1
|
Missimer TM, MacDonald JH, Tsegaye S, Thomas S, Teaf CM, Covert D, Kassis ZR. Natural Background and the Anthropogenic Enrichment of Mercury in the Southern Florida Environment: A Review with a Discussion on Public Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:118. [PMID: 38276812 PMCID: PMC10815244 DOI: 10.3390/ijerph21010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024]
Abstract
Mercury (Hg) is a toxic metal that is easily released into the atmosphere as a gas or a particulate. Since Hg has serious health impacts based on human exposure, it is a major concern where it accumulates. Southern Florida is a region of high Hg deposition in the United States. It has entered the southern Florida environment for over 56 MY. For the past 3000 to 8000 years, Hg has accumulated in the Everglades peatlands, where approximately 42.3 metric tons of Hg was deposited. The pre-industrial source of mercury that was deposited into the Everglades was from the atmosphere, consisting of combined Saharan dust and marine evasion. Drainage and the development of the Everglades for agriculture, and other mixed land uses have caused a 65.7% reduction in the quantity of peat, therefore releasing approximately 28 metric tons of Hg into the southern Florida environment over a period of approximately 133 years. Both natural and man-made fires have facilitated the Hg release. The current range in mercury release into the southern Florida environment lies between 994.9 and 1249 kg/yr. The largest source of Hg currently entering the Florida environment is from combined atmospheric sources, including Saharan dust, aerosols, sea spray, and ocean flux/evasion at 257.1-514.2 kg/yr. The remobilization of Hg from the Everglades peatlands and fires is approximately 215 kg/yr. Other large contributors include waste to energy incinerators (204.1 kg/yr), medical waste and crematory incinerators (159.7+ kg/yr), and cement plant stack discharge (150.6 kg/yr). Minor emissions include fuel emissions from motorized vehicles, gas emissions from landfills, asphalt plants, and possible others. No data are available on controlled fires in the Everglades in sugar farming, which is lumped with the overall peatland loss of Hg to the environment. Hg has impacted wildlife in southern Florida with recorded excess concentrations in fish, birds, and apex predators. This bioaccumulation of Hg in animals led to the adoption of regulations (total maximum loads) to reduce the impacts on wildlife and warnings were given to consumers to avoid the consumption of fish that are considered to be contaminated. The deposition of atmospheric Hg in southern Florida has not been studied sufficiently to ascertain where it has had the greatest impacts. Hg has been found to accumulate on willow tree leaves in a natural environment in one recent study. No significant studies of the potential impacts on human health have been conducted in southern Florida, which should be started based on the high rates of Hg fallout in rainfall and known recycling for organic sediments containing high concentrations of Hg.
Collapse
Affiliation(s)
- Thomas M. Missimer
- U. A. Whitaker College of Engineering, Florida Gulf Coast University, 10501 FGCU Boulevard South, Fort Myers, FL 33965-6565, USA;
| | - James H. MacDonald
- Environmental Geology Program & Honors College, Florida Gulf Coast University, 10501 FGCU Boulevard South, Fort Myers, FL 33965-6565, USA;
| | - Seneshaw Tsegaye
- Department of Bioengineering, Civil and Environmental Engineering, Florida Gulf Coast University, 10501 FGCU Boulevard South, Fort Myers, FL 33965-6565, USA;
| | - Serge Thomas
- Department of Ecology and Environmental Studies, Florida Gulf Coast University, 10501 FGCU Boulevard South, Fort Myers, FL 33965-6565, USA;
| | - Christopher M. Teaf
- Institute for Science & Public Affairs, Florida State University, Tallahassee, FL 32310, USA;
| | - Douglas Covert
- Hazardous Substance & Waste Management Research, 2976 Wellington Circle West, Tallahassee, FL 32309, USA;
| | - Zoie R. Kassis
- U. A. Whitaker College of Engineering, Florida Gulf Coast University, 10501 FGCU Boulevard South, Fort Myers, FL 33965-6565, USA;
| |
Collapse
|
2
|
Malcata Martins B, O'Driscoll NJ, Mallory ML, Canário J. A Review of Freshwater Invertebrates as Biomonitors of Methylmercury: the Importance of More Complete Physical and Chemical Reporting. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:801-808. [PMID: 34081149 DOI: 10.1007/s00128-021-03274-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
Methylmercury (MeHg) is a toxic and bioaccumulative organo-metallic compound that is naturally produced in many ecosystems. Organisms that occupy the lower trophic positions in food webs may be key factors in the assessment of MeHg biomagnification between ecosystems. Here we present a review of the peer-reviewed literature examining MeHg bioaccumulation in freshwater invertebrates, focused principally on insects. This review aims to characterize the invertebrates that bioaccumulate higher MeHg concentrations and therefore pose a higher risk to upper trophic levels and to clarify which ecosystems are more susceptible to bioaccumulation in lower trophic levels. However, we found that few studies provided robust environmental data (notably water chemistry) as part of their papers, dramatically limiting our ability to test for factors that might contribute to different concentrations of MeHg in invertebrates. We highlight the importance of providing physical and chemical characteristics of study sites in publications examining MeHg bioaccumulation and biomagnification. Adopting the proposed recommendations will improve the available information for future mercury risk assessment analyses.
Collapse
Affiliation(s)
- Beatriz Malcata Martins
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001, Lisboa, Portugal.
| | - Nelson J O'Driscoll
- Department of Earth and Environmental Science, K.C. Irving Environmental Science Center, Acadia University, Wolfville, NS, B4P 2R6, Canada
| | - Mark L Mallory
- Department of Biology, Acadia University, Wolfville, NS, B4P 2R6, Canada
| | - João Canário
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001, Lisboa, Portugal
| |
Collapse
|
3
|
Lim JH, Lee TG. Chemistry of the unusually high uptake and recovery of gas-phase Hg0 by TiO2 even under household fluorescent lights. CHEMICAL ENGINEERING JOURNAL ADVANCES 2021. [DOI: 10.1016/j.ceja.2021.100157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
4
|
Jonidi Jafari A, Esrafili A, Moradi Y, Mahmoudi N. Mercury level in biological samples of dentists in Iran: a systematic review and meta-analysis. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2020; 18:1655-1669. [PMID: 33312669 PMCID: PMC7721756 DOI: 10.1007/s40201-020-00558-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 09/29/2020] [Indexed: 05/09/2023]
Abstract
Exposure to mercury is an important risk to dentists health. The aim of the present study was to assess the pooled mean mercury level (MML) in the urine, blood, nail, and hair of Iranian dentists (IDs) through the meta-analysis technique. Comprehensive and systematic searches were performed in main local databases including SID, Magiran, Iran medex, and ISC as well as internationally available databases including Embase, PubMed and Scopus for all the relevant studies up to 2018. In order to prevent bias in this study and identify eligible studies, various steps of the study was performed independently by two researchers. Out of 13 studies in the meta-analysis process which included 1499 IDs, the mean of the mercury level in the urine, nail, and blood was estimated to be 6.29 (95% CI: 2.61-9.97, I-square: 62.7%, P: 0.006), 3.54 (95% CI: 2.81-4.28, I-square: 0.0%, P: 0.968), 11.20 (95% CI: 2.28-20.13, I-square: 59.9%, P: 0.082), respectively. The mean mercury level (MML) in the biological samples of IDs was higher than the standard of World Health Organization (WHO). So, in accordance with Article 10 of the European Union Regulations (EUR), in the context of the Minamata Convention (MC) on Dental Amalgam (DA), in order to avoid the dangers of mercury exposure in dentists, it is necessary for Iran and other countries to approve laws and to implement a national plan to reduce mercury levels and replace the appropriate materials.
Collapse
Affiliation(s)
- Ahmad Jonidi Jafari
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Esrafili
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Yousef Moradi
- Department of Epidemiology, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Norouz Mahmoudi
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
- Health Research Center, Life style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Sharma BM, Sáňka O, Kalina J, Scheringer M. An overview of worldwide and regional time trends in total mercury levels in human blood and breast milk from 1966 to 2015 and their associations with health effects. ENVIRONMENT INTERNATIONAL 2019; 125:300-319. [PMID: 30735961 DOI: 10.1016/j.envint.2018.12.016] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/07/2018] [Accepted: 12/08/2018] [Indexed: 05/10/2023]
Abstract
BACKGROUND Mercury is a pollutant of global concern. To protect human health and environment from mercury pollution, the Minamata Convention on mercury entered into force in 2017. OBJECTIVES To support a future effectiveness evaluation of the convention, this study assesses worldwide and regional time trends of total mercury levels in human blood and breast milk across different population sub-groups in the last half-century prior to entry-into-force of the Minamata Convention. This study also provides an overview of the epidemiological literature showing evidence of associations between mercury exposure (in terms of total mercury levels in whole blood, cord blood, and breast milk) and human health. METHODS We searched electronic databases to identify articles published prior to June 14, 2017 and reported total mercury levels in any of three biological matrices (whole blood, cord blood, or breast milk) and/or associations with human health. Temporal trends of total mercury levels in the selected biological matrices across different population sub-groups were estimated using a linear fit of the log-transformed data. In parallel, statistical methods were employed to assess any possible effect of sources of inhomogeneity (i.e. study and population characteristics such as age, sex, ethnicity, source of exposure, sampling period, and geographical region) in the collected studies. Furthermore, a summary of significant and relevant associations between mercury exposure and human health conditions in children and adults was prepared. FINDINGS We found significant declines in total mercury levels in whole blood, cord blood, and breast milk between 1966 and 2015. A regional overview of total mercury levels in whole blood, cord blood, and breast milk suggests the highest levels in South America, followed by Africa or Asia whereas the population groups from Europe or North America displayed the lowest levels of total mercury in the selected biological matrices. We observed conclusive consistent associations of mercury exposure with selected health conditions, especially neurodevelopment and neurotoxicity in children and adults. For several other health conditions, reported findings in the collected studies do not support conclusive associations. We also found that several studies demonstrated significant associations between mercury exposure below the USEPA reference level and various health conditions. CONCLUSIONS This study provides a worldwide and regional overview of trends in total mercury levels in human blood and breast milk and associated health risks prior to entry-into-force of the Minamata Convention and calls for further epidemiological investigations from across the globe to fully understand the health implications of mercury exposure.
Collapse
Affiliation(s)
- Brij Mohan Sharma
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, 62500 Brno, Czech Republic.
| | - Ondřej Sáňka
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, 62500 Brno, Czech Republic
| | - Jiří Kalina
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, 62500 Brno, Czech Republic
| | - Martin Scheringer
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, 62500 Brno, Czech Republic; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
6
|
Selin H, Keane SE, Wang S, Selin NE, Davis K, Bally D. Linking science and policy to support the implementation of the Minamata Convention on Mercury. AMBIO 2018; 47:198-215. [PMID: 29388129 PMCID: PMC5794682 DOI: 10.1007/s13280-017-1003-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The Minamata Convention on Mercury, with its objective to protect human health and the environment from the dangers of mercury (Hg), entered into force in 2017. The Convention outlines a life-cycle approach to the production, use, emissions, releases, handling, and disposal of Hg. As it moves into the implementation phase, scientific work and information are critically needed to support decision-making and management. This paper synthesizes existing knowledge and examines three areas in which researchers across the natural sciences, engineering, and social sciences can mobilize and disseminate knowledge in support of Hg abatement and the realization of the Convention's objective: (1) uses, emissions, and releases; (2) support, awareness raising, and education; and (3) impacts and effectiveness. The paper ends with a discussion of the future of Hg science and policy.
Collapse
Affiliation(s)
- Henrik Selin
- Frederick S Pardee School of Global Studies, Boston University, 154 Bay State Road, Boston, MA 02215 USA
| | - Susan Egan Keane
- Natural Resources Defense Council, 1152 15th St, NW, Suite 300, Washington, DC 20005 USA
| | - Shuxiao Wang
- School of Environment, Tsinghua University, Beijing, 100084 China
| | - Noelle E. Selin
- Institute for Data, Systems, and Society, and Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
| | - Kenneth Davis
- United Nations Environment Programme, Chemicals and Health Branch, International Environment House I, 11-13 chemin des Anemones, 1219 Geneva, Switzerland
| | - Dominique Bally
- African Center for Environmental Health, BP 826, Cidex 03 Abidjan, Côte d’Ivoire
| |
Collapse
|