1
|
Varadharajan V, Rajendran R, Muthuramalingam P, Runthala A, Madhesh V, Swaminathan G, Murugan P, Srinivasan H, Park Y, Shin H, Ramesh M. Multi-Omics Approaches Against Abiotic and Biotic Stress-A Review. PLANTS (BASEL, SWITZERLAND) 2025; 14:865. [PMID: 40265800 PMCID: PMC11944711 DOI: 10.3390/plants14060865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 04/24/2025]
Abstract
Plants face an array of environmental stresses, including both abiotic and biotic stresses. These stresses significantly impact plant lifespan and reduce agricultural crop productivity. Abiotic stresses, such as ultraviolet (UV) radiation, high and low temperatures, salinity, drought, floods, heavy metal toxicity, etc., contribute to widespread crop losses globally. On the other hand, biotic stresses, such as those caused by insects, fungi, and weeds, further exacerbate these challenges. These stressors can hinder plant systems at various levels, including molecular, cellular, and development processes. To overcome these challenges, multi-omics computational approaches offer a significant tool for characterizing the plant's biomolecular pool, which is crucial for maintaining homeostasis and signaling response to environmental changes. Integrating multiple layers of omics data, such as proteomics, metabolomics, ionomics, interactomics, and phenomics, simplifies the study of plant resistance mechanisms. This comprehensive approach enables the development of regulatory networks and pathway maps, identifying potential targets for improving resistance through genetic engineering or breeding strategies. This review highlights the valuable insights from integrating multi-omics approaches to unravel plant stress responses to both biotic and abiotic factors. By decoding gene regulation and transcriptional networks, these techniques reveal critical mechanisms underlying stress tolerance. Furthermore, the role of secondary metabolites in bio-based products in enhancing plant stress mitigation is discussed. Genome editing tools offer promising strategies for improving plant resilience, as evidenced by successful case studies combating various stressors. On the whole, this review extensively discusses an advanced multi-omics approach that aids in understanding the molecular basis of resistance and developing novel strategies to improve crops' or organisms' resilience to abiotic and biotic stresses.
Collapse
Affiliation(s)
| | - Radhika Rajendran
- Indian Council of Agricultural Research (ICAR), National Institute for Plant Biotechnology (NIPB), PUSA Campus, New Delhi 110012, India;
| | - Pandiyan Muthuramalingam
- Division of Horticultural Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52725, Republic of Korea;
- Department of GreenBio Science, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Ashish Runthala
- Department of Basic Sciences, School of Science and Humanities, SR University, Warangal 506371, India;
| | - Venkatesh Madhesh
- Department of Biotechnology, PSG College of Technology, Coimbatore 641004, India; (V.M.)
| | - Gowtham Swaminathan
- Department of Biotechnology, PSG College of Technology, Coimbatore 641004, India; (V.M.)
| | - Pooja Murugan
- Department of Biotechnology, PSG College of Technology, Coimbatore 641004, India; (V.M.)
| | - Harini Srinivasan
- Department of Biotechnology, PSG College of Technology, Coimbatore 641004, India; (V.M.)
| | - Yeonju Park
- Department of GreenBio Science, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Hyunsuk Shin
- Division of Horticultural Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52725, Republic of Korea;
- Department of GreenBio Science, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Manikandan Ramesh
- Department of Biotechnology, Alagappa University, Karaikudi 630003, India;
| |
Collapse
|
2
|
Herrera-Isidron L, Uribe-Lopez B, Barraza A, Cabrera-Ponce JL, Valencia-Lozano E. Analysis of Stress Response Genes in Microtuberization of Potato Solanum tuberosum L.: Contributions to Osmotic and Combined Abiotic Stress Tolerance. PLANTS (BASEL, SWITZERLAND) 2024; 13:2996. [PMID: 39519915 PMCID: PMC11548447 DOI: 10.3390/plants13212996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Wild Solanum species have contributed many introgressed genes during domestication into current cultivated potatoes, enhancing their biotic and abiotic stress resistance and facilitating global expansion. Abiotic stress negatively impacts potato physiology and productivity. Understanding the molecular mechanisms regulating tuber development may help solve this global problem. We made a transcriptomic analysis of potato microtuberization under darkness, cytokinins, and osmotic stress conditions. A protein-protein interaction (PPI) network analysis identified 404 genes with high confidence. These genes were involved in important processes like oxidative stress, carbon metabolism, sterol biosynthesis, starch and sucrose metabolism, fatty acid biosynthesis, and nucleosome assembly. From this network, we selected nine ancestral genes along with eight additional stress-related genes. We used qPCR to analyze the expression of the selected genes under osmotic, heat-osmotic, cold-osmotic, salt-osmotic, and combined-stress conditions. The principal component analysis (PCA) revealed that 60.61% of the genes analyzed were associated with osmotic, cold-osmotic, and heat-osmotic stress. Seven out of ten introgression/domestication genes showed the highest variance in the analysis. The genes H3.2 and GAPCP1 were involved in osmotic, cold-osmotic, and heat-osmotic stress. Under combined-all stress, TPI and RPL4 were significant, while in salt-osmotic stress conditions, ENO1, HSP70-8, and PER were significant. This indicates the importance of ancestral genes for potato survival during evolution. The targeted manipulation of these genes could improve combined-stress tolerance in potatoes, providing a genetic basis for enhancing crop resilience.
Collapse
Affiliation(s)
- Lisset Herrera-Isidron
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato (UPIIG), Instituto Politécnico Nacional, Av. Mineral de Valenciana 200, Puerto Interior, Silao de la Victoria 36275, Guanajuato, Mexico; (L.H.-I.); (B.U.-L.)
| | - Braulio Uribe-Lopez
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato (UPIIG), Instituto Politécnico Nacional, Av. Mineral de Valenciana 200, Puerto Interior, Silao de la Victoria 36275, Guanajuato, Mexico; (L.H.-I.); (B.U.-L.)
| | - Aaron Barraza
- CONAHCYT-Centro de Investigaciones Biológicas del Noreste, SC. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz 23096, Baja California Sur, Mexico;
| | - José Luis Cabrera-Ponce
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato 36824, Guanajuato, Mexico
| | - Eliana Valencia-Lozano
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato 36824, Guanajuato, Mexico
| |
Collapse
|
3
|
Thakur M, Verma R, Kumar D, Das PP, Dhalaria R, Kumar A, Kuca K, Azizov S, Kumar D. Revisiting the ethnomedicinal, ethnopharmacological, phytoconstituents and phytoremediation of the plant Solanum viarum Dunal. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5513-5531. [PMID: 38498057 DOI: 10.1007/s00210-024-03034-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/01/2024] [Indexed: 03/19/2024]
Abstract
Solanum viarum, a perennial shrub, belongs to the family Solanaceae known for its therapeutic value worldwide. As a beneficial remedial plant, it is used for treating several disorders like dysentery, diabetes, inflammation, and respiratory disorders. Phytochemistry studies of this plant have shown the presence of steroidal glycoside alkaloids, including solasonine, solasodine, and solamargine. It also has flavonoids, saponins, minerals, and other substances. S. viarum extracts and compounds possess a variety of pharmacological effects, including antipyretic, antioxidant, antibacterial, insecticidal, analgesic, and anticancer activity. Most of the heavy metals accumulate in the aerial sections of the plant which is considered a potential phytoremediation, a highly effective method for the treatment of metal-polluted soils. We emphasize the forgoing outline of S. viarum, as well as its ethnomedicinal and ethnopharmacological applications, the chemistry of its secondary metabolites, and heavy metal toxicity. In addition to describing the antitumor activity of compounds and their mechanisms of action isolated from S. viarum, liabilities are also explained and illustrated, including any significant chemical or metabolic stability and toxicity risks. A comprehensive list of information was compiled from Science Direct, PubMed, Google Scholar, and Web of Science using different key phrases (traditional use, ethnomedicinal plants, western Himalaya, Himachal Pradesh, S viarum, and biological activity). According to the findings of this study, we hope that this review will inspire further studies along the drug discovery pathway of the chemicals extracted from the plant of S. viarum. Further, this review shows that ethnopharmacological information from ethnomedicinal plants can be a promising approach to drug discovery for cancer and diabetes.
Collapse
Affiliation(s)
- Mehak Thakur
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India
| | - Rachna Verma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India.
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic.
| | - Dinesh Kumar
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India
| | - Priyanku Pradip Das
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Rajni Dhalaria
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India
| | - Ajay Kumar
- ICFRE-Himalayan Forest Research Institute, Shimla, Himachal Pradesh, 171013, India
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic
| | - Shavkatjon Azizov
- Faculty of Life Sciences, Pharmaceutical Technical University, 100084, Tashkent, Uzbekistan
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| |
Collapse
|
4
|
Kumari S, Nazir F, Maheshwari C, Kaur H, Gupta R, Siddique KHM, Khan MIR. Plant hormones and secondary metabolites under environmental stresses: Enlightening defense molecules. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108238. [PMID: 38064902 DOI: 10.1016/j.plaphy.2023.108238] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 02/15/2024]
Abstract
The climatic changes have great threats to sustainable agriculture and require efforts to ensure global food and nutritional security. In this regard, the plant strategic responses, including the induction of plant hormones/plant growth regulators (PGRs), play a substantial role in boosting plant immunity against environmental stress-induced adversities. In addition, secondary metabolites (SMs) have emerged as potential 'stress alleviators' that help plants to adapt against environmental stressors imposing detrimental impacts on plant health and survival. The introduction of SMs in plant biology has shed light on their beneficial effects in mitigating environmental crises. This review explores SMs-mediated plant defense responses and highlights the crosstalk between PGRs and SMs under diverse environmental stressors. In addition, genetic engineering approaches are discussed as a potential revenue to enhance plant hormone-mediated SM production in response to environmental cues. Thus, the present review aims to emphasize the significance of SMs implications with PGRs association and genetic approachability, which could aid in shaping the future strategies that favor agro-ecosystem compatibility under unpredictable environmental conditions.
Collapse
Affiliation(s)
- Sarika Kumari
- Department of Botany, Jamia Hamdard, New Delhi, India
| | - Faroza Nazir
- Department of Botany, Jamia Hamdard, New Delhi, India
| | - Chirag Maheshwari
- Biochemistry Division, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute (IARI), New Delhi, India
| | - Harmanjit Kaur
- Department of Botany, University of Allahabad, Prayagraj, Uttar Pradesh, India
| | - Ravi Gupta
- College of General Education, Kookmin University, Seoul, 02707, South Korea.
| | | | | |
Collapse
|
5
|
Ghitti E, Rolli E, Crotti E, Borin S. Flavonoids Are Intra- and Inter-Kingdom Modulator Signals. Microorganisms 2022; 10:microorganisms10122479. [PMID: 36557733 PMCID: PMC9781135 DOI: 10.3390/microorganisms10122479] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Flavonoids are a broad class of secondary metabolites with multifaceted functionalities for plant homeostasis and are involved in facing both biotic and abiotic stresses to sustain plant growth and health. Furthermore, they were discovered as mediators of plant networking with the surrounding environment, showing a surprising ability to perform as signaling compounds for a multitrophic inter-kingdom level of communication that influences the plant host at the phytobiome scale. Flavonoids orchestrate plant-neighboring plant allelopathic interactions, recruit beneficial bacteria and mycorrhizal fungi, counteract pathogen outbreak, influence soil microbiome and affect plant physiology to improve its resilience to fluctuating environmental conditions. This review focuses on the diversified spectrum of flavonoid functions in plants under a variety of stresses in the modulation of plant morphogenesis in response to environmental clues, as well as their role as inter-kingdom signaling molecules with micro- and macroorganisms. Regarding the latter, the review addresses flavonoids as key phytochemicals in the human diet, considering their abundance in fruits and edible plants. Recent evidence highlights their role as nutraceuticals, probiotics and as promising new drugs for the treatment of several pathologies.
Collapse
|
6
|
Shomali A, Das S, Arif N, Sarraf M, Zahra N, Yadav V, Aliniaeifard S, Chauhan DK, Hasanuzzaman M. Diverse Physiological Roles of Flavonoids in Plant Environmental Stress Responses and Tolerance. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11223158. [PMID: 36432887 PMCID: PMC9699315 DOI: 10.3390/plants11223158] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 05/27/2023]
Abstract
Flavonoids are characterized as the low molecular weight polyphenolic compounds universally distributed in planta. They are a chemically varied group of secondary metabolites with a broad range of biological activity. The increasing amount of evidence has demonstrated the various physiological functions of flavonoids in stress response. In this paper, we provide a brief introduction to flavonoids' biochemistry and biosynthesis. Then, we review the recent findings on the alternation of flavonoid content under different stress conditions to come up with an overall picture of the mechanism of involvement of flavonoids in plants' response to various abiotic stresses. The participation of flavonoids in antioxidant systems, flavonoid-mediated response to different abiotic stresses, the involvement of flavonoids in stress signaling networks, and the physiological response of plants under stress conditions are discussed in this review. Moreover, molecular and genetic approaches to tailoring flavonoid biosynthesis and regulation under abiotic stress are addressed in this review.
Collapse
Affiliation(s)
- Aida Shomali
- Photosynthesis Laboratory, Department of Horticulture, University of Tehran, Tehran 33916-53755, Iran
| | - Susmita Das
- Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Calcutta, Kolkata 700019, India
| | - Namira Arif
- D. D. Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Prayagraj 211002, India
- Faculty of Environmental Studies, Dehli School of Journalism, University of Delhi, Delhi 110007, India
| | - Mohammad Sarraf
- Department of Horticultural Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz 61357-43311, Iran
| | - Noreen Zahra
- Department of Botany, Government College for Women University, Faisalabad 38000, Pakistan
| | - Vaishali Yadav
- Department of Botany, Multanimal Modi College Modinagar, Ghaziabad 201204, India
| | - Sasan Aliniaeifard
- Photosynthesis Laboratory, Department of Horticulture, University of Tehran, Tehran 33916-53755, Iran
| | - Devendra Kumar Chauhan
- D. D. Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Prayagraj 211002, India
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh
| |
Collapse
|
7
|
Prasad A, Patel P, Niranjan A, Mishra A, Saxena G, Singh SS, Chakrabarty D. Biotic elicitor-induced changes in growth, antioxidative defense, and metabolites in an improved prickleless Solanum viarum. Appl Microbiol Biotechnol 2022; 106:6455-6469. [PMID: 36069926 DOI: 10.1007/s00253-022-12159-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022]
Abstract
Solanum viarum serves as a raw material for the steroidal drug industry due to its alkaloid and glycoalkaloid content. Elicitation is well-known for measuring the increase in the yield of bioactive compounds in in vitro cultures. The current study was performed for the accumulation of metabolites viz. solasodine, solanidine, and α-solanine in S. viarum culture using microbial-based elicitors added in 1%, 3%, 5%, and 7% on 25th and 35th day of culture period and harvested on 45th and 50th days of culture cycle. The treatment of 3% Trichoderma reesei and Bacillus tequilensis culture filtrate (CF) significantly increased biomass, alkaloids/glycoalkaloid content, and yield in S. viarum. T. reesei was found to be the best treatment for enhanced growth (GI = 11.65) and glycoalkaloid yield (2.54 mg DW plant-1) after the 50th day of the culture cycle when added on the 25th day. The abundance of gene transcripts involved in the biosynthesis of alkaloids/glycoalkaloids, revealed by quantitative real-time PCR expression analysis correlates with the accumulation of their respective metabolites in elicited plants. Biochemical analysis shows that elicited plants inhibited oxidative damage caused by reactive oxygen species by activating enzymes (superoxide dismutase and ascorbate peroxidase) as well as non-enzymatic antioxidant mechanisms (alkaloids, total phenols, total flavonoids, carotenoids, and proline). The findings of this study clearly demonstrate that the application of T. reesei and B. tequilensis CF at a specific dose and time significantly improve biomass as well as upregulates the metabolite biosynthetic pathway in an important medicinal plant- S. viarum. KEY POINTS: • Biotic elicitors stimulated the alkaloids/glycoalkaloid content in S. viarum plant cultures. • T. reesei was found to be most efficient for enhancing the growth and alkaloids content. • Elicited plants activate ROS based-defense mechanism to overcome oxidative damage.
Collapse
Affiliation(s)
- Archana Prasad
- Molecular Biology and Biotechnology Division, Council of Scientific & Industrial Research- National Botanical Research Institute, Lucknow, 226001, U.P., India
- Department of Botany, University of Lucknow, Lucknow, 226007, U.P., India
| | - Preeti Patel
- Molecular Biology and Biotechnology Division, Council of Scientific & Industrial Research- National Botanical Research Institute, Lucknow, 226001, U.P., India
- Department of Botany, Banaras Hindu University, Varanasi, 221005, U.P., India
| | - Abhishek Niranjan
- Central Instrumentation Facility, Council of Scientific & Industrial Research- National Botanical Research Institute, Lucknow, 226001, U.P., India
| | - Aradhana Mishra
- Division of Plant Microbe Interaction, Council of Scientific and Industrial Research- National Botanical ResearchInstitute, Lucknow, India
| | - Gauri Saxena
- Department of Botany, University of Lucknow, Lucknow, 226007, U.P., India
| | - Satya Shila Singh
- Department of Botany, Banaras Hindu University, Varanasi, 221005, U.P., India
| | - Debasis Chakrabarty
- Molecular Biology and Biotechnology Division, Council of Scientific & Industrial Research- National Botanical Research Institute, Lucknow, 226001, U.P., India.
| |
Collapse
|