporating information on the functional and phylogenetic relatedness of locally lost resident species and the colonization of new species into analyses of community assembly processes can provide new insights into the general responses of plant communities to global change.
Collapse
|
5
|
Wang Y, Wang S, Zhao L, Liang C, Miao B, Zhang Q, Niu X, Ma W, Schmid B. Stability and asynchrony of local communities but less so diversity increase regional stability of Inner Mongolian grassland. eLife 2022; 11:74881. [PMID: 36206306 PMCID: PMC9545536 DOI: 10.7554/elife.74881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 08/26/2022] [Indexed: 01/10/2023] Open
Abstract
Extending knowledge on ecosystem stability to larger spatial scales is urgently needed because present local-scale studies are generally ineffective in guiding management and conservation decisions of an entire region with diverse plant communities. We investigated stability of plant productivity across spatial scales and hierarchical levels of organization and analyzed impacts of dominant species, species diversity, and climatic factors using a multisite survey of Inner Mongolian grassland. We found that regional stability across distant local communities was related to stability and asynchrony of local communities. Using only dominant instead of all-species dynamics explained regional stability almost equally well. The diversity of all or only dominant species had comparatively weak effects on stability and synchrony, whereas a lower mean and higher variation of precipitation destabilized regional and local communities by reducing population stability and synchronizing species dynamics. We demonstrate that, for semi-arid temperate grassland with highly uneven species abundances, the stability of regional communities is increased by stability and asynchrony of local communities and these are more affected by climate rather than species diversity. Reduced amounts and increased variation of precipitation in the future may compromise the sustainable provision of ecosystem services to human well-being in this region.
Collapse
Affiliation(s)
- Yonghui Wang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University
| | - Shaopeng Wang
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University
| | - Liqing Zhao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University
| | - Cunzhu Liang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University
| | - Bailing Miao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University
| | - Qing Zhang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University
| | - Xiaxia Niu
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University
| | - Wenhong Ma
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University
| | - Bernhard Schmid
- Department of Geography, Remote Sensing Laboratories, University of Zürich
| |
Collapse
|
6
|
Zhu Y, Shen H, Akinyemi DS, Zhang P, Feng Y, Zhao M, Kang J, Zhao X, Hu H, Fang J. Increased precipitation attenuates shrub encroachment by facilitating herbaceous growth in a Mongolian grassland. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yankun Zhu
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing China 100093
- University of Chinese Academy of Sciences Beijing China 100049
| | - Haihua Shen
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing China 100093
- University of Chinese Academy of Sciences Beijing China 100049
| | - Damilare Stephen Akinyemi
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing China 100093
- University of Chinese Academy of Sciences Beijing China 100049
| | - Pujin Zhang
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing China 100093
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences Hohhot Inner Mongolia China 010031
| | - Yinping Feng
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing China 100093
- University of Chinese Academy of Sciences Beijing China 100049
| | - Mengying Zhao
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing China 100093
- University of Chinese Academy of Sciences Beijing China 100049
| | - Jie Kang
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing China 100093
- University of Chinese Academy of Sciences Beijing China 100049
| | - Xia Zhao
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing China 100093
| | - Huifeng Hu
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing China 100093
| | - Jingyun Fang
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing China 100093
- University of Chinese Academy of Sciences Beijing China 100049
- Department of Ecology College of Urban and Environment, and Key Laboratory of Earth Surface Processes of the Ministry of Education Peking University Beijing China 100871
| |
Collapse
|
7
|
Zhong M, Liu C, Wang X, Hu W, Qiao N, Song H, Chen J, Miao Y, Wang G, Wang D, Yang Z. Belowground Root Competition Alters the Grass Seedling Establishment Response to Light by a Nitrogen Addition and Mowing Experiment in a Temperate Steppe. FRONTIERS IN PLANT SCIENCE 2022; 13:801343. [PMID: 35909790 PMCID: PMC9331913 DOI: 10.3389/fpls.2022.801343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 06/13/2022] [Indexed: 05/17/2023]
Abstract
Predicting species responses to climate change and land use practices requires understanding both the direct effects of environmental factors as well as the indirect effects mediated by changes in belowground and aboveground competition. Belowground root competition from surrounding vegetation and aboveground light competition are two important factors affecting seedling establishment. However, few studies have jointly examined the effect of belowground root and light competition on seedling establishment, especially under long-term nitrogen addition and mowing. Here, we examined how belowground root competition from surrounding vegetation and aboveground light competition affect seedling establishment within a long-term nitrogen addition and mowing experiment. Seedlings of two grasses (Stipa krylovii and Cleistogenes squarrosa) were grown with and without belowground root competition under control, nitrogen addition, and mowing treatments, and their growth characteristics were monitored. The seedlings of the two grasses achieved higher total biomass, height, mean shoot and root mass, but a lower root/shoot ratio in the absence than in the presence of belowground root competition. Nitrogen addition significantly decreased shoot biomass, root biomass, and the survival of the two grasses. Regression analyses revealed that the biomass of the two grass was strongly negatively correlated with net primary productivity under belowground root competition, but with the intercept photosynthetic active radiation in the absence of belowground root competition. This experiment demonstrates that belowground root competition can alter the grass seedling establishment response to light in a long-term nitrogen addition and mowing experiment.
Collapse
Affiliation(s)
- Mingxing Zhong
- Tourism College, Xinyang Normal University, Xinyang, China
- International Joint Research Laboratory of Global Change Ecology, School of Life Sciences, Henan University, Kaifeng, China
| | - Chun Liu
- Department of Ecology, Jinan University, Guangzhou, China
| | - Xiukang Wang
- College of Life Sciences, Yanan University, Yan'an, China
| | - Wei Hu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Ning Qiao
- International Joint Research Laboratory of Global Change Ecology, School of Life Sciences, Henan University, Kaifeng, China
| | - Hongquan Song
- College of Geography and Environmental Science, Henan University, Kaifeng, China
| | - Ji Chen
- Department of Agroecology, Aarhus University, Tjele, Denmark
| | - Yuan Miao
- International Joint Research Laboratory of Global Change Ecology, School of Life Sciences, Henan University, Kaifeng, China
| | - Gang Wang
- Laboratory of Resources and Applied Microbiology, School of Life Sciences, Henan University, Kaifeng, China
| | - Dong Wang
- International Joint Research Laboratory of Global Change Ecology, School of Life Sciences, Henan University, Kaifeng, China
- *Correspondence: Dong Wang
| | - Zhongling Yang
- International Joint Research Laboratory of Global Change Ecology, School of Life Sciences, Henan University, Kaifeng, China
- Zhongling Yang
| |
Collapse
|
8
|
Xu W, Deng X, Xu B, Palta JA, Chen Y. Soil Water Availability Changes in Amount and Timing Favor the Growth and Competitiveness of Grass Than a Co-dominant Legume in Their Mixtures. FRONTIERS IN PLANT SCIENCE 2021; 12:723839. [PMID: 34745160 PMCID: PMC8569297 DOI: 10.3389/fpls.2021.723839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
The grasslands on the semi-arid Loess Plateau of China are expected to be particularly responsive to the size and frequency changes of extreme precipitation events because their ecological processes are largely driven by distinct soil moisture pulses. However, the plant growth and competitiveness of co-dominant species in response to the changes in the amount and timing of soil water are still unclear. Thus, two co-dominant species, Bothriochloa ischaemum and Lespedeza davurica, were grown in seven mixture ratios under three watering regimes [80 ± 5% pot soil capacity (FC) (high watering), 60 ± 5% FC (moderate watering), and 40 ± 5% FC (low watering)] in a pot experiment. The soil water contents were rapidly improved from low to moderate water and from moderate to high water, respectively, at the heading, flowering, and maturity stages of B. ischaemum, and were maintained until the end of the growing season of each species. The biomass production of both species increased significantly with the increased soil water contents, particularly at the heading and flowering periods, with a more pronounced increase in B. ischaemum in the mixtures. The root/shoot ratio of both species was decreased when the soil water availability increased at the heading or flowering periods. The total biomass production, water use efficiency (WUE), and relative yield total (RYT) increased gradually with the increase of B. ischaemum in the mixtures. The relative competition intensity was below zero in B. ischaemum, and above zero in L. davurica. The competitive balance index calculated for B. ischaemum was increased with the increase of the soil water contents. Bothriochloa ischaemum responded more positively to the periodical increase in soil water availability than L. davurica, indicating that the abundance of B. ischaemum could increase in relatively wet seasons or plenty-rainfall periods. In addition, the mixture ratio of 10:2 (B. ischaemum to L. davurica) was the most compatible combination for the improved biomass production, WUE, and RYTs across all soil water treatments.
Collapse
Affiliation(s)
- Weizhou Xu
- College of Life Sciences, Yulin University, Yulin, China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
| | - Xiping Deng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
| | - Bingcheng Xu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
| | - Jairo A. Palta
- School of Agriculture and Environment, The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- CSIRO Agriculture and Food, Wembley, WA, Australia
| | - Yinglong Chen
- School of Agriculture and Environment, The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
9
|
Zhang J, Gao X, Zheng X, Yang Y, Fan G, Shi Y, Wang J, Mu C. A high stem to leaf ratio reduced rainfall use efficiency under altered rainfall patterns in a semi-arid grassland in northeast China. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:760-769. [PMID: 33915008 DOI: 10.1111/plb.13278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
Rainfall use efficiency (RUE) is crucial for understanding the changes in grassland productivity due to variations in future rainfall patterns. Recently, numerous studies have been conducted on the relationship between RUE and the amount of rainfall, but there has been little research on the influence of rainfall distribution and the interactive effect of rainfall amounts and distribution on RUE. Here, a simulated rainfall experiment was conducted to evaluate the impacts of rainfall amount (average rainfall amount (R0), 334 mm; decreased (R-) and increased (R+) rainfall amounts, 233 mm and 434 mm, respectively) and dry intervals (comprising 6-day, 9-day, 12-day, 15-day, 18-day and 21-day intervals between rainfall) on productivity and RUE in Leymus chinensis (Trin.) Tzvel., a dominant grass of the Eastern Eurasian Steppe. Our results showed that (1) for biomass production and RUE, moderate extension of dry intervals was conducive to enhancing total biomass production and RUE. The peak values of total biomass and RUE appeared during the 15-day interval for R-, and the 18-day interval for R0 and R+. (2) For biomass allocation, extension of dry intervals decreased the stem to leaf ratio (S/L) and the root to shoot ratio (R/S). (3) Further, the S/L ratio was significantly negatively correlated with RUE. These results suggest that variations in rainfall patterns can alter the RUE by changing the S/L ratio, and finally influence biomass production in L. chinensis. These findings have important implications for understanding and predicting the effect of future climate change on productivity in semi-arid grassland.
Collapse
Affiliation(s)
- J Zhang
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology, Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, 130024, China
| | - X Gao
- Meteorological Observatory of Jilin Province, Changchun Jilin Province, 130062, China
| | - X Zheng
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology, Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, 130024, China
| | - Y Yang
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology, Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, 130024, China
| | - G Fan
- Key Laboratory of Photobiology, Institute of botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Y Shi
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology, Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, 130024, China
| | - J Wang
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology, Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, 130024, China
| | - C Mu
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology, Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
10
|
Liu Y, Xu M, Li G, Wang M, Li Z, De Boeck HJ. Changes of Aboveground and Belowground Biomass Allocation in Four Dominant Grassland Species Across a Precipitation Gradient. FRONTIERS IN PLANT SCIENCE 2021; 12:650802. [PMID: 33927740 PMCID: PMC8076907 DOI: 10.3389/fpls.2021.650802] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Climate change is predicted to affect plant growth, but also the allocation of biomass to aboveground and belowground plant parts. To date, studies have mostly focused on aboveground biomass, while belowground biomass and allocation patterns have received less attention. We investigated changes in biomass allocation along a controlled gradient of precipitation in an experiment with four plant species (Leymus chinensis, Stipa grandis, Artemisia frigida, and Potentilla acaulis) dominant in Inner Mongolia steppe. Results showed that aboveground biomass, belowground biomass and total biomass all increased with increasing growing season precipitation, as expected in this water-limited ecosystem. Biomass allocation patterns also changed along the precipitation gradient, but significant variation between species was apparent. Specifically, the belowground biomass: aboveground biomass ratio (i.e., B:A ratio) of S. grandis was not impacted by precipitation amount, while B:A ratios of the other three species changed in different ways along the gradient. Some of these differences in allocation strategies may be related to morphological differences, specifically, the presence of rhizomes or stolons, though no consistent patterns emerged. Isometric partitioning, i.e., constant allocation of biomass aboveground and belowground, seemed to occur for one species (S. grandis), but not for the three rhizome or stolon-forming ones. Indeed, for these species, the slope of the allometric regression between log-transformed belowground biomass and log-transformed aboveground biomass significantly differed from 1.0 and B:A ratios changed along the precipitation gradient. As changes in biomass allocation can affect ecosystem functioning and services, our results can be used as a basis for further studies into allocation patterns, especially in a context of environmental change.
Collapse
Affiliation(s)
- Yongjie Liu
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Mingjie Xu
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Guoe Li
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Mingxia Wang
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Zhenqing Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hans J. De Boeck
- Plants and Ecosystems (PLECO), Department of Biology, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
11
|
Zhang J, Shen X, Mu B, Shi Y, Yang Y, Wu X, Mu C, Wang J. Moderately prolonged dry intervals between precipitation events promote production in Leymus chinensis in a semi-arid grassland of Northeast China. BMC PLANT BIOLOGY 2021; 21:147. [PMID: 33743593 PMCID: PMC7981859 DOI: 10.1186/s12870-021-02920-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Climate change is predicted to lead to changes in the amount and distribution of precipitation during the growing seasonal. This "repackaging" of rainfall could be particularly important for grassland productivity. Here, we designed a two-factor full factorial experiment (three levels of precipitation amount and six levels of dry intervals) to investigate the effect of precipitation patterns on biomass production in Leymus chinensis (Trin.) Tzvel. (a dominant species in the Eastern Eurasian Steppe). RESULTS Our results showed that increased amounts of rainfall with prolonged dry intervals promoted biomass production in L. chinensis by increasing soil moisture, except for the longest dry interval (21 days). However, prolonged dry intervals with increased amount of precipitation per event decreased the available soil nitrogen content, especially the soil NO3--N content. For small with more frequent rainfall events pattern, L. chinensis biomass decreased due to smaller plant size (plant height) and fewer ramets. Under large quantities of rain falling during a few events, the reduction in biomass was not only affected by decreasing plant individual size and lower ramet number but also by withering of aboveground parts, which resulted from both lower soil water content and lower NO3--N content. CONCLUSION Our study suggests that prolonged dry intervals between rainfall combined with large precipitation events will dramatically change grassland productivity in the future. For certain combinations of prolonged dry intervals and increased amounts of intervening rainfall, semi-arid grassland productivity may improve. However, this rainfall pattern may accelerate the loss of available soil nitrogen. Under extremely prolonged dry intervals, the periods between precipitation events exceeded the soil moisture recharge interval, the available soil moisture became fully depleted, and plant growth ceased. This implies that changes in the seasonal distribution of rainfall due to climate change could have a major impact on grassland productivity.
Collapse
Affiliation(s)
- Jinwei Zhang
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, School of Life Sciences, Northeast Normal University, Changchun, 130024, P.R. China
| | - Xiangjin Shen
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, P.R. China
| | - Bifan Mu
- School of Life Sciences, Northeast Normal University, Changchun, 130024, P.R. China
| | - Yujie Shi
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, School of Life Sciences, Northeast Normal University, Changchun, 130024, P.R. China
| | - Yuheng Yang
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, School of Life Sciences, Northeast Normal University, Changchun, 130024, P.R. China
| | - Xuefeng Wu
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, School of Life Sciences, Northeast Normal University, Changchun, 130024, P.R. China
| | - Chunsheng Mu
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, School of Life Sciences, Northeast Normal University, Changchun, 130024, P.R. China.
| | - Junfeng Wang
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, School of Life Sciences, Northeast Normal University, Changchun, 130024, P.R. China.
| |
Collapse
|
12
|
Li Y, Hou L, Yang L, Yue M. Transgenerational effect alters the interspecific competition between two dominant species in a temperate steppe. Ecol Evol 2021; 11:1175-1186. [PMID: 33598122 PMCID: PMC7863671 DOI: 10.1002/ece3.7066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/28/2020] [Accepted: 11/05/2020] [Indexed: 12/21/2022] Open
Abstract
One of the key aims of global change studies is to predict more accurately how plant community composition responds to future environmental changes. Although interspecific relationship is one of the most important forces structuring plant communities, it remains a challenge to integrate long-term consequences at the plant community level. As an increasing number of studies have shown that maternal environment affects offspring phenotypic plasticity as a response to global environment change through transgenerational effects, we speculated that the transgenerational effect would influence offspring competitive relationships. We conducted a 10-year field experiment and a greenhouse experiment in a temperate grassland in an Inner Mongolian grassland to examine the effects of maternal and immediate nitrogen addition (N) and increased precipitation (Pr) on offspring growth and the interspecific relationship between the two dominant species, Stipa krylovii and Artemisia frigida. According to our results, Stipa kryloii suppressed A. frigida growth and population development when they grew in mixture, although immediate N and Pr stimulated S. kryloii and A. frigida growth simultaneously. Maternal N and Pr declined S. krylovii dominance and decreased A. frigida competitive suppression to some extent. The transgenerational effect should further facilitate the coexistence of the two species under scenarios of increased nitrogen input and precipitation. If we predicted these species' interspecific relationships based only on immediate environmental effects, we would overestimate S. krylovii's competitive advantage and population development, and underestimate competitive outcome and population development of A. frigida. In conclusion, our results demonstrated that the transgenerational effect of maternal environment on offspring interspecific competition must be considered when evaluating population dynamics and community composition under the global change scenario.
Collapse
Affiliation(s)
- Yang Li
- Xi’an Botanical Garden of Shaanxi ProvinceInstitute of Botany of Shaanxi ProvinceXi’anChina
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical ResourcesXi’anChina
| | - Longyu Hou
- State Key Laboratory of Vegetation and Environmental ChangeInstitute of BotanyChinese Academy of SciencesBeijingChina
| | - Liuyi Yang
- State Key Laboratory of Vegetation and Environmental ChangeInstitute of BotanyChinese Academy of SciencesBeijingChina
| | - Ming Yue
- Xi’an Botanical Garden of Shaanxi ProvinceInstitute of Botany of Shaanxi ProvinceXi’anChina
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical ResourcesXi’anChina
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaNorthwest UniversityXi’anChina
| |
Collapse
|
13
|
Wang Y, Niu X, Zhao L, Liang C, Miao B, Zhang Q, Zhang J, Schmid B, Ma W. Biotic stability mechanisms in Inner Mongolian grassland. Proc Biol Sci 2020; 287:20200675. [PMID: 32486982 DOI: 10.1098/rspb.2020.0675] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Biotic mechanisms associated with species diversity are expected to stabilize communities in theoretical and experimental studies but may be difficult to detect in natural communities exposed to large environmental variation. We investigated biotic stability mechanisms in a multi-site study across Inner Mongolian grassland characterized by large spatial variations in species richness and composition and temporal fluctuations in precipitation. We used a new additive-partitioning method to separate species synchrony and population dynamics within communities into different species-abundance groups. Community stability was independent of species richness but was regulated by species synchrony and population dynamics, especially of abundant species. Precipitation fluctuations synchronized population dynamics within communities, reducing their stability. Our results indicate generality of biotic stability mechanisms in natural ecosystems and suggest that for accurate predictions of community stability in changing environments uneven species composition should be considered by partitioning stabilizing mechanisms into different species-abundance groups.
Collapse
Affiliation(s)
- Yonghui Wang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Xiaxia Niu
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Liqing Zhao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Cunzhu Liang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Bailing Miao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Qing Zhang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Jinghui Zhang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Bernhard Schmid
- Department of Geography, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Wenhong Ma
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, People's Republic of China
| |
Collapse
|
14
|
Zhong M, Song J, Zhou Z, Ru J, Zheng M, Li Y, Hui D, Wan S. Asymmetric responses of plant community structure and composition to precipitation variabilities in a semi-arid steppe. Oecologia 2019; 191:697-708. [PMID: 31578614 DOI: 10.1007/s00442-019-04520-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 09/23/2019] [Indexed: 10/25/2022]
Abstract
Changing precipitation regimes can profoundly affect plant growth in terrestrial ecosystems, especially in arid and semi-arid regions. However, how changing precipitation, especially extreme precipitation events, alters plant diversity and community composition is still poorly understood. A 3-year field manipulative experiment with seven precipitation treatments, including - 60%, - 40%, - 20%, 0% (as a control), + 20%, + 40%, and + 60% of ambient growing-season precipitation, was conducted in a semi-arid steppe in the Mongolian Plateau. Results showed total plant community cover and forb cover were enhanced with increased precipitation and reduced under decreased precipitation, whereas grass cover was suppressed under the - 60% treatment only. Plant community and grass species richness were reduced by the - 60% treatment only. Moreover, our results demonstrated that total plant community cover was more sensitive to decreased than increased precipitation under normal and extreme precipitation change, and species richness was more sensitive to decreased than increased precipitation under extreme precipitation change. The community composition and low field water holding capacity may drive this asymmetric response. Accumulated changes in community cover may eventually lead to changes in species richness. However, compared to control, Shannon-Weiner index (H) did not respond to any precipitation treatment, and Pielou's evenness index (E) was reduced under the + 60% treatment across the 3 year, but not in each year. Thus, the findings suggest that plant biodiversity in the semi-arid steppe may have a strong resistance to precipitation pattern changes through adjusting its composition in a short term.
Collapse
Affiliation(s)
- Mingxing Zhong
- International Joint Research Laboratory for Global Change Ecology, College of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Jian Song
- College of Life Science, Hebei University, Baoding, 071002, Hebei, China
| | - Zhenxing Zhou
- International Joint Research Laboratory for Global Change Ecology, College of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Jingyi Ru
- International Joint Research Laboratory for Global Change Ecology, College of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Mengmei Zheng
- International Joint Research Laboratory for Global Change Ecology, College of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Ying Li
- International Joint Research Laboratory for Global Change Ecology, College of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Dafeng Hui
- Department of Biological Sciences, Tennessee State University, Nashville, TN, 37209, USA
| | - Shiqiang Wan
- International Joint Research Laboratory for Global Change Ecology, College of Life Sciences, Henan University, Kaifeng, 475004, Henan, China. .,College of Life Science, Hebei University, Baoding, 071002, Hebei, China.
| |
Collapse
|
15
|
Zhang B, Cadotte MW, Chen S, Tan X, You C, Ren T, Chen M, Wang S, Li W, Chu C, Jiang L, Bai Y, Huang J, Han X. Plants alter their vertical root distribution rather than biomass allocation in response to changing precipitation. Ecology 2019; 100:e02828. [PMID: 31323118 DOI: 10.1002/ecy.2828] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 06/25/2019] [Indexed: 11/07/2022]
Abstract
Elucidating the variation of allocation pattern of ecosystem net primary productivity (NPP) and its underlying mechanisms is critically important for understanding the changes of aboveground and belowground ecosystem functions. Under optimal partitioning theory, plants should allocate more NPP to the organ that acquires the most limiting resource, and this expectation has been widely used to explain and predict NPP allocation under changing precipitation. However, confirmatory evidence for this theory has mostly come from observed spatial variation in the relationship between precipitation and NPP allocation across ecosystems, rather than directly from the influences of changing precipitation on NPP allocation within systems. We performed a 6-yr five-level precipitation manipulation experiment in a semiarid steppe to test whether changes in NPP allocation can be explained by the optimal partitioning theory, and how water requirement of plant community is maintained if NPP allocation is unaltered. The 30 precipitation levels (5 levels × 6 yr) were divided into dry, nominal, and wet precipitation ranges, relative to historical precipitation variation over the past six decades. We found that NPP in both aboveground (ANPP) and belowground (BNPP) increased nonlinearly as precipitation increased, while the allocation of NPP to BNPP (fBNPP ) showed a concave quadratic relationship with precipitation. The declined fBNPP as precipitation increased in the dry range supported the optimal partitioning theory. However, in the nominal range, NPP allocation was not influenced by the changed precipitation; instead, BNPP was distributed more in the surface soil horizon (0-10 cm) as precipitation increased, and conversely more in the deeper soil layers (10-30 cm) as precipitation decreased. This response in root foraging appears to be a strategy to satisfy plant water requirements and partially explains the stable NPP allocation patterns. Overall, our results suggest that plants can adjust their vertical BNPP distribution in response to drought stress, and that only under extreme drought does the optimal partitioning theory strictly apply, highlighting the context dependency of the adaption and growth of plants under changing precipitation.
Collapse
Affiliation(s)
- Bingwei Zhang
- Department of Ecology, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.,State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Marc W Cadotte
- Department of Biological Sciences, University of Toronto-Scarborough, Toronto, Ontario, M1C 1A4, Canada
| | - Shiping Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xingru Tan
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cuihai You
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tingting Ren
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minling Chen
- College of Chinese Language and Culture, Jinan University, Guangzhou, 510610, China
| | - Shanshan Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Weijing Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Chengjin Chu
- Department of Ecology, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Lin Jiang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| | - Yongfei Bai
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianhui Huang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xingguo Han
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|