1
|
Amine I, Guillien A, Bayat S, Lyon-Caen S, Ouidir M, Sabaredzovic A, Sakhi AK, Thomsen C, Valmary-Degano S, Philippat C, Siroux V. Early-life exposure to mixtures of endocrine-disrupting chemicals and a multi-domain health score in preschool children. ENVIRONMENTAL RESEARCH 2025; 272:121173. [PMID: 39988041 DOI: 10.1016/j.envres.2025.121173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/30/2025] [Accepted: 02/18/2025] [Indexed: 02/25/2025]
Abstract
BACKGROUND Early-life exposure to endocrine-disrupting chemicals, such as phenols and phthalates, is suspected to impact various dimensions of child health. Using a multi-outcome approach, this study aimed to estimate their cumulative effect on the child cardiometabolic, respiratory and neurodevelopmental health. METHODS In 373 children of 3 years old from the SEPAGES cohort, a multi-domain health score was built from twenty-three health parameters. Fourteen metabolites of parabens, phenols, and phthalate/DINCH were measured several times during pregnancy (trimester 2 and 3) and infancy (2 and 12 months of age). Two mixture models, quantile g computation (q-gcomp) and Bayesian Kernel Machine Regression (BKMR), estimated associations between increased concentration of parabens, phenols, and phthalates/DINCH and the child health score. RESULTS Q-gcomp showed that the paraben mixture and the phthalate mixture were associated with a poorer health score (β = -0.11, 95% Confidence Interval (CI): -0.22, 0.00; β = -0.14, 95% CI: -0.27, -0.01, respectively), while no significant association was found for the mixture of phenols (β = -0.06, 95% CI: -0.18, 0.06). A trend for an association was observed between the whole mixture (parabens, phenols and phthalates combined) with a poorer health score (β = -0.14, 95% CI: -0.32, 0.04). Similar patterns of association, while subject to large uncertainty, have been observed with BKMR. DISCUSSION This study provides further evidence for the adverse health effects of early-life exposure to parabens and phthalates. Based on their potential impact on multiple areas of child health, public health policies targeting these chemical compounds are recommended.
Collapse
Affiliation(s)
- Ines Amine
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, 38700, La Tronche, France
| | - Alicia Guillien
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, 38700, La Tronche, France
| | - Sam Bayat
- Department of Pulmonology and Physiology, CHU Grenoble Alpes, Grenoble, France
| | - Sarah Lyon-Caen
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, 38700, La Tronche, France
| | - Marion Ouidir
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, 38700, La Tronche, France
| | - Azemira Sabaredzovic
- Department of Food Safety, Norwegian Institute of Public Health, 0213, Oslo, Norway
| | - Amrit K Sakhi
- Department of Food Safety, Norwegian Institute of Public Health, 0213, Oslo, Norway
| | - Cathrine Thomsen
- Department of Food Safety, Norwegian Institute of Public Health, 0213, Oslo, Norway
| | - Séverine Valmary-Degano
- BB-0033-00069 Biobank, Univ. Grenoble Alpes, Inserm U1209, CNRS UMR5309, Institute for Advanced Biosciences, CHU Grenoble-Alpes, F-38000, Grenoble, France
| | - Claire Philippat
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, 38700, La Tronche, France
| | - Valérie Siroux
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, 38700, La Tronche, France
| |
Collapse
|
2
|
Blaauwendraad SM, Boxem AJ, Gaillard R, Kahn LG, Lakuleswaran M, Sakhi AK, Bekkers EL, Mo Z, Spadacini L, Thomsen C, Steegers EA, Mulders AG, Jaddoe VW, Trasande L. Periconception bisphenol and phthalate concentrations in women and men, time to pregnancy, and risk of miscarriage. ENVIRONMENTAL RESEARCH 2025; 278:121712. [PMID: 40311909 DOI: 10.1016/j.envres.2025.121712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 04/24/2025] [Accepted: 04/25/2025] [Indexed: 05/03/2025]
Abstract
BACKGROUND Exposure to endocrine-disrupting chemicals such as bisphenols and phthalates might lead to adverse fertility and early pregnancy outcomes. METHODS This study was embedded in the Generation R Next Study, a population-based cohort study from preconception onwards. Urinary phthalate and bisphenol concentrations were assessed in the preconception period (938 women), defined as the period in which couples were actively trying to conceive, and early pregnancy (1,366 women and 1,202 men, mean gestational age at sampling 8·6 weeks). Time to pregnancy and miscarriage were assessed using questionnaires and ultrasounds. Subfertility was defined as the inability to conceive within 12 months or need for assisted reproductive technologies. FINDINGS Higher preconception urinary bisphenol S (BPS) and cyclohexane-1,2-dicarboxylic acid-monocarboxy isooctyl ester (mCOCH) concentrations in women were associated with longer time to pregnancy. Higher preconception mono-[(2-carboxymethyl)hexyl] phthalate, mono-2-ethyl-5-oxohexyl phthalate (mEOHP), mono-(7-carboxy-n-heptyl)phthalate (mCHpP), and mono benzyl phthalate (mBzBP) were associated with shorter time to pregnancy, and higher mono-2-ethyl-5-hydroxyhexyl phthalate (mEHHP), mEOHP, and mBzBP with lower odds of subfertility. In men, higher early pregnancy BPS, mCHpP, mono-4-methyl-7-hydroxyoctyl phthalate, mono-4-methyl-7-oxooctyl phthalate, and mono-ethyl phthalate were associated with shorter time to pregnancy or lower odds of subfertility. Higher preconception or early pregnancy BPS, phthalic acid, and mCHpP in women were associated with lower odds of miscarriage, whereas higher mono-carboxy-isoctyl phthalate, mCOCH, and mono-2-(propyl-6-carboxy-hexyl)-phthalate (cxmPHxP) with higher odds of miscarriage (all p-values <0·05). INTERPRETATION Preconception and early pregnancy exposure to bisphenols and phthalates may affect couple fertility. Our results should be considered as hypothesis generating and replicated in future studies, possibly including repeated chemical measurements and mixture analysis.
Collapse
Affiliation(s)
- Sophia M Blaauwendraad
- The Generation R Study Group, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands.
| | - Aline J Boxem
- The Generation R Study Group, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Romy Gaillard
- The Generation R Study Group, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Linda G Kahn
- Departments of Pediatrics and Population Health, New York University School of Medicine, New York, NY, United States
| | - Mathusa Lakuleswaran
- Departments of Pediatrics and Population Health, New York University School of Medicine, New York, NY, United States
| | - Amrit Kaur Sakhi
- Department of Food Safety, Norwegian Institute of Public Health, Norway
| | - Eline L Bekkers
- The Generation R Study Group, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Zixuan Mo
- Departments of Pediatrics and Environmental Medicine, New York University School of Medicine, New York, NY, United States
| | - Larry Spadacini
- Departments of Pediatrics and Environmental Medicine, New York University School of Medicine, New York, NY, United States
| | - Cathrine Thomsen
- Department of Food Safety, Norwegian Institute of Public Health, Norway
| | - Eric Ap Steegers
- Department of Obstetrics and Gynecology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Annemarie Gmgj Mulders
- Department of Obstetrics and Gynecology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Vincent Wv Jaddoe
- The Generation R Study Group, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Leonardo Trasande
- Departments of Pediatrics and Environmental Medicine, New York University School of Medicine, New York, NY, United States; New York University Wagner School of Public Service, New York City, NY, United States
| |
Collapse
|
3
|
Fabbri L, Robinson O, Basagaña X, Chatzi L, Gražulevičienė R, Guxens M, Kadawathagedara M, Sakhi AK, Maitre L, McEachan R, Philippat C, Pozo ÓJ, Thomsen C, Wright J, Yang T, Vrijheid M. Childhood exposure to non-persistent endocrine disruptors, glucocorticosteroids, and attentional function: A cross-sectional study based on the parametric g-formula. ENVIRONMENTAL RESEARCH 2025; 264:120413. [PMID: 39577729 DOI: 10.1016/j.envres.2024.120413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/31/2024] [Accepted: 11/20/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND Evidence suggests that endocrine disrupting chemicals (EDCs) may perturb the hypothalamic-pituitary-adrenocortical (HPA) axis, which has a major role in brain development. We aimed to evaluate the effects of childhood exposure to organophosphate pesticides, phenols, and phthalate metabolites, on urinary glucocorticosteroids and inattention in childhood. METHODS We used data from the Human Early-Life Exposome (HELIX) cohort (2013-2016) and the parametric g-formula to estimate associations between EDCs, glucocorticosteroids, and hit reaction time standard error (HRT-SE), a measure of inattention, and tested for possible effect modification by sex. RESULTS We observed a positive marginal contrast (MC) for exposure increases from the 10th to the 90th percentile for methyl-paraben (MC: 0.042 and 95% confidence interval (CI): (0.013, 0.071)), and the phthalate metabolites oxo-MiNP (MC: 0.023 and 95% CI: (0.003, 0.044)), oh-MiNP (MC: 0.039 and 95% CI: (0.001, 0.076)), and MEHP (MC: 0.036 and 95% CI: (0.008, 0.063)), on HRT-SE, indicating lower attention. Several EDCs were also associated with a positive MC for cortisone, cortisol, and corticosterone production. Increased levels of the glucocorticosteroids were not associated with HRT-SE, although we found a possible effect modification by sex. CONCLUSIONS Our results suggest that multiple EDCs might interfere with inattention and with the homeostasis of the HPA axis.
Collapse
Affiliation(s)
- Lorenzo Fabbri
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Oliver Robinson
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Xavier Basagaña
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Leda Chatzi
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Mònica Guxens
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center - Sophia Children's Hospital, Rotterdam, Netherlands; ICREA, Barcelona, Spain
| | - Manik Kadawathagedara
- Centre for Research in Epidemiology and Statistics, Equipe EAROH, Université Paris Cité, Université Sorbonne Paris Nord, Île-de-France, France
| | - Amrit Kaur Sakhi
- Department of Food Safety, Norwegian Institute of Public Health, Oslo, Norway
| | - Léa Maitre
- ISGlobal, Barcelona, Spain; Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Rosemary McEachan
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Claire Philippat
- University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Team of Environmental Epidemiology applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Óscar J Pozo
- Hospital del Mar Research Institute, Barcelona, Spain
| | - Cathrine Thomsen
- Department of Food Safety, Norwegian Institute of Public Health, Oslo, Norway
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Tiffany Yang
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
4
|
Pacyga DC, Jolly L, Whalen J, Calafat AM, Braun JM, Schantz SL, Strakovsky RS. Exploring diet as a source of plasticizers in pregnancy and implications for maternal second-trimester metabolic health. ENVIRONMENTAL RESEARCH 2024; 263:120198. [PMID: 39427938 DOI: 10.1016/j.envres.2024.120198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND AND OBJECTIVES Diet plays critical roles in modulating maternal metabolic health in pregnancy, but is also a source of metabolic-disrupting phthalates and their replacements. We aimed to evaluate whether the effects of better diet quality on favorable maternal metabolic outcomes could be partially explained by lower exposure to phthalates/replacements. METHODS At 13 weeks gestation, 295 Illinois women (enrolled 2015-2018) completed a three-month food frequency questionnaire that we used to calculate the Alternative Healthy Eating Index (AHEI)-2010 to assess diet quality. We quantified 19 metabolites, reflecting exposure to 10 phthalates/replacements, in a pool of five first-morning urine samples collected monthly across pregnancy. We measured 15 metabolic biomarkers in fasting plasma samples collected at 17 weeks gestation, which we reduced to five uncorrelated principal components (PCs), representing adiposity, lipids, cholesterol, inflammation, and growth. We used linear regression to estimate associations of diet quality with [1] phthalates/replacements and [2] metabolic PCs, as well as [3] associations of phthalates/replacements with metabolic PCs. We estimated the proportion of associations between diet quality and metabolic outcomes explained by phthalates/replacements using a causal mediation framework. RESULTS Overall, every 10-point improvement in AHEI-2010 score was associated with -0.15 (95% CI: -0.27, -0.04) lower adiposity scores, reflecting lower glucose, insulin, C-peptide, leptin, C-reactive protein, but higher adiponectin biomarker levels. Every 10-point increase in diet quality was also associated with 18% (95%CI: 7%, 28%) lower sum of di-2-ethylhexyl terephthalate urinary metabolites (∑DEHTP). Correspondingly, each 18% increase in ∑DEHTP was associated with 0.03 point (95% CI: 0.01, 0.05) higher adiposity PC scores. In mediation analyses, 21% of the inverse relationship between diet quality and adiposity PC scores was explained by lower ∑DEHTP. CONCLUSIONS The favorable impact of diet quality on maternal adiposity biomarkers may be partially attributed to lower metabolite concentrations of DEHTP, a plasticizer allowed to be used in food packaging materials.
Collapse
Affiliation(s)
- Diana C Pacyga
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA; Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Luca Jolly
- Lyman Briggs College, Michigan State University, East Lansing, MI, USA; Honors College, Michigan State University, East Lansing, MI, USA
| | - Jason Whalen
- Michigan Diabetes Research Center Chemistry Laboratory, University of Michigan, Ann Arbor, MI, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, RI, USA
| | - Susan L Schantz
- The Beckman Institute, University of Illinois, Urbana-Champaign, IL, USA; Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, IL, USA
| | - Rita S Strakovsky
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
5
|
Sdougkou K, Papazian S, Bonnefille B, Xie H, Edfors F, Fagerberg L, Uhlén M, Bergström G, Martin LJ, Martin JW. Longitudinal Exposomics in a Multiomic Wellness Cohort Reveals Distinctive and Dynamic Environmental Chemical Mixtures in Blood. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16302-16315. [PMID: 39236221 PMCID: PMC11411717 DOI: 10.1021/acs.est.4c05235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Chemical exposomes can now be comprehensively measured in human blood, but knowledge of their variability and longitudinal stability is required for robust application in cohort studies. Here, we applied high-resolution chemical exposomics to plasma of 46 adults, each sampled 6 times over 2 years in a multiomic cohort, resulting in 276 individual exposomes. In addition to quantitative analysis of 83 priority target analytes, we discovered and semiquantified substances that have rarely or never been reported in humans, including personal care products, pesticide transformation products, and polymer additives. Hierarchical cluster analysis for 519 confidently annotated substances revealed unique and distinctive coexposures, including clustered pesticides, poly(ethylene glycols), chlorinated phenols, or natural substances from tea and coffee; interactive heatmaps were publicly deposited to support open exploration of the complex (meta)data. Intraclass correlation coefficients (ICC) for all annotated substances demonstrated the relatively low stability of the exposome compared to that of proteome, microbiome, and endogenous small molecules. Implications are that the chemical exposome must be measured more frequently than other omics in longitudinal studies and four longitudinal exposure types are defined that can be considered in study design. In this small cohort, mixed-effect models nevertheless revealed significant associations between testosterone and perfluoroalkyl substances, demonstrating great potential for longitudinal exposomics in precision health research.
Collapse
Affiliation(s)
- Kalliroi Sdougkou
- Department of Environmental Science, Stockholm University, Stockholm 106 91, Sweden
| | - Stefano Papazian
- Department of Environmental Science, Stockholm University, Stockholm 106 91, Sweden
- National Facility for Exposomics, Metabolomics Platform, Science for Life Laboratory, Stockholm University, Solna 171 65, Sweden
| | - Bénilde Bonnefille
- Department of Environmental Science, Stockholm University, Stockholm 106 91, Sweden
- National Facility for Exposomics, Metabolomics Platform, Science for Life Laboratory, Stockholm University, Solna 171 65, Sweden
| | - Hongyu Xie
- Department of Environmental Science, Stockholm University, Stockholm 106 91, Sweden
| | - Fredrik Edfors
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm 100 44, Sweden
| | - Linn Fagerberg
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm 100 44, Sweden
| | - Mathias Uhlén
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm 100 44, Sweden
| | - Göran Bergström
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg 40530, Sweden
- Department of Clinical Physiology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg 413 45, Sweden
| | | | - Jonathan W Martin
- Department of Environmental Science, Stockholm University, Stockholm 106 91, Sweden
- National Facility for Exposomics, Metabolomics Platform, Science for Life Laboratory, Stockholm University, Solna 171 65, Sweden
| |
Collapse
|
6
|
Liu J, Song J, Li Y, Gao D, Ma Q, Song X, Jiang J, Zhang Y, Wang R, Dong Z, Chen L, Qin Y, Yuan W, Guo T, Song Z, Dong Y, Zou Z, Ma J. Geneenvironment interaction between phthalate exposure and pubertal genetic polymorphisms on blood pressure variability in children: Exploring the moderating effects of lifestyle behaviours. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116966. [PMID: 39216218 DOI: 10.1016/j.ecoenv.2024.116966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Phthalates (PAEs) are synthetic compounds extensively employed in consumer products. Blood pressure (BP) in children can vary, the degree of visit-to-visit BP variability (VVV) is at least partially independent of BP. The interactions between PAEs exposure, pubertal-related genetic susceptibility and lifestyles on childhood VVV are not investigated. This study utilized data from a cohort collected from Oct 2017-2020 in Xiamen, China. Seven urine PAE metabolites were measured. The long-term VVV was characterized employing the standard deviation (SD) and average real variability. We constructed a genetic risk score (GRS) of pubertal-related genes and healthy lifestyle scores. Exposed to high levels of mono-2-ethyl-5-hydroxyhexyl phthalate (MEHHP) (OR=1.43, 95 %CI=1.07, 1.92) and mono-2-ethyl-5-oxohexyl phthalate (OR=1.36, 95 % CI=1.01, 1.83) was related to increased SBP-SD, and the OR for high SBP-SD related to high GRS was 1.38 (95 % CI=1.02, 1.85). Compared to participants who had low GRS and low MEHHP exposure, participants exhibiting high GRS and MEHHP levels were more likely to experience high SBP-SD (OR=2.00, P<0.05). Individuals exhibiting low GRS, low MEHHP levels, and adhering to healthy lifestyles were associated with the least probability of experiencing high SBP-SD (OR=0.31, P<0.05). Increased PAEs exposure could elevate childhood systolic VVV, and exacerbated the adverse impact of pubertal-related genetic susceptibility on the high VVV of SBP; however, healthy lifestyles might alleviate these adverse effects. Promoting healthy lifestyles and reducing PAEs exposure for preventing elevated BP variability among children is important, especially for individuals with greater genetic susceptibility to early pubertal onset. ENVIRONMENTAL IMPLICATION: Blood pressure (BP) in children can vary, as a noninvasive, inexpensive and applicable method, the extent of visit-to-visit variability (VVV) is at least partially independent of BP. The interactions between phthalates (PAEs) exposure, variants of puberty-related genes and lifestyles on VVV are not investigated. Increased childhood systolic VVV might be associated with PAEs exposure, with the associations more pronounced combined with pubertal genetic susceptibility. Yet, healthy habits could partly eliminate such adverse effects. Our study underscores the importance of advocating for healthy lifestyles and reducing exposure to PAEs, especially among individuals with high genetic susceptibility to early puberty onset.
Collapse
Affiliation(s)
- Jieyu Liu
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Jieyun Song
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Yanhui Li
- School of Nursing, Peking University, Beijing, China
| | - Di Gao
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Qi Ma
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Xinli Song
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Jianuo Jiang
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Yi Zhang
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Ruolin Wang
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Ziqi Dong
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Li Chen
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Yang Qin
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Wen Yuan
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Tongjun Guo
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Zhiying Song
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Yanhui Dong
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China.
| | - Zhiyong Zou
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China.
| | - Jun Ma
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| |
Collapse
|
7
|
Chen LW, Mo HY, Shan CH, Chen X, Han C, Tao FB, Gao H. Health hazards of preconception phthalate exposure: A scoping review of epidemiology studies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116763. [PMID: 39047367 DOI: 10.1016/j.ecoenv.2024.116763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
There is a close relationship between preconception health and maternal and child health outcomes, and the consequences may be passed down from generation to generation. In 2018, Lancet published three consecutive articles emphasizing the importance of the preconception period. Phthalic acid ester (PAE) exposure during this period may affect gametogenesis and epigenetic information in gametophytes, thereby affecting embryonic development and offspring health. Therefore, this article reviews the effects of parental preconception PAE exposure on reproductive/birth outcomes and offspring health, to provide new evidence on this topic. We searched Web of Science, MEDLINE (through PubMed), the China National Knowledge Infrastructure (CNKI), ScienceDirect, and the VIP Journal Library from the date of database establishment to July 3, 2024. Finally, 12 articles were included. Three studies investigated the health hazards (effects on birth weight, abortion, etc.) of women's preconception PAE exposure. Nine studies involved both parents. Nine studies considered the impacts of PAE preconception exposure on reproductive/birth outcomes, focusing on birth weight, pregnancy loss, preterm birth, embryo quality, and placental weight. Three studies considered the impacts of preconception PAE exposure on offspring behavior. The results of this review suggested that parental preconception PAE exposure may have an impact on reproductive/birth outcomes and offspring behavior, including birth weight, child behavior, and dietary behavior. However, studies on the health hazards of preconception PAE exposure are relatively scarce, and the outcomes of current studies are varied. It is necessary to use systematic reviews to verify an accurate research question to provide recommendations for public health policy making.
Collapse
Affiliation(s)
- Li-Wen Chen
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, Anhui 230022, China
| | - Hua-Yan Mo
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, Anhui 230022, China
| | - Chun-Han Shan
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, Anhui 230022, China
| | - Xin Chen
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, Anhui 230022, China
| | - Chen Han
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, Anhui 230022, China
| | - Fang-Biao Tao
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, Anhui 230032, China.
| | - Hui Gao
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, Anhui 230022, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, Anhui 230032, China.
| |
Collapse
|
8
|
Hansel MC, Rosenberg AM, Kinkade CW, Capurro C, Rivera-Núñez Z, Barrett ES. Exposure to Synthetic Endocrine-Disrupting Chemicals in Relation to Maternal and Fetal Sex Steroid Hormones: A Scoping Review. Curr Environ Health Rep 2024; 11:356-379. [PMID: 39037689 PMCID: PMC11324767 DOI: 10.1007/s40572-024-00455-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 07/23/2024]
Abstract
PURPOSE OF REVIEW Many synthetic endocrine-disrupting chemicals (EDCs) are ubiquitous in the environment and highly detected among pregnant people. These chemicals may disrupt maternal and/or fetal sex steroid hormones, which are critical to pregnancy maintenance and fetal development. Here, we review the epidemiological literature examining prenatal exposure to common synthetic EDCs in relation to maternal and fetal sex steroid hormones. RECENT FINDINGS We performed a literature search using PubMed, SCOPUS, and Embase, ultimately identifying 29 articles for full review. Phenols, parabens, and persistent organic pollutants generally showed inverse associations with androgens, estrogens, and progesterone. Phthalates and per-and polyfluoroalkyl substances tended to be inversely associated with progesterone, while evidence regarding androgens and estrogens was mixed. Inconsistent, but noteworthy, differences by fetal sex and timing of exposure/outcome were observed. Overall, the literature suggests EDCs may disrupt maternal and fetal sex steroid activity, though findings are mixed. Given the pervasive, high-volume production of these synthetic chemicals and the critical functions sex steroid hormones play during gestation, additional research is warranted.
Collapse
Affiliation(s)
- Megan C Hansel
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
| | - Abigail M Rosenberg
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, 601 Elmwood Ave., Rochester, NY, 14642, USA
| | - Carolyn W Kinkade
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA
| | - Camila Capurro
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
| | - Zorimar Rivera-Núñez
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA
| | - Emily S Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA.
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, 601 Elmwood Ave., Rochester, NY, 14642, USA.
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA.
| |
Collapse
|
9
|
Morimoto N, Nishihama Y, Onishi K, Nakayama SF. Association between blood lipid levels in early pregnancy and urinary organophosphate metabolites in the Japan Environment and Children's Study. ENVIRONMENT INTERNATIONAL 2024; 190:108932. [PMID: 39128375 DOI: 10.1016/j.envint.2024.108932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/22/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND High low-density lipoprotein cholesterol levels (LDL-C) during pregnancy have been associated with adverse pregnancy and offspring outcomes. While previous studies have suggested a potential link between organophosphate pesticide (OPP) exposure and higher LDL-C in the general population and agricultural workers, the relationship in pregnant women and the effect of body mass index on this relationship remain unclear. We examined the association between the urinary concentrations of OPP metabolites (dialkylphosphates) and blood lipid levels in pregnant women. METHODS We used data from the Japan Environment and Children's Study, which included 5,169 pregnant women with urinary dialkylphosphate data. We examined the association between urinary concentrations of six dialkylphosphates (DEP, DETP, DEDTP, DMP, DMTP, DMDTP) and blood lipid levels (LDL-C, total cholesterol, high-density lipoprotein cholesterol, and triglycerides) during the first trimester using multiple linear regression under a Bayesian paradigm. We examined the association between high LDL-C, defined as ≥90th percentile of LDL-C, and urinary dialkylphosphate concentrations, using multiple logistic regression under a Bayesian paradigm. These analyses were repeated in underweight, normal-weight, and overweight participants. RESULTS DEP, DMP, and DMTP were detected in >50 % of the participants. Multiple linear regression analyses did not show associations between LDL-C and these dialkylphosphates. Stratified analyses showed a positive association between DEP and LDL-C in overweight women (beta coefficient = 2.13, 95 % credible interval = 0.86-3.38, probability of direction (PD) = 100 %); however, the association was not significant (percentage in region of practical equivalence (% in ROPE) = 84.0). Higher DEP was significantly associated with high LDL-C (odds ratio = 1.32, 95 % credible interval = 1.13-1.55, PD = 100 %, % in ROPE = 0.2). CONCLUSIONS Among overweight pregnant women in the first trimester, higher urinary DEP concentrations were associated with high LDL-C. The effects of OPP on blood lipid profiles merit further investigation.
Collapse
Affiliation(s)
- Nobuhisa Morimoto
- Japan Environment and Children's Study Programme Office, National Institute for Environmental Studies, Ibaraki, Japan; Graduate School of Public Health, St. Luke's International University, Chuo-ku, Tokyo 104-0045, Japan
| | - Yukiko Nishihama
- Japan Environment and Children's Study Programme Office, National Institute for Environmental Studies, Ibaraki, Japan; Paediatric Environmental Medicine, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Kazunari Onishi
- Division of Environmental Health, Graduate School of Public Health, St. Luke's International University, Chuo-ku, Tokyo 104-0045, Japan
| | - Shoji F Nakayama
- Japan Environment and Children's Study Programme Office, National Institute for Environmental Studies, Ibaraki, Japan; Graduate School of Public Health, St. Luke's International University, Chuo-ku, Tokyo 104-0045, Japan.
| |
Collapse
|
10
|
Freire C, Castiello F, Babarro I, Anguita-Ruiz A, Casas M, Vrijheid M, Sarzo B, Beneito A, Kadawathagedara M, Philippat C, Thomsen C, Sakhi AK, Lopez-Espinosa MJ. Association of prenatal exposure to phthalates and synthetic phenols with pubertal development in three European cohorts. Int J Hyg Environ Health 2024; 261:114418. [PMID: 38968838 DOI: 10.1016/j.ijheh.2024.114418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND There is limited epidemiological evidence on the association of prenatal exposure to phthalates and synthetic phenols with altered pubertal timing. OBJECTIVE To examine the association of prenatal exposure to phthalates, bisphenol A (BPA), parabens, benzophenone 3 (BP-3), and triclosan (TCS) with pubertal development in girls and boys from three European cohorts. METHODS Urinary metabolites of six different phthalate diesters (DEP, DiBP, DnBP, BBzP, DEHP, and DiNP), BPA, methyl- (MePB), ethyl- (EtPB), propyl- (PrPB), and butyl-paraben (BuPB), BP-3, and TCS were quantified in one or two (1st and 3rd trimester) urine samples collected during pregnancy (1999-2008) from mothers in three birth cohorts: INMA (Spain), EDEN (France), and MoBa (Norway). Pubertal development of their children was assessed at a single visit at age 7-12 years (579 girls, 644 boys) using the parent-reported Pubertal Development Scale (PDS). Mixed-effect Poisson and g-computation and Bayesian Kernel Machine Regression (BKMR) were employed to examine associations of individual and combined prenatal chemical exposure, respectively, with the probability of overall pubertal onset, adrenarche, and gonadarche (stage 2+) in girls and boys. Effect modification by child body mass index (BMI) was also assessed. RESULTS Maternal concentrations of the molar sum of DEHP and of DiNP metabolites were associated with a slightly higher probability of having started puberty in boys (relative risk, RR [95% CI] = 1.13 [0.98-1.30] and 1.20 [1.06-1.34], respectively, for a two-fold increase in concentrations), with a stronger association for DiNP in boys with overweight or obesity. In contrast, BPA, BuPB, EtPB, and PrPB were associated with a lower probability of pubertal onset, adrenarche, and/or gonadarche in all boys (e.g. overall puberty, BPA: RR [95% CI] = 0.93 [0.85-1.01] and BuPB: 0.95 [0.90-1.00], respectively), and the association with BPA was stronger in boys with underweight/normal weight. In girls, MEHP and BPA were associated with delayed gonadarche in those with underweight/normal weight (RR [95% CI] = 0.86 [0.77-0.95] and 0.90 [0.84-0.97], respectively). Most of these associations were trimester specific. However, the chemical mixture was not associated with any pubertal outcome in boys or girls. CONCLUSIONS Prenatal exposure to certain phthalates and synthetic phenols such as BPA may impact the pubertal development of boys, and weight status may modify this effect. BPA may also alter the pubertal development of girls.
Collapse
Affiliation(s)
- Carmen Freire
- Department of Legal Medicine, Toxicology, and Physical Anthropology, School of Medicine, University of Granada, 18016, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - Francesca Castiello
- Pediatric Unit, Germans Trias I Pujol University Hospital, 08916, Badalona, Spain
| | - Izaro Babarro
- Faculty of Medicine and Nursing, University of the Basque Country (UPV/EU), 20014, Donostia/San Sebastián, Spain; Biogipuzkoa Health Research Institute, 20014, Donostia/San Sebastián, Spain
| | - Augusto Anguita-Ruiz
- ISGlobal, 08036, Barcelona, Spain; CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Maribel Casas
- ISGlobal, 08036, Barcelona, Spain; Universitat Pompeu Fabra, 08005, Barcelona, Spain
| | - Martine Vrijheid
- CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029, Madrid, Spain; ISGlobal, 08036, Barcelona, Spain; Universitat Pompeu Fabra, 08005, Barcelona, Spain
| | - Blanca Sarzo
- CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029, Madrid, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Jaume I University-University of Valencia, 46020, Valencia, Spain
| | - Andrea Beneito
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Jaume I University-University of Valencia, 46020, Valencia, Spain
| | - Manik Kadawathagedara
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, 75004, Paris, France
| | - Claire Philippat
- University Grenoble Alpes, Inserm, U1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Cathrine Thomsen
- Department of Food Safety, Norwegian Institute of Public Health, 0456, Oslo, Norway
| | - Amrit Kaur Sakhi
- Department of Food Safety, Norwegian Institute of Public Health, 0456, Oslo, Norway
| | - Maria-Jose Lopez-Espinosa
- CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029, Madrid, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Jaume I University-University of Valencia, 46020, Valencia, Spain; Department of Nursing, Faculty of Nursing and Chiropody, University of Valencia, 46010, Valencia, Spain
| |
Collapse
|
11
|
Warner GR, Li Z, Flaws JA, Smith R. Year-to-year variation in phthalate metabolites in the Midlife Women's Health Study. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:610-619. [PMID: 38049486 PMCID: PMC11147960 DOI: 10.1038/s41370-023-00614-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 11/09/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023]
Abstract
BACKGROUND Humans are widely exposed to phthalates, which are metabolized in the body and excreted in urine. Phthalate metabolites are excreted within hours of exposure, making urinary phthalate biomarker concentrations highly variable. OBJECTIVE The goal of this study was to characterize the long-term variability in phthalate biomarker concentrations in women across the midlife transition and to identify factors that may be associated with increased variability in those phthalate biomarker concentrations by analyzing longitudinal urinary phthalate metabolite data from the Midlife Women's Health Study (2006-2015). METHODS A total of 741 women were enrolled in the study for a period of up to 4 years, during which they each provided 2-4 urine samples per year over 4 consecutive weeks that were pooled for analysis (1876 total pools). Nine phthalate metabolites were assessed individually and as molar sums representative of common compounds (all phthalates: ƩPhthalates; DEHP: ƩDEHP), exposure sources (plastics: ƩPlastic; personal care products: ƩPCP), and modes of action (anti-androgenic: ƩAA). Phthalate metabolites were analyzed by quartile using generalized linear models. In addition, the impact of explanatory variables (race, annual family income, and type of work) on phthalate quartile was examined using ordinal logistic regression models. IMPACT STATEMENT Phthalate biomarker concentrations are highly variable among midlife women over time, and annual sampling may not be sufficient to fully characterize long-term exposure.
Collapse
Affiliation(s)
- Genoa R Warner
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, USA
| | - Zhong Li
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Rebecca Smith
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine, Urbana, IL, USA.
| |
Collapse
|
12
|
Jedynak P, Siroux V, Broséus L, Tost J, Busato F, Gabet S, Thomsen C, Sakhi AK, Sabaredzovic A, Lyon-Caen S, Bayat S, Slama R, Philippat C, Lepeule J. Epigenetic footprints: Investigating placental DNA methylation in the context of prenatal exposure to phenols and phthalates. ENVIRONMENT INTERNATIONAL 2024; 189:108763. [PMID: 38824843 DOI: 10.1016/j.envint.2024.108763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/22/2024] [Accepted: 05/18/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND Endocrine disrupting compounds (EDCs) such as phthalates and phenols can affect placental functioning and fetal health, potentially via epigenetic modifications. We investigated the associations between pregnancy exposure to synthetic phenols and phthalates estimated from repeated urine sampling and genome wide placental DNA methylation. METHODS The study is based on 387 women with placental DNA methylation assessed with Infinium MethylationEPIC arrays and with 7 phenols, 13 phthalates, and two non-phthalate plasticizer metabolites measured in pools of urine samples collected twice during pregnancy. We conducted an exploratory analysis on individual CpGs (EWAS) and differentially methylated regions (DMRs) as well as a candidate analysis focusing on 20 previously identified CpGs. Sex-stratified analyses were also performed. RESULTS In the exploratory analysis, when both sexes were studied together no association was observed in the EWAS. In the sex-stratified analysis, 114 individual CpGs (68 in males, 46 in females) were differentially methylated, encompassing 74 genes (36 for males and 38 for females). We additionally identified 28 DMRs in the entire cohort, 40 for females and 42 for males. Associations were mostly positive (for DMRs: 93% positive associations in the entire cohort, 60% in the sex-stratified analysis), with the exception of several associations for bisphenols and DINCH metabolites that were negative. Biomarkers associated with most DMRs were parabens, DEHP, and DiNP metabolite concentrations. Some DMRs encompassed imprinted genes including APC (associated with parabens and DiNP metabolites), GNAS (bisphenols), ZIM2;PEG3;MIMT1 (parabens, monoethyl phthalate), and SGCE;PEG10 (parabens, DINCH metabolites). Terms related to adiposity, lipid and glucose metabolism, and cardiovascular function were among the enriched phenotypes associated with differentially methylated CpGs. The candidate analysis identified one CpG mapping to imprinted LGALS8 gene, negatively associated with ethylparaben. CONCLUSIONS By combining improved exposure assessment and extensive placental epigenome coverage, we identified several novel genes associated with the exposure, possibly in a sex-specific manner.
Collapse
Affiliation(s)
- Paulina Jedynak
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France; ISGlobal, Barcelona, Spain
| | - Valérie Siroux
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Lucile Broséus
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Jörg Tost
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA - Institut de Biologie François Jacob, University Paris Saclay, Evry, France
| | - Florence Busato
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA - Institut de Biologie François Jacob, University Paris Saclay, Evry, France
| | - Stephan Gabet
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France; Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), 59000 Lille, France
| | - Cathrine Thomsen
- Department of Food Safety, Norwegian Institue of Public Health, Oslo, Norway
| | - Amrit K Sakhi
- Department of Food Safety, Norwegian Institue of Public Health, Oslo, Norway
| | | | - Sarah Lyon-Caen
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Sam Bayat
- Department of Pulmonology and Physiology, CHU Grenoble Alpes, Grenoble, France
| | - Rémy Slama
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Claire Philippat
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France.
| | - Johanna Lepeule
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| |
Collapse
|
13
|
Birolli WG, Lanças FM, dos Santos Neto ÁJ, Silveira HCS. Determination of pesticide residues in urine by chromatography-mass spectrometry: methods and applications. Front Public Health 2024; 12:1336014. [PMID: 38932775 PMCID: PMC11199415 DOI: 10.3389/fpubh.2024.1336014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/22/2024] [Indexed: 06/28/2024] Open
Abstract
Introduction Pollution has emerged as a significant threat to humanity, necessitating a thorough evaluation of its impacts. As a result, various methods for human biomonitoring have been proposed as vital tools for assessing, managing, and mitigating exposure risks. Among these methods, urine stands out as the most commonly analyzed biological sample and the primary matrix for biomonitoring studies. Objectives This review concentrates on exploring the literature concerning residual pesticide determination in urine, utilizing liquid and gas chromatography coupled with mass spectrometry, and its practical applications. Method The examination focused on methods developed since 2010. Additionally, applications reported between 2015 and 2022 were thoroughly reviewed, utilizing Web of Science as a primary resource. Synthesis Recent advancements in chromatography-mass spectrometry technology have significantly enhanced the development of multi-residue methods. These determinations are now capable of simultaneously detecting numerous pesticide residues from various chemical and use classes. Furthermore, these methods encompass analytes from a variety of environmental contaminants, offering a comprehensive approach to biomonitoring. These methodologies have been employed across diverse perspectives, including toxicological studies, assessing pesticide exposure in the general population, occupational exposure among farmers, pest control workers, horticulturists, and florists, as well as investigating consequences during pregnancy and childhood, neurodevelopmental impacts, and reproductive disorders. Future directions Such strategies were essential in examining the health risks associated with exposure to complex mixtures, including pesticides and other relevant compounds, thereby painting a broader and more accurate picture of human exposure. Moreover, the implementation of integrated strategies, involving international research initiatives and biomonitoring programs, is crucial to optimize resource utilization, enhancing efficiency in health risk assessment.
Collapse
Affiliation(s)
- Willian Garcia Birolli
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil
- Chromatography Group, São Carlos Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Fernando Mauro Lanças
- Chromatography Group, São Carlos Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
14
|
Svensson K, Gennings C, Lindh C, Kiviranta H, Rantakokko P, Wikström S, Bornehag CG. EDC mixtures during pregnancy and body fat at 7 years of age in a Swedish cohort, the SELMA study. ENVIRONMENTAL RESEARCH 2024; 248:118293. [PMID: 38281561 DOI: 10.1016/j.envres.2024.118293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 01/30/2024]
Abstract
BACKGROUND Some endocrine disrupting chemicals (EDC), are "obesogens" and have been associated with overweight and obesity in children. Daily exposure to different classes of EDCs demands for research with mixtures approach. OBJECTIVES This study evaluates the association, considering sex-specific effects, between prenatal exposure to EDC mixture and children's body fat at seven years of age. METHODS A total of 26 EDCs were assessed in prenatal urine and serum samples from first trimester in pregnancy from 737 mother-child pairs participating in the Swedish Environmental Longitudinal, Mother and child, Asthma and allergy (SELMA) study. An indicator for children's "overall body fat" was calculated, using principal component analysis (PCA), based on BMI, percent body fat, waist, and skinfolds measured at seven years of age. Weighted quantile sum (WQS) regression was used to assess associations between EDC mixture and children's body fat. RESULTS Principal component (PC1) represented 83.6 % of the variance, suitable as indicator for children's "overall body fat", with positive loadings of 0.40-0.42 for each body fat measure. A significant interaction term, WQS*sex, confirmed associations in the opposite direction for boys and girls. Higher prenatal exposure to EDC mixture was borderline significant with more "overall body fat" for boys (Mean β = 0.20; 95 % CI: -0.13, 0.53) and less for girls (Mean β = -0.23; 95 % CI: -0.58, 0.13). Also, higher prenatal exposure to EDC mixture was borderline significant with more percent body fat (standardized score) for boys (Mean β = 0.09; 95 % CI: -0.04, 0.21) and less for girls (Mean β = -0.10 (-0.26, 0.05). The chemicals of concern included bisphenols, phthalates, PFAS, PAH, and pesticides with different patterns for boys and girls. DISCUSSION Borderline significant associations were found between prenatal exposure to a mixture of EDCs and children's body fat. The associations in opposite directions suggests that prenatal exposure to EDCs may present sex-specific effects on children's body fat.
Collapse
Affiliation(s)
| | - Chris Gennings
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christian Lindh
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Hannu Kiviranta
- Environmental Health Unit, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Panu Rantakokko
- Environmental Health Unit, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Sverre Wikström
- Department of Health Sciences, Karlstad University, Karlstad, Sweden; School of Medical Sciences, Örebro University, Örebro, Sweden; Centre for Clinical Research, County Council of Värmland, Sweden
| | - Carl-Gustaf Bornehag
- Department of Health Sciences, Karlstad University, Karlstad, Sweden; Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
15
|
Güil-Oumrait N, Stratakis N, Maitre L, Anguita-Ruiz A, Urquiza J, Fabbri L, Basagaña X, Heude B, Haug LS, Sakhi AK, Iszatt N, Keun HC, Wright J, Chatzi L, Vafeiadi M, Bustamante M, Grazuleviciene R, Andrušaitytė S, Slama R, McEachan R, Casas M, Vrijheid M. Prenatal Exposure to Chemical Mixtures and Metabolic Syndrome Risk in Children. JAMA Netw Open 2024; 7:e2412040. [PMID: 38780942 PMCID: PMC11117089 DOI: 10.1001/jamanetworkopen.2024.12040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/21/2024] [Indexed: 05/25/2024] Open
Abstract
Importance Prenatal exposure to ubiquitous endocrine-disrupting chemicals (EDCs) may increase the risk of metabolic syndrome (MetS) in children, but few studies have studied chemical mixtures or explored underlying protein and metabolic signatures. Objective To investigate associations of prenatal exposure to EDC mixtures with MetS risk score in children and identify associated proteins and metabolites. Design, Setting, and Participants This population-based, birth cohort study used data collected between April 1, 2003, and February 26, 2016, from the Human Early Life Exposome cohort based in France, Greece, Lithuania, Norway, Spain, and the UK. Eligible participants included mother-child pairs with measured prenatal EDC exposures and complete data on childhood MetS risk factors, proteins, and metabolites. Data were analyzed between October 2022 and July 2023. Exposures Nine metals, 3 organochlorine pesticides, 5 polychlorinated biphenyls, 2 polybrominated diphenyl ethers (PBDEs), 5 perfluoroalkyl substances (PFAS), 10 phthalate metabolites, 3 phenols, 4 parabens, and 4 organophosphate pesticide metabolites measured in urine and blood samples collected during pregnancy. Main Outcomes and Measures At 6 to 11 years of age, a composite MetS risk score was constructed using z scores of waist circumference, systolic and diastolic blood pressures, triglycerides, high-density lipoprotein cholesterol, and insulin levels. Childhood levels of 44 urinary metabolites, 177 serum metabolites, and 35 plasma proteins were quantified using targeted methods. Associations were assessed using bayesian weighted quantile sum regressions applied to mixtures for each chemical group. Results The study included 1134 mothers (mean [SD] age at birth, 30.7 [4.9] years) and their children (mean [SD] age, 7.8 [1.5] years; 617 male children [54.4%] and 517 female children [45.6%]; mean [SD] MetS risk score, -0.1 [2.3]). MetS score increased per 1-quartile increase of the mixture for metals (β = 0.44; 95% credible interval [CrI], 0.30 to 0.59), organochlorine pesticides (β = 0.22; 95% CrI, 0.15 to 0.29), PBDEs (β = 0.17; 95% CrI, 0.06 to 0.27), and PFAS (β = 0.19; 95% CrI, 0.14 to 0.24). High-molecular weight phthalate mixtures (β = -0.07; 95% CrI, -0.10 to -0.04) and low-molecular weight phthalate mixtures (β = -0.13; 95% CrI, -0.18 to -0.08) were associated with a decreased MetS score. Most EDC mixtures were associated with elevated proinflammatory proteins, amino acids, and altered glycerophospholipids, which in turn were associated with increased MetS score. Conclusions and Relevance This cohort study suggests that prenatal exposure to EDC mixtures may be associated with adverse metabolic health in children. Given the pervasive nature of EDCs and the increase in MetS, these findings hold substantial public health implications.
Collapse
Affiliation(s)
- Nuria Güil-Oumrait
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Pompeu Fabra University, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Nikos Stratakis
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Léa Maitre
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Pompeu Fabra University, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Augusto Anguita-Ruiz
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Pompeu Fabra University, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Jose Urquiza
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Lorenzo Fabbri
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Pompeu Fabra University, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Xavier Basagaña
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Pompeu Fabra University, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Barbara Heude
- Université Paris Cité and Université Sorbonne Paris Nord, National Institute of Health and Medical Research (INSERM), National Institute for Agriculture, Food and the Environment (INRAE), Center for Research in Epidemiology and StatisticS (CRESS), Paris, France
| | - Line Småstuen Haug
- Department of Food Safety, Norwegian Institute of Public Health, Oslo, Norway
| | - Amrit Kaur Sakhi
- Department of Food Safety, Norwegian Institute of Public Health, Oslo, Norway
| | - Nina Iszatt
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Hector C. Keun
- Cancer Metabolism & Systems Toxicology Group, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals National Health Service Foundation Trust, Bradford, United Kingdom
| | - Leda Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles
| | - Marina Vafeiadi
- Department of Social Medicine, University of Crete, Heraklion, Crete, Greece
| | - Mariona Bustamante
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Pompeu Fabra University, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | | | - Sandra Andrušaitytė
- Department of Environmental Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | - Rémy Slama
- Department of Prevention and Treatment of Chronic Diseases, Institute for Advanced Biosciences (IAB; INSERM U1209, CNRS UMR 5309), Université Grenoble Alpes, Grenoble, France
| | - Rosemary McEachan
- Bradford Institute for Health Research, Bradford Teaching Hospitals National Health Service Foundation Trust, Bradford, United Kingdom
| | - Maribel Casas
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Pompeu Fabra University, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Martine Vrijheid
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Pompeu Fabra University, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
16
|
Ouidir M, Cissé AH, Botton J, Lyon-Caen S, Thomsen C, Sakhi AK, Sabaredzovic A, Bayat S, Slama R, Heude B, Philippat C. Fetal and Infancy Exposure to Phenols, Parabens, and Phthalates and Anthropometric Measurements up to 36 Months, in the Longitudinal SEPAGES Cohort. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:57002. [PMID: 38728218 PMCID: PMC11086749 DOI: 10.1289/ehp13644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 03/29/2024] [Accepted: 04/04/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Endocrine-disrupting chemicals may play a role in adiposity development during childhood. Until now literature in this scope suffers from methodologic limitations in exposure assessment using one or few urine samples and missing assessment during the infancy period. OBJECTIVES We investigated the associations between early-life exposure to quickly metabolized chemicals and post-natal growth, relying on repeated within-subject urine collections over pregnancy and infancy. METHODS We studied the associations of four phenols, four parabens, seven phthalates, and one nonphthalate plasticizer from weekly pooled urine samples collected from the mother during second and third trimesters (median 18 and 34 gestational weeks, respectively) and infant at 2 and 12 months of age, and child growth until 36 months. We relied on repeated measures of height, weight and head circumference from study visits and the child health booklet to predict growth outcomes at 3 and 36 months using the Jenss-Bayley nonlinear mixed model. We assessed associations with individual chemicals using adjusted linear regression and mixtures of chemicals using a Bayesian kernel machine regression model. RESULTS The unipollutant analysis revealed few associations. Bisphenol S (BPS) at second trimester was positively associated with all infant growth parameters at 3 and 36 months, with similar patterns between exposure at third trimester and all infant growth parameters at 3 months. Mono-n-butyl phthalate (MnBP) at 12 months was positively associated with body mass index (BMI), weight, and head circumference at 36 months. Mixture analysis revealed positive associations between exposure at 12 months and BMI and weight at 36 months, with MnBP showing the highest effect size within the mixture. CONCLUSIONS This study suggests that exposure in early infancy may be associated with increased weight and BMI in early childhood, which are risk factors of obesity in later life. Furthermore, this study highlighted the impact of BPS, a compound replacing bisphenol A, which has never been studied in this context. https://doi.org/10.1289/EHP13644.
Collapse
Affiliation(s)
- Marion Ouidir
- University Grenoble Alpes, Inserm U-1209, CNRS-UMR-5309, Environmental Epidemiology Applied to Development and Respiratory Health Team, Institute for Advanced Biosciences, Grenoble, France
| | - Aminata H. Cissé
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), Paris, France
| | - Jérémie Botton
- Faculté de Pharmacie, Université Paris-Saclay, Orsay, France
| | - Sarah Lyon-Caen
- University Grenoble Alpes, Inserm U-1209, CNRS-UMR-5309, Environmental Epidemiology Applied to Development and Respiratory Health Team, Institute for Advanced Biosciences, Grenoble, France
| | | | | | | | - Sam Bayat
- Department of Pulmonology and Physiology, Grenoble University Hospital, La Tronche, France
- Synchrotron Radiation for Biomedicine Laboratory (STROBE), Inserm UA07, Grenoble Alpes University, Grenoble, France
| | - Rémy Slama
- University Grenoble Alpes, Inserm U-1209, CNRS-UMR-5309, Environmental Epidemiology Applied to Development and Respiratory Health Team, Institute for Advanced Biosciences, Grenoble, France
| | - Barbara Heude
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), Paris, France
| | - Claire Philippat
- University Grenoble Alpes, Inserm U-1209, CNRS-UMR-5309, Environmental Epidemiology Applied to Development and Respiratory Health Team, Institute for Advanced Biosciences, Grenoble, France
| |
Collapse
|
17
|
Jovanovic N, Mustieles V, Althuser M, Lyon-Caen S, Alfaidy N, Thomsen C, Sakhi AK, Sabaredzovic A, Bayat S, Couturier-Tarrade A, Slama R, Philippat C. Associations between synthetic phenols, phthalates, and placental growth/function: a longitudinal cohort with exposure assessment in early pregnancy. Hum Reprod Open 2024; 2024:hoae018. [PMID: 38689737 PMCID: PMC11057944 DOI: 10.1093/hropen/hoae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 02/26/2024] [Indexed: 05/02/2024] Open
Abstract
STUDY QUESTION Is exposure to environmental chemicals associated with modifications of placental morphology and function? SUMMARY ANSWER Phthalates, a class of ubiquitous chemicals, showed an association with altered placental weight, placental vascular resistance (PVR), and placental efficiency. WHAT IS KNOWN ALREADY Only a few epidemiological studies have assessed the effects of phenols and phthalates on placental health. Their results were affected by exposure measurement errors linked to the rapid excretion of these compounds and the reliance on a limited number of spot urine samples to assess exposure. STUDY DESIGN SIZE DURATION A prospective mother-child cohort, with improved exposure assessment for non-persistent chemicals, recruited participants between 2014 and 2017. Sample size ranged between 355 (placental parameters measured at birth: placental weight and placental-to-fetal weight ratio (PFR): a proxy for placental efficiency) and 426 (placental parameters measured during pregnancy: placental thickness and vascular resistance). PARTICIPANTS/MATERIALS SETTING METHODS Phenols (four parabens, two bisphenols, triclosan, and benzophenone-3), 13 phthalate metabolites, and two non-phthalate plasticizer metabolites were measured in within-subject pools of repeated urine samples collected during the second and third trimesters of pregnancy (median = 21 samples/trimester/woman). Placental thickness and PVR were measured during pregnancy. The placenta was weighed at birth and the PFR was computed. Both adjusted linear regression and Bayesian Kernel Machine Regression were used to evaluate associations between phenols and phthalates (alone or as a mixture) and placental parameters. Effect modification by child sex was also investigated. MAIN RESULTS AND THE ROLE OF CHANCE Several phthalate metabolites were negatively associated with placental outcomes. Monobenzyl phthalate (MBzP) concentrations, during the second and third trimesters of pregnancy, were associated with a decrease in both placental weight at birth (β = -20.1 g [95% CI: -37.8; -2.5] and β = -17.4 g [95% CI: -33.2; -1.6], for second and third trimester, respectively) and PFR (β = -0.5 [95% CI: -1, -0.1] and β = -0.5 [95% CI: -0.9, -0.1], for the second and third trimester, respectively). Additionally, MBzP was negatively associated with PVR during the third trimester (β= -0.9 [95% CI: -1.8; 0.1]). Mono-n-butyl phthalate (MnBP), was negatively associated with PVR in both trimesters (β = -1.3, 95% CI: [-2.3, -0.2], and β = -1.2, 95% CI: [-2.4, -0.03], for the second and third trimester, respectively). After stratification for child sex, Σ diisononyl phthalate (DiNP) (either second or third-trimester exposures, depending on the outcomes considered) was associated with decreased PVR in the third trimester, as well as decreased placental weight and PFR in males. No associations were observed for phenol biomarkers. LIMITATIONS REASONS FOR CAUTION False positives cannot be ruled out. Therefore, chemicals that were associated with multiple outcomes (MnBP and DiNP) or reported in existing literature as associated with placental outcomes (MBzP) should be considered as the main results. WIDER IMPLICATIONS OF THE FINDINGS Our results are consistent with in vitro studies showing that phthalates target peroxisome proliferator-activated receptor γ, in the family of nuclear receptors involved in key placental development processes such as trophoblast proliferation, migration, and invasion. In addition to placental weight at birth, we studied placental parameters during pregnancy, which could provide a broader view of how environmental chemicals affect maternal-fetal exchanges over the course of pregnancy. Our findings contribute to the increasing evidence indicating adverse impacts of phthalate exposure on placental health. STUDY FUNDING/COMPETING INTERESTS This work was supported by the French Research Agency-ANR (MEMORI project ANR-21-CE34-0022). The SEPAGES cohort was supported by the European Research Council (N°311765-E-DOHaD), the European Community's Seventh Framework Programme (FP7/2007-206-N°308333-892 HELIX), the European Union's Horizon 2020 research and innovation programme (N° 874583 ATHLETE Project, N°825712 OBERON Project), the French Research Agency-ANR (PAPER project ANR-12-PDOC-0029-01, SHALCOH project ANR-14-CE21-0007, ANR-15-IDEX-02 and ANR-15-IDEX5, GUMME project ANR-18-CE36-005, ETAPE project ANR-18-CE36-0005-EDeN project ANR-19-CE36-0003-01), the French Agency for Food, Environmental and Occupational Health & Safety-ANSES (CNAP project EST-2016-121, PENDORE project EST-2016-121, HyPAxE project EST-2019/1/039, PENDALIRE project EST-2022-169), the Plan Cancer (Canc'Air project), the French Cancer Research Foundation Association de Recherche sur le Cancer-ARC, the French Endowment Fund AGIR for chronic diseases-APMC (projects PRENAPAR, LCI-FOT, DysCard), the French Endowment Fund for Respiratory Health, the French Fund-Fondation de France (CLIMATHES-00081169, SEPAGES 5-00099903, ELEMENTUM-00124527). N.J. was supported by a doctoral fellowship from the University Grenoble Alpes. V.M. was supported by a Sara Borrell postdoctoral research contract (CD22/00176), granted by Instituto de Salud Carlos III (Spain) and NextGenerationEU funds. The authors declare no conflict of interest. TRIAL REGISTRATION NUMBER ClinicalTrials.gov NCT02852499.
Collapse
Affiliation(s)
- Nicolas Jovanovic
- University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Vicente Mustieles
- University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
- Instituto de Investigación Biosanitaria (ibs. GRANADA), Granada, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
- Department of Radiology and Physical Medicine, University of Granada, Biomedical Research Center (CIBM), Granada, Spain
| | - Marc Althuser
- Department of Obstetrics/Gynecology and Fetal Medicine, Grenoble University Hospital, Grenoble, France
| | - Sarah Lyon-Caen
- University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Nadia Alfaidy
- Commissariat à l'Energie Atomique (CEA), IRIG department, INSERM U1292, and Grenoble Alpes University (UGA), Grenoble, France
| | | | | | | | - Sam Bayat
- Department of Obstetrics/Gynecology and Fetal Medicine, Grenoble University Hospital, Grenoble, France
| | - Anne Couturier-Tarrade
- Université Paris-Saclay, UVSQ, INRAE, BREED, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, Maisons-Alfort, France
| | - Rémy Slama
- University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Claire Philippat
- University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| |
Collapse
|
18
|
Ouidir M, Jedynak P, Rolland M, Lyon-Caen S, Thomsen C, Sakhi AK, Sabaredzovic A, Bayat S, Slama R, Philippat C. Analyzing the impact of phthalate and DINCH exposure on fetal growth in a cohort with repeated urine collection. ENVIRONMENT INTERNATIONAL 2024; 186:108584. [PMID: 38513557 DOI: 10.1016/j.envint.2024.108584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/15/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Most previous studies investigating the associations between prenatal exposure to phthalates and fetal growth relied on measurements of phthalate metabolites at a single time point. They also focused on weight at birth without assessing growth over pregnancy, preventing the identification of potential periods of fetal vulnerability. We examined the associations between pregnancy urinary phthalate metabolites and fetal growth outcomes measured twice during pregnancy and at birth. METHODS For 484 pregnant women, we assessed 13 phthalate and two 1,2-cyclohexane dicarboxylic acid, diisononyl ester (DINCH) metabolite concentrations from two within-subject weekly pools of up to 21 urine samples (median of 18 and 34 gestational weeks, respectively). Fetal biparietal diameter, femur length, head and abdominal circumferences were measured during two routine pregnancy follow-up ultrasonographies (median 22 and 32 gestational weeks, respectively) and estimated fetal weight (EFW) was calculated. Newborn weight, length, and head circumference were measured at birth. Associations between phthalate/DINCH metabolite and growth parameters were investigated using adjusted linear regression and Bayesian kernel machine regression models. RESULTS Detection rates were above 99 % for all phthalate/DINCH metabolites. While no association was observed with birth measurements, mono-iso-butyl phthalate (MiBP) and mono-n-butyl phthalate (MnBP) were positively associated with most fetal growth parameters measured at the second trimester. Specifically, MiBP was positively associated with biparietal diameter, head and abdominal circumferences, while MnBP was positively associated with EFW, head and abdominal circumferences, with stronger associations among males. Pregnancy MnBP was positively associated with biparietal diameter and femur length at third trimester. Mixture of phthalate/DINCH metabolites was positively associated with EFW at second trimester. CONCLUSIONS In this pregnancy cohort using repeated urine samples to assess exposure, MiBP and MnBP were associated with increased fetal growth parameters. Further investigation on the effects of phthalates on child health would be relevant for expanding current knowledge on their long-term effects.
Collapse
Affiliation(s)
- Marion Ouidir
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, 38000, Grenoble, France.
| | - Paulina Jedynak
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Matthieu Rolland
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Sarah Lyon-Caen
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, 38000, Grenoble, France
| | | | | | | | - Sam Bayat
- Department of Pulmonology and Physiology, Grenoble University Hospital, La Tronche, France; Synchrotron Radiation for Biomedicine Laboratory (STROBE), Inserm UA07, Grenoble Alpes University, Grenoble, France
| | - Rémy Slama
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Claire Philippat
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, 38000, Grenoble, France
| |
Collapse
|
19
|
Oh J, Kim K, Kannan K, Parsons PJ, Mlodnicka A, Schmidt RJ, Schweitzer JB, Hertz-Picciotto I, Bennett DH. Early childhood exposure to environmental phenols and parabens, phthalates, organophosphate pesticides, and trace elements in association with attention deficit hyperactivity disorder (ADHD) symptoms in the CHARGE study. Environ Health 2024; 23:27. [PMID: 38486233 PMCID: PMC10938747 DOI: 10.1186/s12940-024-01065-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 02/23/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND A growing body of literature investigated childhood exposure to environmental chemicals in association with attention-deficit/hyperactivity disorder (ADHD) symptoms, but limited studies considered urinary mixtures of multiple chemical classes. This study examined associations of concurrent exposure to non-persistent chemicals with ADHD symptoms in children diagnosed with autism spectrum disorder (ASD), developmental delay (DD), and typical development (TD). METHODS A total of 549 children aged 2-5 years from the Childhood Autism Risks from Genetics and Environment (CHARGE) case-control study were administered the Aberrant Behavior Checklist (ABC). This study focused on the ADHD/noncompliance subscale and its two subdomains (hyperactivity/impulsivity, inattention). Sixty-two chemicals from four classes (phenols/parabens, phthalates, organophosphate pesticides, trace elements) were quantified in child urine samples, and 43 chemicals detected in > 70% samples were used to investigate their associations with ADHD symptoms. Negative binomial regression was used for single-chemical analysis, and weighted quantile sum regression with repeated holdout validation was applied for mixture analysis for each chemical class and all chemicals. The mixture analyses were further stratified by diagnostic group. RESULTS A phthalate metabolite mixture was associated with higher ADHD/noncompliance scores (median count ratio [CR] = 1.10; 2.5th, 97.5th percentile: 1.00, 1.21), especially hyperactivity/impulsivity (median CR = 1.09; 2.5th, 97.5th percentile: 1.00, 1.25). The possible contributors to these mixture effects were di-2-ethylhexyl phthalate (DEHP) metabolites and mono-2-heptyl phthalate (MHPP). These associations were likely driven by children with ASD as these were observed among children with ASD, but not among TD or those with DD. Additionally, among children with ASD, a mixture of all chemicals was associated with ADHD/noncompliance and hyperactivity/impulsivity, and possible contributors were 3,4-dihydroxy benzoic acid, DEHP metabolites, MHPP, mono-n-butyl phthalate, and cadmium. CONCLUSIONS Early childhood exposure to a phthalate mixture was associated with ADHD symptoms, particularly among children with ASD. While the diverse diagnostic profiles limited generalizability, our findings suggest a potential link between phthalate exposure and the comorbidity of ASD and ADHD.
Collapse
Affiliation(s)
- Jiwon Oh
- Department of Public Health Sciences, University of California at Davis (UC Davis), Davis, CA, USA.
| | - Kyoungmi Kim
- Department of Public Health Sciences, University of California at Davis (UC Davis), Davis, CA, USA
- UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, Sacramento, CA, USA
| | - Kurunthachalam Kannan
- Division of Environmental Health Sciences, Wadsworth Center, New York State Department of Health, Albany, NY, USA
- Department of Environmental Health Sciences, University at Albany, State University of New York, Albany, NY, USA
| | - Patrick J Parsons
- Division of Environmental Health Sciences, Wadsworth Center, New York State Department of Health, Albany, NY, USA
- Department of Environmental Health Sciences, University at Albany, State University of New York, Albany, NY, USA
| | - Agnieszka Mlodnicka
- UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, Sacramento, CA, USA
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California at Davis (UC Davis), Sacramento, CA, USA
| | - Rebecca J Schmidt
- Department of Public Health Sciences, University of California at Davis (UC Davis), Davis, CA, USA
- UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, Sacramento, CA, USA
| | - Julie B Schweitzer
- UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, Sacramento, CA, USA
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California at Davis (UC Davis), Sacramento, CA, USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, University of California at Davis (UC Davis), Davis, CA, USA
- UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, Sacramento, CA, USA
| | - Deborah H Bennett
- Department of Public Health Sciences, University of California at Davis (UC Davis), Davis, CA, USA
| |
Collapse
|
20
|
Wang A, Wan Y, Qi W, Mahai G, Qian X, Zheng T, Li Y, Xu S, Xiao H, Xia W. Urinary biomarkers of exposure to organophosphate, pyrethroid, neonicotinoid insecticides and oxidative stress: A repeated measurement analysis among pregnant women. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169565. [PMID: 38145670 DOI: 10.1016/j.scitotenv.2023.169565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
Exposure to insecticides may be associated with increased oxidative stress (OS), but few studies have assessed the associations of OS biomarkers (OSBs) with exposure to multiple insecticides and their mixture, especially in pregnant women who are a vulnerable population. In the present study, 1,094 Chinese pregnant women were recruited and a total of 3,282 urine samples were collected at their three trimesters to measure eight metabolites of organophosphates, three metabolites of pyrethroids, nine typical neonicotinoids/their metabolites, and three OSBs of DNA damage (8-OHdG), RNA damage (8-OHG), and lipid peroxidation (HNE-MA). Among the twenty target insecticide metabolites, sixteen of them were frequently detected; thirteen of them were detected in over 86% of all the urine samples except for imidacloprid (IMI, detection frequency: 72.9%), desnitro-imidacloprid (DN-IMI, 70.0%), and clothianidin (CLO, 79.6%). The reproducibility of their concentrations across the three trimesters was poor to fair (intraclass correlation coefficients <0.50). Multiparity and warm season were related to higher urinary levels of some insecticide metabolites, while higher education level and inadequate weight gain during pregnancy were significantly associated with lower concentrations of certain insecticide metabolites. Linear mixed model analyses suggested that almost all the frequently detected insecticide metabolites [other than 3-phenoxybenzoic acid (3-PBA)] were significantly associated with elevated levels of the three OSBs (8-OHdG, 8-OHG, and HNE-MA), where the percent change (Δ%) ranged 8.10-36.0% for 8-OHdG, 8.49-34.7% for 8-OHG, and 5.92-182% for HNE-MA, respectively, with each interquartile ratio (IQR)-fold increase in the concentrations of the individual exposure biomarkers. Weighted quantile sum models demonstrated that the insecticide metabolite mixture was positively associated with the three OSBs. Overall, urinary desmethyl-clothianidin (DM-CLO) and 3,5,6-trichloro-2-pyridinol (TCPy) were the top insecticide exposure biomarkers contributing to the association with 8-OHdG and 8-OHG levels, while PNP contributed the most to the association with HNE-MA levels. These findings suggested that gestational exposure to organophosphates, pyrethroids, neonicotinoids, their transformation products, and their mixture may increase oxidative damage to lipids, RNA, and DNA during pregnancy.
Collapse
Affiliation(s)
- Aizhen Wang
- Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University and Technology, Wuhan, Hubei 430016, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Yanjian Wan
- Center for Public Health Laboratory Service, Institute of Environmental Health, Wuhan Centers for Disease Prevention & Control, Wuhan, Hubei 430024, PR China.
| | - Wei Qi
- Wuhan Jinyintan Hospital, Wuhan, Hubei 430040, PR China
| | - Gaga Mahai
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Xi Qian
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Tongzhang Zheng
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI 02912, United States.
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Han Xiao
- Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University and Technology, Wuhan, Hubei 430016, PR China.
| | - Wei Xia
- Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University and Technology, Wuhan, Hubei 430016, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| |
Collapse
|
21
|
Philippat C. Invited Perspective: Deciphering the Role of Endocrine Disruptors in Cancer-Challenges and Opportunities for Epidemiological Research. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:21301. [PMID: 38306195 PMCID: PMC10836583 DOI: 10.1289/ehp14568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 02/04/2024]
Affiliation(s)
- Claire Philippat
- University Grenoble Alpes, Inserm U-1209, CNRS-UMR-5309, Environmental Epidemiology Applied to Reproduction and Respiratory Health Team, Institute for Advanced Biosciences, Grenoble, France
| |
Collapse
|
22
|
Rodríguez-Carrillo A, Verheyen VJ, Van Nuijs ALN, Fernández MF, Remy S. Brain-derived neurotrophic factor (BDNF): an effect biomarker of neurodevelopment in human biomonitoring programs. FRONTIERS IN TOXICOLOGY 2024; 5:1319788. [PMID: 38268968 PMCID: PMC10806109 DOI: 10.3389/ftox.2023.1319788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/13/2023] [Indexed: 01/26/2024] Open
Abstract
The present narrative review summarizes recent findings focusing on the role of brain-derived neurotrophic factor (BDNF) as a biomarker of effect for neurodevelopmental alterations during adolescence, based on health effects of exposure to environmental chemical pollutants. To this end, information was gathered from the PubMed database and the results obtained in the European project Human Biomonitoring for Europe (HBM4EU), in which BDNF was measured at two levels of biological organization: total BDNF protein (serum) and BDNF gene DNA methylation (whole blood) levels. The obtained information is organized as follows. First, human biomonitoring, biomarkers of effect and the current state of the art on neurodevelopmental alterations in the population are presented. Second, BDNF secretion and mechanisms of action are briefly explained. Third, previous studies using BDNF as an effect biomarker were consulted in PubMed database and summarized. Finally, the impact of bisphenol A (BPA), metals, and non-persistent pesticide metabolites on BDNF secretion patterns and its mediation role with behavioral outcomes are addressed and discussed. These findings were obtained from three pilot studies conducted in HBM4EU project. Published findings suggested that exposure to some chemical pollutants such as fine particle matter (PM), PFAS, heavy metals, bisphenols, and non-persistent pesticides may alter circulating BDNF levels in healthy population. Therefore, BDNF could be used as a valuable effect biomarker to investigate developmental neurotoxicity of some chemical pollutants.
Collapse
Affiliation(s)
- Andrea Rodríguez-Carrillo
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
- Toxicological Centre, University of Antwerp, Universiteitsplein, Wilrijk, Belgium
| | - Veerle J. Verheyen
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | | | - Mariana F. Fernández
- Biomedical Research Center and School of Medicine, Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), University of Granada, Granada, Spain
| | - Sylvie Remy
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| |
Collapse
|
23
|
Rosen EM, Stevens DR, McNell EE, Wood ME, Engel SM, Keil AP, Calafat AM, Botelho JC, Sinkovskaya E, Przybylska A, Saade G, Abuhamad A, Ferguson KK. Variability and Longitudinal Trajectories of Phthalate and Replacement Biomarkers across Pregnancy in the Human Placenta and Phthalates Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13036-13046. [PMID: 37607343 PMCID: PMC10513743 DOI: 10.1021/acs.est.3c04043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Human exposure to phthalates is widespread, but assessment of variability across pregnancy has been hampered by short half-lives of phthalate biomarkers and a few repeated measures in prior studies. We aimed to characterize the variability and longitudinal profiles of phthalate and replacement biomarkers across pregnancy. Within the Human Placenta and Phthalates Study, 303 pregnant women provided urine samples at up to 8 visits across gestation. Concentrations of 14 metabolites of phthalates and 4 metabolites of replacements were quantified in each sample, and subject-specific averages within each trimester were calculated. We examined variability in individual biomarker concentrations across the 8 visits, within trimesters, and across trimester-specific averages using intraclass correlation coefficients (ICCs). To explore longitudinal exposure biomarker profiles, we applied group-based trajectory modeling to trimester-specific averages over pregnancy. Pooling multiple visits into trimester-specific averages improved the ICCs for all biomarkers. Most biomarkers generally showed stable concentrations across gestation, i.e., high-, medium-, and low-concentration profiles, with small proportions of participants falling into the "high"-exposure groups. Variability over pregnancy is likely attributable to random fluctuations around a baseline exposure rather than true changes in concentrations over time.
Collapse
Affiliation(s)
- Emma M. Rosen
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, North Carolina 27709, USA
- Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Danielle R. Stevens
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, North Carolina 27709, USA
| | - Erin E. McNell
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, North Carolina 27709, USA
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Mollie E. Wood
- Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Stephanie M. Engel
- Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Alexander P. Keil
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia 30341, USA
| | - Julianne Cook Botelho
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia 30341, USA
| | - Elena Sinkovskaya
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Eastern Virginia Medical School, Norfolk, Virginia 23507, USA
| | - Ann Przybylska
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Eastern Virginia Medical School, Norfolk, Virginia 23507, USA
| | - George Saade
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Eastern Virginia Medical School, Norfolk, Virginia 23507, USA
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Alfred Abuhamad
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Eastern Virginia Medical School, Norfolk, Virginia 23507, USA
| | - Kelly K. Ferguson
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, North Carolina 27709, USA
| |
Collapse
|
24
|
Svensson K, Gennings C, Lindh C, Kiviranta H, Rantakokko P, Wikström S, Bornehag CG. Prenatal exposures to mixtures of endocrine disrupting chemicals and sex-specific associations with children's BMI and overweight at 5.5 years of age in the SELMA study. ENVIRONMENT INTERNATIONAL 2023; 179:108176. [PMID: 37672941 PMCID: PMC12011282 DOI: 10.1016/j.envint.2023.108176] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND Prenatal exposure to mixtures of endocrine disrupting chemicals (EDC) has the potential to disrupt human metabolism. Prenatal periods are especially sensitive as many developmental processes are regulated by hormones. Prenatal exposure to EDCs has inconsistently been associated with children's body mass index (BMI) and obesity. The objective of this study was to investigate if prenatal exposure to a mixture of EDCs was associated with children's BMI and overweight (ISO-BMI ≥ 25) at 5.5 years of age, and if there were sex-specific effects. METHODS A total of 1,105 mother-child pairs with complete data on prenatal EDCs concentrations (e.g., phthalates, non-phthalate plasticizers, phenols, PAH, pesticides, PFAS, organochlorine pesticides, and PCBs), children's measured height and weight, and selected covariates in the Swedish Environmental Longitudinal, Mother and child, Asthma and allergy (SELMA) study were included in this analysis. The mixture effect of EDCs with children's BMI and overweight was assessed using WQS regression with 100 repeated holdouts. A positively associated WQS index with higher BMI and odds of overweight was derived. Models with interaction term and stratified weights by sex was applied in order to evaluate sex-specific associations. RESULTS A significant WQS*sex interaction term was identified and associations for boys and girls were in opposite directions. Higher prenatal exposure to a mixture of EDCs was associated with lower BMI (Mean β = -0.19, 95%CI: -0.40, 0.01) and lower odds of overweight (Mean OR = 0.72, 95%CI: 0.48, 1.04) among girls with borderline significance. However, the association among boys did not reach statistical significance. Among girls, the possible chemicals of concern were MEP, 2-OHPH, BPF, BPS, DPP and PFNA. CONCLUSION Prenatal exposure to a mixture of EDCs was associated with lower BMI and overweight among girls, and non-significant associations among boys. Chemicals of concern for girls included phthalates, non-phthalate plasticizers, bisphenols, PAHs, and PFAS.
Collapse
Affiliation(s)
| | - Chris Gennings
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christian Lindh
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Hannu Kiviranta
- Environmental Health Unit, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Panu Rantakokko
- Environmental Health Unit, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Sverre Wikström
- Department of Health Sciences, Karlstad University, Karlstad, Sweden; Centre for Clinical Research and Education, County Council of Värmland, Sweden; School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Carl-Gustaf Bornehag
- Department of Health Sciences, Karlstad University, Karlstad, Sweden; Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
25
|
Guzman-Torres H, Sandoval-Pinto E, Cremades R, Ramírez-de-Arellano A, García-Gutiérrez M, Lozano-Kasten F, Sierra-Díaz E. Frequency of urinary pesticides in children: a scoping review. Front Public Health 2023; 11:1227337. [PMID: 37711246 PMCID: PMC10497881 DOI: 10.3389/fpubh.2023.1227337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/26/2023] [Indexed: 09/16/2023] Open
Abstract
Pesticides are any mix of ingredients and substances used to eliminate or control unwanted vegetable or animal species recognized as plagues. Its use has been discussed in research due to the scarcity of strong scientific evidence about its health effects. International literature is still insufficient to establish a global recommendation through public policy. This study aims to explore international evidence of the presence of pesticides in urine samples from children and their effects on health through a scoping review based on the methodology described by Arksey and O'Malley. The number of articles resulting from the keyword combination was 454, and a total of 93 manuscripts were included in the results and 22 were complementary. Keywords included in the search were: urinary, pesticide, children, and childhood. Children are exposed to pesticide residues through a fruit and vegetable intake environment and household insecticide use. Behavioral effects of neural damage, diabetes, obesity, and pulmonary function are health outcomes for children that are commonly studied. Gas and liquid chromatography-tandem mass spectrometry methods are used predominantly for metabolite-pesticide detection in urine samples. Dialkylphosphates (DAP) are common in organophosphate (OP) metabolite studies. First-morning spot samples are recommended to most accurately characterize OP dose in children. International evidence in PubMed supports that organic diets in children are successful interventions that decrease the urinary levels of pesticides. Several urinary pesticide studies were found throughout the world's population. However, there is a knowledge gap that is important to address (public policy), due to farming activities that are predominant in these territories.
Collapse
Affiliation(s)
- Horacio Guzman-Torres
- Departamento de Salud Pública, Centro Universitario en Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Elena Sandoval-Pinto
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológico Agropecuarias, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Rosa Cremades
- Departamento de Microbiología y Parasitología, Centro Universitario en Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Adrián Ramírez-de-Arellano
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Mariana García-Gutiérrez
- Centro Metropolitano de Atención de la Diabetes Tipo 1, OPD Servicios de Salud, Secretaría de Salud Jalisco, Guadalajara, Jalisco, Mexico
| | - Felipe Lozano-Kasten
- Departamento de Salud Pública, Centro Universitario en Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Erick Sierra-Díaz
- Departamentos de Clínicas Quirúrgicas y Salud Pública, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- División de Epidemiología, UMAE Hospital de Especialidades Centro Médico Nacional de Occidente del IMSS, Guadalajara, Mexico
| |
Collapse
|
26
|
Blaauwendraad SM, Stevens DR, van den Dries MA, Gaillard R, Pronk A, Spaan S, Ferguson KK, Jaddoe VW. Fetal Organophosphate Pesticide Exposure and Child Adiposity Measures at 10 Years of Age in the General Dutch Population. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:87014. [PMID: 37606291 PMCID: PMC10443200 DOI: 10.1289/ehp12267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 06/01/2023] [Accepted: 07/26/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND Fetal exposure to organophosphate (OP) pesticides might lead to fetal metabolic adaptations, predisposing individuals to adverse metabolic profiles in later life. OBJECTIVE We examined the association of maternal urinary OP pesticide metabolite concentrations in pregnancy with offspring body mass index (BMI) and fat measures at 10 years of age. METHODS Between 2002 and 2006, we included 642 mother-child pairs from the Generation R Study, a population-based prospective cohort study in Rotterdam, the Netherlands. We measured maternal urinary concentrations of OP pesticide metabolites, namely, dialkyl phosphates, including three dimethyl and three diethyl phosphates in early-, mid- and late-pregnancy. At 10 years of age, child total and regional body fat and lean mass were measured through dual energy X-ray absorptiometry, and abdominal and organ fat through magnetic resonance imaging. RESULTS Higher maternal urinary pregnancy-average or trimester-specific dialkyl, dimethyl, or diethyl phosphate concentrations were not associated with childhood BMI and the risk of overweight. In addition, we did not observe any association of dialkyl, dimethyl, or diethyl phosphate concentrations with total and regional body fat, abdominal visceral fat, liver fat, or pericardial fat at child age of 10 y. CONCLUSION We observed no associations of maternal urinary dialkyl concentrations during pregnancy with childhood adiposity measures at 10 years of age. Whether these associations develop at older ages should be further studied. https://doi.org/10.1289/EHP12267.
Collapse
Affiliation(s)
- Sophia M. Blaauwendraad
- Generation R Study Group, Erasmus Medical Center (Erasmus MC), University Medical Center, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Danielle R. Stevens
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Durham, North Carolina, USA
| | - Michiel A. van den Dries
- Generation R Study Group, Erasmus Medical Center (Erasmus MC), University Medical Center, Rotterdam, the Netherlands
- Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Romy Gaillard
- Generation R Study Group, Erasmus Medical Center (Erasmus MC), University Medical Center, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Anjoeka Pronk
- Department Risk Analysis for Products in Development, Netherlands Organization for Applied Scientific Research, Utrecht, the Netherlands
| | - Suzanne Spaan
- Department Risk Analysis for Products in Development, Netherlands Organization for Applied Scientific Research, Utrecht, the Netherlands
| | - Kelly K. Ferguson
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Durham, North Carolina, USA
| | - Vincent W.V. Jaddoe
- Generation R Study Group, Erasmus Medical Center (Erasmus MC), University Medical Center, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
27
|
Amine I, Guillien A, Philippat C, Anguita-Ruiz A, Casas M, de Castro M, Dedele A, Garcia-Aymerich J, Granum B, Grazuleviciene R, Heude B, Haug LS, Julvez J, López-Vicente M, Maitre L, McEachan R, Nieuwenhuijsen M, Stratakis N, Vafeiadi M, Wright J, Yang T, Yuan WL, Basagaña X, Slama R, Vrijheid M, Siroux V. Environmental exposures in early-life and general health in childhood. Environ Health 2023; 22:53. [PMID: 37480033 PMCID: PMC10360263 DOI: 10.1186/s12940-023-01001-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/28/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND Early-life environmental exposures are suspected to be involved in the development of chronic diseases later in life. Most studies conducted so far considered single or few exposures and single-health parameter. Our study aimed to identify a childhood general health score and assess its association with a wide range of pre- and post-natal environmental exposures. METHODS The analysis is based on 870 children (6-12 years) from six European birth cohorts participating in the Human Early-Life Exposome project. A total of 53 prenatal and 105 childhood environmental factors were considered, including lifestyle, social, urban and chemical exposures. We built a general health score by averaging three sub-scores (cardiometabolic, respiratory/allergy and mental) built from 15 health parameters. By construct, a child with a low score has a low general health status. Penalized multivariable regression through Least Absolute Shrinkage and Selection Operator (LASSO) was fitted in order to identify exposures associated with the general health score. FINDINGS The results of LASSO show that a lower general health score was associated with maternal passive and active smoking during pregnancy and postnatal exposure to methylparaben, copper, indoor air pollutants, high intake of caffeinated drinks and few contacts with friends and family. Higher child's general health score was associated with prenatal exposure to a bluespace near residency and postnatal exposures to pets, cobalt, high intakes of vegetables and more physical activity. Against our hypotheses, postnatal exposure to organochlorine compounds and perfluorooctanoate were associated with a higher child's general health score. CONCLUSION By using a general health score summarizing the child cardiometabolic, respiratory/allergy and mental health, this study reinforced previously suspected environmental factors associated with various child health parameters (e.g. tobacco, air pollutants) and identified new factors (e.g. pets, bluespace) warranting further investigations.
Collapse
Affiliation(s)
- Ines Amine
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France.
| | - Alicia Guillien
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Claire Philippat
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Augusto Anguita-Ruiz
- Parc de Recerca Biomèdica de Barcelona (PRBB), ISGlobal-Instituto de Salud Global de Barcelona Campus MAR, 08003, Barcelona, Spain
- CIBEROBN, (Physiopathology of Obesity and Nutrition CB12/03/30038), Institute of Health Carlos III (ISCIII), 28029, Madrid, Spain
| | - Maribel Casas
- Parc de Recerca Biomèdica de Barcelona (PRBB), ISGlobal-Instituto de Salud Global de Barcelona Campus MAR, 08003, Barcelona, Spain
- Pompeu Fabra University (UPF), 08002, Barcelona, Spain
- Spanish Consortium for Research On Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5. Pabellón 11, 28029, Madrid, Spain
| | - Montserrat de Castro
- Parc de Recerca Biomèdica de Barcelona (PRBB), ISGlobal-Instituto de Salud Global de Barcelona Campus MAR, 08003, Barcelona, Spain
- Pompeu Fabra University (UPF), 08002, Barcelona, Spain
- Spanish Consortium for Research On Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5. Pabellón 11, 28029, Madrid, Spain
- Epidemiology and Environmental Health Joint Research Unit, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, FISABIO-Universitat Jaume I-Universitat de València, Av. Catalunya 21, 46020, Valencia, Spain
| | - Audrius Dedele
- Department of Environmental Science, Vytautas Magnus University, 44248, Kaunas, Lithuania
| | - Judith Garcia-Aymerich
- Parc de Recerca Biomèdica de Barcelona (PRBB), ISGlobal-Instituto de Salud Global de Barcelona Campus MAR, 08003, Barcelona, Spain
- Pompeu Fabra University (UPF), 08002, Barcelona, Spain
- Spanish Consortium for Research On Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5. Pabellón 11, 28029, Madrid, Spain
| | - Berit Granum
- Division for Climate and Environmental Health, Norwegian Institute of Public Health, 0213, Oslo, Norway
| | - Regina Grazuleviciene
- Department of Environmental Science, Vytautas Magnus University, 44248, Kaunas, Lithuania
| | - Barbara Heude
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), 75004, Paris, France
| | - Line Småstuen Haug
- Division for Climate and Environmental Health, Norwegian Institute of Public Health, 0213, Oslo, Norway
| | - Jordi Julvez
- Parc de Recerca Biomèdica de Barcelona (PRBB), ISGlobal-Instituto de Salud Global de Barcelona Campus MAR, 08003, Barcelona, Spain
- Clinical and Epidemiological Neuroscience (NeuroÈpia), Institut d'Investigació Sanitària Pere Virgili (IISPV), 43204, Reus, Spain
| | - Mónica López-Vicente
- Parc de Recerca Biomèdica de Barcelona (PRBB), ISGlobal-Instituto de Salud Global de Barcelona Campus MAR, 08003, Barcelona, Spain
| | - Léa Maitre
- Parc de Recerca Biomèdica de Barcelona (PRBB), ISGlobal-Instituto de Salud Global de Barcelona Campus MAR, 08003, Barcelona, Spain
- Pompeu Fabra University (UPF), 08002, Barcelona, Spain
- Spanish Consortium for Research On Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5. Pabellón 11, 28029, Madrid, Spain
| | - Rosemary McEachan
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Mark Nieuwenhuijsen
- Parc de Recerca Biomèdica de Barcelona (PRBB), ISGlobal-Instituto de Salud Global de Barcelona Campus MAR, 08003, Barcelona, Spain
- Pompeu Fabra University (UPF), 08002, Barcelona, Spain
- Spanish Consortium for Research On Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5. Pabellón 11, 28029, Madrid, Spain
| | - Nikos Stratakis
- Parc de Recerca Biomèdica de Barcelona (PRBB), ISGlobal-Instituto de Salud Global de Barcelona Campus MAR, 08003, Barcelona, Spain
| | - Marina Vafeiadi
- Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Tiffany Yang
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Wen Lun Yuan
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), 75004, Paris, France
- Singapore Institute for Clinical Science, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Xavier Basagaña
- Parc de Recerca Biomèdica de Barcelona (PRBB), ISGlobal-Instituto de Salud Global de Barcelona Campus MAR, 08003, Barcelona, Spain
- Pompeu Fabra University (UPF), 08002, Barcelona, Spain
- Spanish Consortium for Research On Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5. Pabellón 11, 28029, Madrid, Spain
| | - Rémy Slama
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Martine Vrijheid
- Parc de Recerca Biomèdica de Barcelona (PRBB), ISGlobal-Instituto de Salud Global de Barcelona Campus MAR, 08003, Barcelona, Spain
- Pompeu Fabra University (UPF), 08002, Barcelona, Spain
- Spanish Consortium for Research On Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5. Pabellón 11, 28029, Madrid, Spain
| | - Valérie Siroux
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| |
Collapse
|
28
|
Reimann B, Sleurs H, Dockx Y, Rasking L, De Boever P, Pirard C, Charlier C, Nawrot TS, Plusquin M. Exposure to endocrine disrupters and cardiometabolic health effects in preschool children: Urinary parabens are associated with wider retinal venular vessels. CHEMOSPHERE 2023; 328:138570. [PMID: 37019399 DOI: 10.1016/j.chemosphere.2023.138570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND AND AIM Parabens are widely used as antimicrobial preservatives in personal care products. Studies investigating obesogenic or cardiovascular effects of parabens show discordant results, while data on preschool children are lacking. Paraben exposure during early childhood could have profound cardiometabolic effects later in life. METHODS In this cross-sectional study paraben concentrations [methyl (MeP), ethyl (EtP), propyl (PrP), butyl (BuP)] were measured by ultra-performance liquid chromatography/tandem mass spectrometry in 300 urinary samples of 4-6-year-old children of the ENVIRONAGE birth cohort. Paraben values below the limit of quantitation (LOQ) were imputed by censored likelihood multiple imputation. The associations between log-transformed paraben values and cardiometabolic measurements (BMI z-scores, waist circumference, blood pressure and retinal microvasculature) were analyzed in multiple linear regression models with a priori selected covariates. Effect modification by sex was investigated by including interaction terms. RESULTS Geometric means (geometric SD) of urinary MeP, EtP, and PrP levels above the LOQ were 32.60 (6.64), 1.26 (3.45), and 4.82 (4.11) μg/L, respectively. For BuP more than 96% of all measurements were below the LOQ. Regarding the microvasculature, we found direct associations between MeP and central retinal venular equivalent (β = 1.23, p = 0.039) and PrP with the retinal tortuosity index (x103)(β = 1.75, p = 0.0044). Furthermore, we identified inverse associations between MeP and ∑parabens with BMI z-scores (β = -0.067, p = 0.015 and β = -0.070, p = 0.014 respectively), and EtP with mean arterial pressure (β = -0.69, p = 0.048). The direction of association between EtP and BMI z-scores showed evidence for sex-specific differences with a direct trend in boys (β = 0.10, p = 0.060). CONCLUSIONS Already at young age paraben exposure is associated with potentially adverse changes in the retinal microvasculature.
Collapse
Affiliation(s)
- Brigitte Reimann
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Hanne Sleurs
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Yinthe Dockx
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Leen Rasking
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Patrick De Boever
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium; Health Unit, Flemish Institute for Technological Research, Mol, Belgium
| | - Catherine Pirard
- Laboratory of Clinical, Forensic and Environmental Toxicology, CHU of Liege, B35, 4000, Liege, Belgium; Center for Interdisciplinary Research on Medicines (CIRM), University of Liege (ULg), CHU, (B35), 4000, Liege, Belgium
| | - Corinne Charlier
- Laboratory of Clinical, Forensic and Environmental Toxicology, CHU of Liege, B35, 4000, Liege, Belgium; Center for Interdisciplinary Research on Medicines (CIRM), University of Liege (ULg), CHU, (B35), 4000, Liege, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium; Department of Public Health, Environment & Health Unit, Leuven University (KU Leuven), 3000, Leuven, Belgium
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium.
| |
Collapse
|
29
|
Zhang Y, Wan Y, Liu H, Qian X, Ma J, Xu S, Xia W, Li Y. Low level of urinary cotinine in pregnant women also matters: variability, exposure characteristics, and association with oxidative stress markers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:82732-82742. [PMID: 37328725 DOI: 10.1007/s11356-023-27624-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/10/2023] [Indexed: 06/18/2023]
Abstract
China has relatively high indoor contamination of nicotine, according to recent publications. Therefore, nicotine exposure risks for sensitive populations such as pregnant women in China are of concern. The variability of its internal exposure levels across three trimesters among pregnant women is not well documented. Factors related with nicotine exposure across pregnancy and its associations with oxidative stress markers are also understudied. Based on a birth cohort, we measured concentrations of cotinine (a major metabolite of nicotine) and oxidative stress markers including 8-OHdG, 8-OHG, and HNE-MA in urine samples collected at three trimesters from 1,155 pregnant women enrolled between January 2014 and June 2017 in Wuhan, China. The variability of urinary cotinine across the trimesters, potential factors associated with it, as well as the relationships between urinary cotinine and oxidative stress markers were assessed in pregnant women with cotinine concentrations of < 50 ng/mL (the cutoff value to distinguish smokers and non-smokers). Urinary specific gravity adjusted median concentrations of cotinine (ng/mL) in the entire pregnancy, first, second, and third trimester were 3.04, 3.32, 3.36, and 2.50, respectively, which exhibited fair reliability (intraclass correlation coefficient: 0.47) across pregnancy. Most participants had an estimated daily intake of nicotine higher than the acceptable value (100 ng/kg-bw/day) recommended by the UK and the USA. Maternal age, education level, pre-pregnancy body mass index, and sampling seasons were related to urinary concentrations of cotinine. After adjusting for confounding factors, significant positive relationships (β; 95% confidence interval) were observed between urinary cotinine concentrations and 8-OHdG (0.28; 0.25, 0.30), 8-OHG (0.27; 0.25, 0.29), and HNE-MA (0.27; 0.21, 0.32), respectively (p < 0.01). These results lend insight into the major factors associated with nicotine exposure of pregnant women at environmentally relevant levels and its potential effect on oxidative stress with a large sample size, and warrant the necessity of reducing the exposure in sensitive populations.
Collapse
Affiliation(s)
- Yiqiong Zhang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Yanjian Wan
- Center for Public Health Laboratory Service, Institute of Environmental Health, Wuhan Centers for Disease Prevention & Control, Wuhan, Hubei, 430024, People's Republic of China
| | - Hongxiu Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Xi Qian
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Jiaolong Ma
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China.
| |
Collapse
|
30
|
Maitre L, Jedynak P, Gallego M, Ciaran L, Audouze K, Casas M, Vrijheid M. Integrating -omics approaches into population-based studies of endocrine disrupting chemicals: A scoping review. ENVIRONMENTAL RESEARCH 2023; 228:115788. [PMID: 37004856 DOI: 10.1016/j.envres.2023.115788] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/13/2023] [Accepted: 03/27/2023] [Indexed: 05/16/2023]
Abstract
Health effects of endocrine disrupting chemicals (EDCs) are challenging to detect in the general population. Omics technologies become increasingly common to identify early biological changes before the apparition of clinical symptoms, to explore toxic mechanisms and to increase biological plausibility of epidemiological associations. This scoping review systematically summarises the application of omics in epidemiological studies assessing EDCs-associated biological effects to identify potential gaps and priorities for future research. Ninety-eight human studies (2004-2021) were identified through database searches (PubMed, Scopus) and citation chaining and focused on phthalates (34 studies), phenols (19) and PFASs (17), while PAHs (12) and recently-used pesticides (3) were less studied. The sample sizes ranged from 10 to 12,476 (median = 159), involving non-pregnant adults (38), pregnant women (11), children/adolescents (15) or both latter populations studied together (23). Several studies included occupational workers (10) and/or highly exposed groups (11) focusing on PAHs, PFASs and pesticides, while studies on phenols and phthalates were performed in the general population only. Analysed omics layers included metabolic profiles (30, including 14 targeted analyses), miRNA (13), gene expression (11), DNA methylation (8), microbiome (5) and proteins (3). Twenty-one studies implemented targeted multi-assays focusing on clinical routine blood lipid traits, oxidative stress or hormones. Overall, DNA methylation and gene expression associations with EDCs did not overlap across studies, while some EDC-associated metabolite groups, such as carnitines, nucleotides and amino acids in untargeted metabolomic studies, and oxidative stress markers in targeted studies, were consistent across studies. Studies had common limitations such as small sample sizes, cross-sectional designs and single sampling for exposure biomonitoring. In conclusion, there is a growing body of evidence evaluating the early biological responses to exposure to EDCs. This review points to a need for larger longitudinal studies, wider coverage of exposures and biomarkers, replication studies and standardisation of research methods and reporting.
Collapse
Affiliation(s)
- Léa Maitre
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| | - Paulina Jedynak
- ISGlobal, Barcelona, Spain; University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Marta Gallego
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Laura Ciaran
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Karine Audouze
- Université Paris Cité, T3S, INSERM UMR-S 1124, 45 Rue des Saints Pères, Paris, France
| | - Maribel Casas
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
31
|
Karramass T, Sol C, Kannan K, Trasande L, Jaddoe V, Duijts L. Bisphenol and phthalate exposure during pregnancy and the development of childhood lung function and asthma. The generation R study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121853. [PMID: 37247769 DOI: 10.1016/j.envpol.2023.121853] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/31/2023]
Abstract
BACKGROUND Fetal exposure to bisphenols and phthalates may lead to alterations in the respiratory and immune system development in children, and to adverse respiratory health. AIMTO STUDY: the associations of fetal bisphenols and phthalates exposure with lung function and asthma at age 13 years. STUDY DESIGN and Methods This study among 1020 children was embedded in a population-based prospective cohort study. We measured maternal urine bisphenol and phthalate concentrations in first, second and third trimester of pregnancy, and lung function by spirometry and asthma by questionnaires at age 13 years. Multivariable linear and logistic regression models were applied. RESULTS Maternal urine bisphenol and phthalate concentrations averaged during pregnancy were not associated with childhood lung function or asthma. Associations of maternal urine bisphenol and phthalate concentrations in specific trimesters with respiratory outcomes showed that one interquartile range increase in the natural log transformed maternal urine mono-isobutyl phthalate concentration in second trimester was associated with a higher FEV1/FVC, but not with asthma, accounting for confounders and multiple-testing correction. Although there were associations of higher second trimester bisphenol S with a lower FVC and FEV1 in boys and girls, and of higher first trimester bisphenol S with a decreased risk of asthma in boys and an increased risk of asthma in girls, these results did not remain significant after correction for multiple testing. Results were not modified by maternal history of asthma or atopy. CONCLUSIONS Maternal urine bisphenol and phthalate concentrations averaged or in specific trimesters during pregnancy were not strongly associated with childhood lung function and asthma at age 13 years. BPS, as a BPA substitute, tended to be associated with impaired lung function and altered risk of asthma, partly sex-dependent, but its strength was limited by a relatively low detection rate and should be queried in contemporary cohorts.
Collapse
Affiliation(s)
- Tarik Karramass
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Chalana Sol
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Kurunthachalam Kannan
- Department of Health, Wadsworth Center, New York State, United States; Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, New York, United States
| | - Leonardo Trasande
- Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, New York, United States; Department of Pediatrics, New York, University School of Medicine, United States; Department of Environmental Medicine, New York University School of Medicine, United States; Department of Population Health, New York University School of Medicine, United States; New York Wagner School of Public Service, United States; New York University Global Institute of Public Health, New York, United States
| | - Vincent Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Liesbeth Duijts
- Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Neonatal and Pediatric Intensive Care, Division of Neonatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| |
Collapse
|
32
|
Coiffier O, Lyon-Caen S, Boudier A, Quentin J, Gioria Y, Pin I, Bayat S, Thomsen C, Sakhi AK, Sabaredzovic A, Slama R, Philippat C, Siroux V. Prenatal exposure to synthetic phenols and phthalates and child respiratory health from 2 to 36 months of life. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121794. [PMID: 37178953 DOI: 10.1016/j.envpol.2023.121794] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 04/21/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
Exposure to phthalates and synthetic phenols is ubiquitous. Some of them are suspected to impact child respiratory health, although evidence still remains insufficient. This study investigated the associations between prenatal exposure to phthalates and phenols, individually and as a mixture, and child respiratory health assessed by objective lung function measures since 2 months of age. Among 479 mother-child pairs from the SEPAGES cohort, 12 phenols, 13 phthalate and 2 non-phthalate plasticizer metabolites were measured in 2 pools including each 21 urine samples collected at the 2nd and 3rd pregnancy trimesters. Lung function was measured at 2 months using tidal breathing flow-volume loops and nitrogen multiple-breath washout, and at 3 years using oscillometry. Asthma, wheezing, bronchitis and bronchiolitis were assessed by repeated questionnaires. A cluster-based analysis was applied to identify exposure patterns to phenols and phthalates. Adjusted associations between clusters as well as each individual exposure biomarker and child respiratory health were estimated by regression models. We identified four prenatal exposure patterns: 1) low concentrations of all biomarkers (reference, n = 106), 2) low phenols-moderate phthalates (n = 162), 3) high concentrations of all biomarkers except bisphenol S (n = 109), 4) high parabens-moderate other phenols-low phthalates (n = 102). At 2 months, cluster 2 infants had lower functional residual capacity and tidal volume and higher ratio of time to peak tidal expiratory flow to expiratory time (tPTEF/tE) and cluster 3 had lower lung clearance index and higher tPTEF/tE. Clusters were not associated with respiratory health at 3 years but in the single-pollutant models, parabens were associated with increased area of the reactance curve, bronchitis (methyl, ethyl parabens) and bronchiolitis (propyl paraben). Our results suggested that prenatal exposure to mixtures of phthalates reduced lung volume in early life. Single exposure analyses suggested associations of parabens with impaired lung function and increased risk of respiratory diseases.
Collapse
Affiliation(s)
- Ophélie Coiffier
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), 38000, Grenoble, France
| | - Sarah Lyon-Caen
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), 38000, Grenoble, France
| | - Anne Boudier
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), 38000, Grenoble, France; Pediatric Department, Grenoble University Hospital, 38700, La Tronche, France
| | - Joane Quentin
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), 38000, Grenoble, France
| | - Yoann Gioria
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), 38000, Grenoble, France
| | - Isabelle Pin
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), 38000, Grenoble, France; Pediatric Department, Grenoble University Hospital, 38700, La Tronche, France
| | - Sam Bayat
- Department of Pulmonology and Physiology, CHU Grenoble Alpes, Grenoble, France
| | | | | | | | - Rémy Slama
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), 38000, Grenoble, France
| | - Claire Philippat
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), 38000, Grenoble, France.
| | - Valérie Siroux
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), 38000, Grenoble, France
| |
Collapse
|
33
|
Faÿs F, Palazzi P, Zeman F, Hardy EM, Schaeffer C, Rousselle C, Beausoleil C, Appenzeller BMR. Incorporation of Fast-Elimination Chemicals in Hair Is Governed by Pharmacokinetics-Implications for Exposure Assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7336-7345. [PMID: 37146304 DOI: 10.1021/acs.est.2c06777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Mechanisms governing chemicals' incorporation in hair are incompletely understood, and gaps remain to link the concentration of chemicals in hair to level of exposure and internal dose present in the body. This study assesses the relevance of hair analysis for the biomonitoring of exposure to fast-elimination compounds and investigates the role of pharmacokinetics (PK) in their incorporation in hair. Rats were administered with pesticides, bisphenols, phthalates, and DINCH over 2 months. Hairs were analyzed for 28 chemicals/metabolites to investigate correlations between their concentration in hair and the dose administered to the animals. Urine collected over 24 h after gavage was used to determine chemicals' PK and to investigate their influence on incorporation into hair by means of linear mixed models (LMMs). Eighteen chemicals presented a significant correlation between concentration in hair and level of exposure. In models combining all chemicals, agreement between concentration in hair predicted by LMM and experimental values was moderate (R2 = 0.19) but significantly increased when PK were included in the models (R2 = 0.37), and even more when chemical families were considered separately (e.g., R2 = 0.98 for pesticides). This study shows that pharmacokinetics mediate incorporation of chemicals in hair and suggests the relevance of hair for assessing exposure to fast-elimination chemicals.
Collapse
Affiliation(s)
- François Faÿs
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445 Strassen, Luxembourg
- University of Luxembourg, 2, avenue de l'Université, L-4365 Esch-sur-Alzette, Luxembourg
| | - Paul Palazzi
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Florence Zeman
- Institut national de l'environnement industriel et des risques (INERIS), Direction des Risques Chroniques, Pôle Dangers et Impact sur le Vivant, Unité Modèle pour l'Ecotoxicologie et la Toxicologie (METO), Parc Technologique Alata, 60550 Verneuil-en-Halatte, France
| | - Emilie M Hardy
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Charline Schaeffer
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Christophe Rousselle
- ANSES, Risk Assessment Department, 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort, France
| | - Claire Beausoleil
- ANSES, Risk Assessment Department, 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort, France
| | - Brice M R Appenzeller
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445 Strassen, Luxembourg
| |
Collapse
|
34
|
Castiello F, Suárez B, Gómez-Vida J, Torrent M, Fernández MF, Olea N, Freire C. Exposure to non-persistent pesticides and sexual maturation of Spanish adolescent males. CHEMOSPHERE 2023; 324:138350. [PMID: 36907483 DOI: 10.1016/j.chemosphere.2023.138350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Several non-persistent pesticides are endocrine disrupting chemicals and may impact on sexual maturation. OBJECTIVE To examine the association between urinary biomarkers of non-persistent pesticides and sexual maturation in adolescent males in the Environment and Childhood (INMA) Project. METHODS The metabolites of several pesticides were measured in spot urine samples collected from 201 boys aged 14-17 years, including: 3,5,6-trichloro-2-pyridinol (TCPy), metabolite of chlorpyrifos; 2-isopropyl-4-methyl-6-hydroxypyrimidine (IMPy), metabolite of diazinon; malathion diacid (MDA), metabolite of malathion; diethyl thiophosphate (DETP) and diethyl dithiophosphate, non-specific metabolites of organophosphates; 3-phenoxybenzoic acid (3-PBA) and dimethyl cyclopropane carboxylic acid, metabolites of pyrethroids; 1-naphthol (1-NPL), metabolite of carbaryl; and ethylene thiourea (ETU), metabolite of dithiocarbamate fungicides. Sexual maturation was assessed using Tanner stages, self-reported Pubertal Development Scale, and testicular volume (TV). Multivariate logistic regression was employed to examine associations between urinary pesticide metabolites and the odds of being in Tanner stage 5 of genital development (G5) or pubic hair growth (PH5); stage ≥4 of overall pubertal development, gonadarche, and adrenarche; or having mature TV (≥25 mL). RESULTS DETP concentrations>75th percentile (P75) were associated with lower odds of being in stage G5 (OR = 0.27; 95% CI = 0.10-0.70), detectable TCPy with lower odds of gonadal stage≥4 (OR = 0.50; 95% CI = 0.26-0.96), and intermediate detectable MDA concentrations (<P75) with lower odds of adrenal stage≥4 (OR = 0.32; 95% CI = 0.11-0.94). Conversely, detectable concentrations of 1-NPL were associated with higher odds of adrenal stage≥4 (OR = 2.61; 95% CI = 1.30-5.24) but lower odds of mature TV (OR = 0.42; 95% CI = 0.19-0.90). CONCLUSION Exposure to certain pesticides may be associated with delayed sexual maturity in adolescent males.
Collapse
Affiliation(s)
- Francesca Castiello
- Pediatrics Unit, Hospital de Alta Resolución de Guadix, 18500, Guadix, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain
| | - Beatriz Suárez
- Department of Analytical Chemistry, University of Granada, 18071, Granada, Spain
| | - José Gómez-Vida
- Pediatrics Unit, San Cecilio Clinical University Hospital, 18016, Granada, Spain
| | | | - Mariana F Fernández
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016, Granada, Spain; Biomedical Research Centre (CIBM), University of Granada, 18016, Granada, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain
| | - Nicolás Olea
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016, Granada, Spain; Biomedical Research Centre (CIBM), University of Granada, 18016, Granada, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain
| | - Carmen Freire
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Biomedical Research Centre (CIBM), University of Granada, 18016, Granada, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain.
| |
Collapse
|
35
|
Dufour P, Pirard C, Lebrethon MC, Charlier C. Associations between endocrine disruptor contamination and thyroid hormone homeostasis in Belgian type 1 diabetic children. Int Arch Occup Environ Health 2023:10.1007/s00420-023-01974-9. [PMID: 37071173 DOI: 10.1007/s00420-023-01974-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/05/2023] [Indexed: 04/19/2023]
Abstract
PURPOSE Humans are daily exposed to many environmental pollutants, some of which being suspected to be thyroid disruptors. Some populations could be particularly susceptible to thyroid disruption, such like diabetics due to the well-known relation between the thyroid function and the control of carbohydrate homeostasis by pancreas. Therefore, the aim of this study was to investigate the associations between the exposure to several persistent and non-persistent chemicals and thyroid hormones levels in children with type 1 diabetes. METHODS Blood and urine sample were collected from 54 children diagnosed for type 1 diabetes mellitus. The concentrations of 7 phthalate metabolites, 4 parabens, 7 bisphenols, benzophenone 3 and triclosan were measured in urine, while 15 organochlorine pesticides, 4 polychlorinated biphenyls (PCBs) and 7 perfluoroalkyl substances were analyzed in serum samples. In the same time, the blood levels of free thyroxine (fT4), thyroid stimulating hormone (TSH) and glycated hemoglobin (Hb1Ac) were determined. RESULTS We highlighted positive associations between serum perfluorohexane sulfonate and urinary monoethylphthalate levels, and TSH level in blood. We also found that PCB 138 was positively associated to fT4 while urinary levels of bisphenol F were negatively correlated to this hormone. Finally, we observed positive associations between Hb1Ac levels and the contamination by PCB 153 and two urinary phthalate metabolites: mono-2-ethyl-5-hydroxyhexyl phthalate and mono-2-ethyl-5-oxoxyhexyl phthalate. CONCLUSION Our results showed that our small cohort of children with type 1 diabetes mellitus is potentially susceptible to thyroid disruptions by some pollutants. Moreover, for these children, both di-(2-ethylhexyl) phthalate metabolites would potentially hamper the glucose homeostasis. Nevertheless, additional studies are mandatory to further explore these findings.
Collapse
Affiliation(s)
- Patrice Dufour
- Laboratory of Clinical, Forensic and Environmental Toxicology, University of Liege (ULiège), CHU (B35), 1, Avenue de L'Hôpital, 4000, Liege, Belgium.
- Center for Interdisciplinary Research On Medicines (C.I.R.M.), University of Liege (ULiège), CHU (B35), 4000, Liege, Belgium.
| | - Catherine Pirard
- Laboratory of Clinical, Forensic and Environmental Toxicology, University of Liege (ULiège), CHU (B35), 1, Avenue de L'Hôpital, 4000, Liege, Belgium
- Center for Interdisciplinary Research On Medicines (C.I.R.M.), University of Liege (ULiège), CHU (B35), 4000, Liege, Belgium
| | | | - Corinne Charlier
- Laboratory of Clinical, Forensic and Environmental Toxicology, University of Liege (ULiège), CHU (B35), 1, Avenue de L'Hôpital, 4000, Liege, Belgium
- Center for Interdisciplinary Research On Medicines (C.I.R.M.), University of Liege (ULiège), CHU (B35), 4000, Liege, Belgium
| |
Collapse
|
36
|
Rodriguez-Carrillo A, Remy S, D'Cruz SC, Salamanca-Fernandez E, Gil F, Olmedo P, Mustieles V, Vela-Soria F, Baken K, Olea N, Smagulova F, Fernandez MF, Freire C. Kisspeptin as potential biomarker of environmental chemical mixture effect on reproductive hormone profile: A pilot study in adolescent males. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161668. [PMID: 36657687 DOI: 10.1016/j.scitotenv.2023.161668] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Kisspeptin has been proposed as an effect biomarker to understand the mechanisms by which some environmental chemicals adversely affect the human reproductive system. OBJECTIVE To ascertain whether kisspeptin serum protein and DNA methylation levels are associated with exposure to several environmental chemicals (individually and as a mixture) and serum reproductive hormone levels in adolescent males. METHODS Three phenols (bisphenol A [BPA], methyl-paraben [MPB], and benzophenone-3 [BP3]); two toxic metals (arsenic and cadmium); and four metabolites of non-persistent pesticides, including insecticides (2-isopropyl-6-methyl-4-pyrimidinol [IMPy], malathion diacid [MDA], and dimethylcyclopropane carboxylic acid [DCCA]) and fungicides (ethylene thiourea [ETU]) were measured in first-morning urine samples of 133 adolescent males aged 15-17 years from the INMA-Granada cohort. In blood samples collected on the same day, KISS1 gene DNA methylation was measured at four CpGs from the Exon IV, as well as serum levels of kiss54 protein, total testosterone (T), estradiol (E2), sex hormone binding-globulin, dehydroepiandrosterone sulfate, luteinizing hormone (LH), and follicle-stimulating hormone (FSH). Multiple linear regression and mixture (quantile g-computation) models were fit. RESULTS Urinary MDA and DCCA concentrations were associated with higher kiss54 levels [% change (95%CI) for each log-unit increase in concentration = 2.90 (0.32;5.56), and 1.93 (0.45,3.43), respectively]; IMPy with lower DNA methylation percentage at CpG1 and total CpGs [% change (95%CI) = -1.15 (-1.96;-0.33): -0.89 (-1.73;-0.01), respectively]; and BP3 and DCCA with lower total CpGs methylation [-0.53 (-1.04;-0.01) and - 0.69 (-1.37;-0.01), respectively]. The pesticide mixture and the whole chemical mixture were associated with higher kiss54 [% change (95%CI) = 9.09 (3.29;15.21) and 11.61 (3.96;19.82), respectively] and lower methylation levels at several CpGs. Additionally, serum kiss54 in the third tertile was associated with higher LH levels [% change (95%CI) = 28.69 (3.75-59.63)], and third-tertile CpG1, CpG2, and total CpG methylation percentages were associated with lower FSH and E2. CONCLUSION The findings of the present study and the negative correlation between serum kiss54 levels and KISS1 DNA methylation percentages suggested that kisspeptin may be a promising effect biomarker.
Collapse
Affiliation(s)
- Andrea Rodriguez-Carrillo
- Biomedical Research Center (CIBM), University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016 Granada, Spain.
| | - Sylvie Remy
- Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016 Granada, Spain
| | - Shereen Cynthia D'Cruz
- Univ Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Elena Salamanca-Fernandez
- Biomedical Research Center (CIBM), University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016 Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain
| | - Fernando Gil
- Department of Legal Medicine and Toxicology, School of Medicine, University of Granada, 18016 Granada, Spain
| | - Pablo Olmedo
- Department of Legal Medicine and Toxicology, School of Medicine, University of Granada, 18016 Granada, Spain
| | - Vicente Mustieles
- Biomedical Research Center (CIBM), University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016 Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain
| | - Fernando Vela-Soria
- Biomedical Research Center (CIBM), University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain
| | - Kirsten Baken
- Unit Health, VITO, Flemish Institute for Technological Research, 2400 Mol, Belgium
| | - Nicolás Olea
- Biomedical Research Center (CIBM), University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016 Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain
| | - Fátima Smagulova
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain
| | - Mariana F Fernandez
- Biomedical Research Center (CIBM), University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016 Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain.
| | - Carmen Freire
- Biomedical Research Center (CIBM), University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain
| |
Collapse
|
37
|
Fabbri L, Garlantézec R, Audouze K, Bustamante M, Carracedo Á, Chatzi L, Ramón González J, Gražulevičienė R, Keun H, Lau CHE, Sabidó E, Siskos AP, Slama R, Thomsen C, Wright J, Lun Yuan W, Casas M, Vrijheid M, Maitre L. Childhood exposure to non-persistent endocrine disrupting chemicals and multi-omic profiles: A panel study. ENVIRONMENT INTERNATIONAL 2023; 173:107856. [PMID: 36867994 DOI: 10.1016/j.envint.2023.107856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Individuals are exposed to environmental pollutants with endocrine disrupting activity (endocrine disruptors, EDCs) and the early stages of life are particularly susceptible to these exposures. Previous studies have focused on identifying molecular signatures associated with EDCs, but none have used repeated sampling strategy and integrated multiple omics. We aimed to identify multi-omic signatures associated with childhood exposure to non-persistent EDCs. METHODS We used data from the HELIX Child Panel Study, which included 156 children aged 6 to 11. Children were followed for one week, in two time periods. Twenty-two non-persistent EDCs (10 phthalate, 7 phenol, and 5 organophosphate pesticide metabolites) were measured in two weekly pools of 15 urine samples each. Multi-omic profiles (methylome, serum and urinary metabolome, proteome) were measured in blood and in a pool urine samples. We developed visit-specific Gaussian Graphical Models based on pairwise partial correlations. The visit-specific networks were then merged to identify reproducible associations. Independent biological evidence was systematically sought to confirm some of these associations and assess their potential health implications. RESULTS 950 reproducible associations were found among which 23 were direct associations between EDCs and omics. For 9 of them, we were able to find corroborating evidence from previous literature: DEP - serotonin, OXBE - cg27466129, OXBE - dimethylamine, triclosan - leptin, triclosan - serotonin, MBzP - Neu5AC, MEHP - cg20080548, oh-MiNP - kynurenine, oxo-MiNP - 5-oxoproline. We used these associations to explore possible mechanisms between EDCs and health outcomes, and found links to health outcomes for 3 analytes: serotonin and kynurenine in relation to neuro-behavioural development, and leptin in relation to obesity and insulin resistance. CONCLUSIONS This multi-omics network analysis at two time points identified biologically relevant molecular signatures related to non-persistent EDC exposure in childhood, suggesting pathways related to neurological and metabolic outcomes.
Collapse
Affiliation(s)
- Lorenzo Fabbri
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Ronan Garlantézec
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail), UMR_S 1085, Rennes, France
| | - Karine Audouze
- Université Paris Cité, T3S, INSERM UMR-S 1124, 45 rue des Saints Pères, Paris, France
| | - Mariona Bustamante
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; CIBER Epidemiologa y Salud Pública (CIBERESP), Madrid, Spain
| | - Ángel Carracedo
- Medicine Genomics Group, Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), University of Santiago de Compostela, CEGEN-PRB3, Santiago de Compostela, Spain; Galician Foundation of Genomic Medicine, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
| | - Leda Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Juan Ramón González
- ISGlobal, Barcelona, Spain; CIBER Epidemiologa y Salud Pública (CIBERESP), Madrid, Spain; Department of Mathematics, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | - Hector Keun
- Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery and Cancer & Division of Systems Medicine, Department of Metabolism, Digestion & Reproduction, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Chung-Ho E Lau
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK; Division of Systems Medicine, Department of Metabolism, Digestion & Reproduction, Imperial College, South Kensington, London, UK
| | - Eduard Sabidó
- Universitat Pompeu Fabra (UPF), Barcelona, Spain; Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Alexandros P Siskos
- Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery and Cancer & Division of Systems Medicine, Department of Metabolism, Digestion & Reproduction, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Rémy Slama
- Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Inserm, CNRS, Université Grenoble Alpes, Grenoble, France
| | - Cathrine Thomsen
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Wen Lun Yuan
- Université de Paris, Centre for Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Paris, France; Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| | - Maribel Casas
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiologa y Salud Pública (CIBERESP), Madrid, Spain
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiologa y Salud Pública (CIBERESP), Madrid, Spain
| | - Léa Maitre
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiologa y Salud Pública (CIBERESP), Madrid, Spain.
| |
Collapse
|
38
|
Ruiz-Castell M, Le Coroller G, Pexaras A, Ciprián GM, Fagherazzi G, Bohn T, Maitre L, Sunyer J, Appenzeller BMR. Characterizing the adult exposome in men and women from the general population: Results from the EHES-LUX study. ENVIRONMENT INTERNATIONAL 2023; 173:107780. [PMID: 36822006 DOI: 10.1016/j.envint.2023.107780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/29/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Throughout life individuals are exposed to a large array of diverse environmental exposures (exposome). Hair analyses can assess chronic exposure to a large number of chemicals with less intra-variability than urine and blood. This is essential for studies that aim to achieve a global vision of the exposome. We aimed at characterizing the adult exposome by describing 175 environmental exposures and correlation patterns between and within exposure groups. A subsample of participants of the European Health Examination Survey, covering information on exposure to chemical pollutants in hair samples, were included in the present analysis (N = 442). Concentrations of micronutrients, lifestyle, home environment and socioeconomic information completed the exposome description and were obtained through blood analyses and questionnaires. We detected 29 persistent and non-persistent chemical pollutants in more than 70% of hair samples. Compared to women, men had higher concentrations of pesticides, lower concentrations of micronutrients (with the exception of vitamin A), and presented higher alcohol consumption. Across all exposures, a low median absolute correlation was found, 0.05 (5th - 95th centiles = 0.10, 0.20). We observed higher correlations and median correlations within exposure groups than between groups of exposure. The highest median correlation was observed between plasticizers (bisphenol A and S) in both men (0.50) and women (0.31). A 70% and 95% of cumulative variance was explained by 37 and 73 principal components respectively. We found a wide range of chemical exposures in hair samples of men and women. The adult exposome was complex and multidimensional. Future exposome studies should include hair as a matrix for characterizing exposure to multiple environmental chemicals.
Collapse
Affiliation(s)
- Maria Ruiz-Castell
- Department of Precision Health, Luxembourg Institute of Health, 1A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg.
| | - Gwenaëlle Le Coroller
- Competence Centre for Methodology and Statistics, Luxembourg Institute of Health, 1A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg.
| | - Achilleas Pexaras
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg.
| | - Giovana M Ciprián
- Department of Precision Health, Luxembourg Institute of Health, 1A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg
| | - Guy Fagherazzi
- Deep Digital Phenotyping Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg.
| | - Torsten Bohn
- Nutrition and Health Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg.
| | - Léa Maitre
- ISGlobal, Barcelona, Spain, Universitat Pompeu Fabra (UPF), Barcelona, Spain, IMIM-Parc Salut Mar, Barcelona, Catalonia, Spain.
| | - Jordi Sunyer
- ISGlobal, Barcelona, Spain, Universitat Pompeu Fabra (UPF), Barcelona, Spain, IMIM-Parc Salut Mar, Barcelona, Catalonia, Spain.
| | - Brice M R Appenzeller
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg.
| |
Collapse
|
39
|
Chen HK, Wang SL, Chang YH, Sun CW, Wu MT, Chen ML, Lin YJ, Hsieh CJ. Associations between maternal phthalate exposure and neonatal neurobehaviors: The Taiwan maternal and infant cohort study (TMICS). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120956. [PMID: 36581241 DOI: 10.1016/j.envpol.2022.120956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Previous studies have shown associations between prenatal phthalate exposure and neurobehavioral changes in children. However, few studies have focused on neonatal neurobehavioral development. This study aimed to examine the associations between prenatal phthalate exposure and neonatal neurobehavioral development in the early days of life after birth. This cohort study included 283 mother-infant pairs who participated in the Taiwan Mother Infant Cohort Study during 2012-2015. Each mother was interviewed, and urine samples were collected during the third trimester of pregnancy (weeks 29-40). Eleven common phthalate metabolites in maternal urine were analyzed. The Chinese version of the Neonatal Neurobehavioral Examination was used to evaluate early infant neurobehavioral development within five days of birth. We performed multiple linear regressions to explore the associations between phthalate exposure and neonatal neurobehavioral development. Sex differences in the association between phthalate metabolites and neonatal neurobehaviors were noted. Among girls, tertiles of phthalate metabolite concentrations were associated with worse behavioral responses and tone and motor patterns in the high-molecular-weight phthalate (HMW) and low-molecular-weight phthalate (LMW) groups. Girls in the highest tertile of di-2-ethylhexyl phthalate (DEHP) and mono-isobutyl phthalate (MiBP) had a negative association with tone and motor patterns. Girls in the highest tertile of mono-n-butyl phthalate (MnBP) and MiBP showed a negative association with behavioral responses. In contrast, tertiles of phthalate metabolite exposure were associated with improved neurobehaviors in mono-methyl phthalate (MMP) among boys. The highest tertile of MMP was positively associated with behavioral responses, primitive reflexes, and tone and motor patterns. Our findings suggest that maternal phthalate exposure affects neonatal neurobehavioral development in a sex-specific manner. Despite the relatively small sample size, our findings add to the existing research linking maternal phthalate exposure to neonatal neurobehavioral development. Additional research is needed to determine the potential long-term effects of prenatal phthalate exposure on children.
Collapse
Affiliation(s)
- Hsing-Kang Chen
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan; Department of Psychiatry, Yuli Hospital, Ministry of Health and Welfare, Hualien, Taiwan
| | - Shu-Li Wang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Department of Public Health, National Defense Medical Center, Taipei, Taiwan; Department of Safety, Health, and Environmental Engineering, National United University, Miaoli, Taiwan
| | - Yu-Hsun Chang
- Department of Pediatrics, Hualien Tzu Chi General Hospital, Hualien, Taiwan; School of Medicine, Tzu Chi University, Hualien, Taiwan; Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Chien-Wen Sun
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Ming-Tsang Wu
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mei-Lien Chen
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Jie Lin
- Department of Public Health, Tzu Chi University, Hualien, Taiwan
| | - Chia-Jung Hsieh
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan; Department of Public Health, Tzu Chi University, Hualien, Taiwan.
| |
Collapse
|
40
|
Oh J, Kim K, Kannan K, Parsons PJ, Mlodnicka A, Schmidt RJ, Schweitzer JB, Hertz-Picciotto I, Bennett DH. Early childhood exposure to environmental phenols and parabens, phthalates, organophosphate pesticides, and trace elements in association with attention deficit hyperactivity disorder (ADHD) symptoms in the CHARGE study. RESEARCH SQUARE 2023:rs.3.rs-2565914. [PMID: 36798220 PMCID: PMC9934759 DOI: 10.21203/rs.3.rs-2565914/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Background Agrowing body of literature investigated childhood exposure to environmental chemicals in association with attention deficit hyperactivity disorder (ADHD) symptoms, but limited studies considered urinary mixtures of multiple chemical classes. This study examined associations of concurrent exposure to non-persistent chemicals with ADHD symptoms in children diagnosed with autism spectrum disorder (ASD), developmental delay, and typical development. Methods A total of 574 children aged 2-5 years from the Childhood Autism Risks from Genetics and Environment (CHARGE) case-control study was administered the Aberrant Behavior Checklist (ABC). This study focused on the Hyperactivity subscale and its two subdomains (hyperactivity/impulsivity, inattention). Sixty-two chemicals from four classes (phenols/parabens, phthalates, organophosphate pesticides, trace elements) were quantified in child urine samples, and 43 chemicals detected in >70% samples were used in statistical analyses. Weighted quantile sum regression for negative binomial outcomes with repeated holdout validation was performed to investigate covariate-adjusted associations between mixtures and ABC scores in 574 children. The mixture analyses were further restricted to 232 children with ASD. Results Phthalate metabolite mixtures, weighted for mono-n-butylphthalate (MNBP), mono-2-heptyl phthalate, and mono-carboxy isononyl phthalate, were associated with the Hyperactivity subscale (mean incidence rate ratio [mIRR] = 1.11; 2.5th, 97.5th percentile: 1.00, 1.23), especially the hyperactivity/impulsivity subdomain (mIRR = 1.14; 2.5th, 97.5th percentile: 1.06, 1.26). These associations remained similar after restricting to children with ASD. The inattention subdomain was associated with a phenols/parabens mixture, weighted for several parabens and bisphenols (mIRR = 1.13; 2.5th, 97.5th percentile: 1.00, 1.28) and a total mixture, weighted for 3,4-dihydroxy benzoic acid, MNBR and mono-(2-ethyl-5-carboxypentyl) phthalate (mIRR = 1.11; 2.5th, 97.5th percentile: 1.01,1.25) only among children with ASD. Conclusions Concurrent exposure to phthalate mixtures was associated with hyperactivity in early childhood. Though causal inference cannot be made based on our cross-sectional findings, this study warrants further research on mixtures of larger number of chemicals from multiple classes in association with ADHD-related behaviors in young children.
Collapse
|
41
|
Zhang M, Liu C, Yuan XQ, Yao W, Yao QY, Huang Y, Li NJ, Deng YL, Chen PP, Miao Y, Cui FP, Li YF, Zeng Q. Urinary phthalate metabolites and the risk of endometrial polyp: A pilot study from the TREE cohort. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120711. [PMID: 36427821 DOI: 10.1016/j.envpol.2022.120711] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
Phthalates, as endocrine disrupting chemicals that can alter the endogenous hormones, may be involved in the incidence of endometrial polyp, a benign hormone-dependent condition. We conducted a pilot case-control study from the Tongji Reproductive and Environmental (TREE) cohort to investigate the associations between phthalate exposures and the risk of endometrial polyp. A total of 40 endometrial polyp patients were matched to 80 controls by age and body mass index in the ratio of 1:2. Two spot urine samples from each subject were quantified for eight phthalate metabolites to enhance exposure assessment. The conditional logistic regression and quantile-based g-computation models were separately used to explore the associations between individual and mixture of urinary phthalate metabolites and the risk of endometrial polyp. After adjusting for covariates, individual chemical analyses showed that urinary monobenzyl phthalate (MBzP), mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), mono(2-ethyl-5-carboxypentyl) phthalate (MECPP), mono(2-ethyl-5-oxohexyl) phthalate (MEOHP), mono(2-ethylhexyl) phthalate (MEHHP) and the sum of di(2-ethylhexyl) phthalate (ΣDEHP) were associated with increased risks of endometrial polyp, with adjusted odds ratios ranging from 2.62 (95% CI: 0.88, 7.84) for MECPP to 6.96 (95% CI: 1.87, 25.87) for ΣDEHP comparing the extreme exposure categories (all P for trends <0.05 or = 0.057). These associations still persisted when these exposures were modeled as continuous variables. Chemical mixture analyses showed that a simultaneous one-quartile increase in concentrations of eight phthalate metabolites was associated with an elevated odds ratio of 3.14 (95% CI: 1.49, 6.60) in endometrial polyp. Our data suggests that exposure to individual benzylbutyl phthalate (BBzP) and DEHP, as well as mixture of phthalates is associated with increased risk of endometrial polyp. This may inform public health recommendations and policies to avoid phthalate exposures for improving female reproductive health.
Collapse
Affiliation(s)
- Min Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chong Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Xiao-Qiong Yuan
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Wuhan, Hubei, PR China
| | - Wen Yao
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Wuhan, Hubei, PR China
| | - Qing-Yun Yao
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Wuhan, Hubei, PR China
| | - Yong Huang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Wuhan, Hubei, PR China
| | - Ni-Jie Li
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Wuhan, Hubei, PR China
| | - Yan-Ling Deng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Pan-Pan Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yu Miao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Fei-Peng Cui
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yu-Feng Li
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Wuhan, Hubei, PR China
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
42
|
Lee CW, Cathey AL, Watkins DJ, Rosario-Pabón ZY, Vélez-Vega CM, Alshawabkeh AN, Cordero JF, Meeker JD. Associations of urinary phthalate metabolites and inflammatory biomarkers among pregnant women in Puerto Rico. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158773. [PMID: 36113809 PMCID: PMC10323976 DOI: 10.1016/j.scitotenv.2022.158773] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/31/2022] [Accepted: 09/10/2022] [Indexed: 06/11/2023]
Abstract
Phthalates are ubiquitous environmental exposures that may be implicated in inflammatory processes, as demonstrated by previous in vivo and in vitro studies. Few human studies have substantiated these observations. This study sought to examine whether maternal phthalate exposures impact inflammatory processes, as measured by circulating inflammatory biomarkers, in the PROTECT cohort in northern Puerto Rico. Inflammatory biomarkers included matrix metalloproteinases 1, 2, and 9 (MMPs), C-reactive protein (CRP), vascular cell adhesion molecule-1 (VCAM), and intercellular cell adhesion molecule-1 (ICAM). Biomarkers were measured in maternal serum samples collected during pregnancy. 19 phthalate metabolites were assessed in urinary samples collected at three study visits across pregnancy. Phthalates with <50 % of measurements above the limit of detection were excluded from analysis. We utilized linear mixed effect models to estimate associations between interquartile range increases in phthalate metabolite concentrations and percent changes in inflammatory biomarkers. Our results revealed significant associations between mono-n-butyl phthalate (MBP) and higher MMP1 by 7.86 % (95 % CI: 0.49, 15.76) and between mono oxononyl phthalate (MONP) and higher MMP2 by 8.30 % (95 % CI: 2.22, 14.75). We observed negative or null associations between phthalate metabolites and MMP2, MMP9, ICAM, VCAM, and CRP. Many results were significantly modified by fetal sex, particularly those between di-2-ethylhexyl phthalate (DEHP) metabolites and MMP1 (p-interaction: MEHHP = 0.01, MEOHP = 0.04, MECPP = 0.01) and MMP2 (p-interaction: MEHHP = 0.03, MEOHP = 0.01, MECPP = 0.01), for which associations were positive among only women carrying female fetuses. MMPs have been previously associated with preeclampsia and hypertensive pregnancy disorders as mediators of artery remodeling. Hence, our findings suggest a potential role for phthalates in mediating the maternal inflammatory response, as well as significant sexual dimorphism in these relationships, which has implications for several adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Christine W Lee
- Department of Environmental Health Sciences, University of Michigan School of Public Health,Ann Arbor, MI, USA
| | - Amber L Cathey
- Department of Environmental Health Sciences, University of Michigan School of Public Health,Ann Arbor, MI, USA
| | - Deborah J Watkins
- Department of Environmental Health Sciences, University of Michigan School of Public Health,Ann Arbor, MI, USA
| | | | - Carmen M Vélez-Vega
- Graduate School of Public Health, University of Puerto Rico, San Juan, PR, USA
| | | | - José F Cordero
- College of Public Health, University of Georgia, Athens, GA, USA
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health,Ann Arbor, MI, USA..
| |
Collapse
|
43
|
Castiello F, Suárez B, Beneito A, Lopez-Espinosa MJ, Santa-Marina L, Lertxundi A, Tardón A, Riaño-Galán I, Casas M, Vrijheid M, Olea N, Fernández MF, Freire C. Childhood exposure to non-persistent pesticides and pubertal development in Spanish girls and boys: Evidence from the INMA (Environment and Childhood) cohort. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120571. [PMID: 36356884 DOI: 10.1016/j.envpol.2022.120571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 10/27/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
This study assessed cross-sectional associations between urinary metabolites of non-persistent pesticides and pubertal development in boys and girls from urban and rural areas in Spain and examined effect modification by body mass index (BMI). Four metabolites of insecticides (TCPy, metabolite of chlorpyrifos; IMPy, metabolite of diazinon; DETP, non-specific metabolite of organophosphates; 3-PBA, metabolite of pyrethroids) and the metabolite of ethylene-bis-dithiocarbamate fungicides (ETU) were quantified in urine collected in 2010-2016 from 7 to 11-year-old children (606 girls, 933 boys) participating in the INMA Project. Pubertal development was ascertained by Tanner stages and/or parent-reported Pubertal Development Scale (PDS). Associations between pesticide metabolites and odds of being in stage 2+ for breast development (girls), genital development (boys), pubic hair growth (girls and boys), and/or overall puberty onset, gonadarche, and adrenarche (PDS for girls and boys) were examined by mixed-effect logistic regression. Effect modification by BMI was explored by interaction terms and stratified analysis. In girls, DETP and ETU concentrations>75th percentile (P75) were associated with higher odds of overall puberty development (OR [95%CI] = 1.86 [1.07-3.24] and 1.71 [1.03-2.83], respectively, for > P75 vs. undetected concentrations), while ETU > P75 was also associated with higher odds of breast development (OR [95%CI] = 5.55 [2.83-12.91]), particularly in girls with underweight/normal weight (OR [95%CI] = 10.08 [2.62-38.76]). In boys, detection of TCPy (40%) and 3-PBA (34%) was associated with higher odds of genital development (OR [95%CI] = 1.97 [1.08-3.57] and 2.08 [1.15-3.81], respectively), and the association with 3-PBA was observed in boys with overweight/obesity alone. In addition, ETU > P75 was associated with higher odds of genital development in boys with underweight/normal weight (OR [95%CI] = 2.89 [1.08-7.74]) but higher DETP with lower odds of puberty in boys with overweight/obesity (OR [95%CI] = 0.94 [0.89-0.99] per log-unit increase in concentration). Results suggest an association of childhood exposure to ETU and certain insecticides with earlier puberty in girls and boys that may be modified by child BMI.
Collapse
Affiliation(s)
- Francesca Castiello
- Pediatrics Unit, San Cecilio University Hospital, 18016, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.granada), 18012, Granada, Spain
| | - Beatriz Suárez
- Instituto de Investigación Biosanitaria de Granada (ibs.granada), 18012, Granada, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; Biomedical Research Centre (CIBM), University of Granada, 18016, Granada, Spain
| | - Andrea Beneito
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Jaume I University-University of Valencia, 46020, Valencia, Spain
| | - Maria-Jose Lopez-Espinosa
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Jaume I University-University of Valencia, 46020, Valencia, Spain; Department of Nursing, Faculty of Nursing and Chiropody, University of Valencia, 46010, Valencia, Spain
| | - Loreto Santa-Marina
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; BIODONOSTIA Health Research Institute, 20014, San Sebastián, Spain; Health Department of Basque Government, Subdirectorate of Public Health of Gipuzkoa, 20013, San Sebastián, Spain
| | - Aitana Lertxundi
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; Department of Preventive Medicine and Public Health, University of the Basque Country (UPV/EHU), 48940, Leioa, Bizkaia, Spain; BIODONOSTIA Health Research Institute, 20014, San Sebastián, Spain
| | - Adonina Tardón
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Department of Preventive Medicine and Public Health, School of Medicine, University of Oviedo, 33003, Oviedo, Spain
| | - Isolina Riaño-Galán
- Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Department of Preventive Medicine and Public Health, School of Medicine, University of Oviedo, 33003, Oviedo, Spain; Pediatrics Unit, Asturias Central University Hospital, 33011, Oviedo, Asturias, Spain
| | - Maribel Casas
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; ISGlobal, 08036, Barcelona, Spain; Universitat Pompeu Fabra, 08005, Barcelona, Spain
| | - Martine Vrijheid
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; ISGlobal, 08036, Barcelona, Spain; Universitat Pompeu Fabra, 08005, Barcelona, Spain
| | - Nicolás Olea
- Instituto de Investigación Biosanitaria de Granada (ibs.granada), 18012, Granada, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; Biomedical Research Centre (CIBM), University of Granada, 18016, Granada, Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016, Granada, Spain
| | - Mariana F Fernández
- Instituto de Investigación Biosanitaria de Granada (ibs.granada), 18012, Granada, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; Biomedical Research Centre (CIBM), University of Granada, 18016, Granada, Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016, Granada, Spain
| | - Carmen Freire
- Instituto de Investigación Biosanitaria de Granada (ibs.granada), 18012, Granada, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; Biomedical Research Centre (CIBM), University of Granada, 18016, Granada, Spain.
| |
Collapse
|
44
|
Fowler CH, Bagdasarov A, Camacho NL, Reuben A, Gaffrey MS. Toxicant exposure and the developing brain: A systematic review of the structural and functional MRI literature. Neurosci Biobehav Rev 2023; 144:105006. [PMID: 36535373 PMCID: PMC9922521 DOI: 10.1016/j.neubiorev.2022.105006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 09/29/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Youth worldwide are regularly exposed to pollutants and chemicals (i.e., toxicants) that may interfere with healthy brain development, and a surge in MRI research has begun to characterize the neurobiological consequences of these exposures. Here, a systematic review following PRISMA guidelines was conducted on developmental MRI studies of toxicants with known or suspected neurobiological impact. Associations were reviewed for 9 toxicant classes, including metals, air pollution, and flame retardants. Of 1264 identified studies, 46 met inclusion criteria. Qualitative synthesis revealed that most studies: (1) investigated air pollutants or metals, (2) assessed exposures prenatally, (3) assessed the brain in late middle childhood, (4) took place in North America or Western Europe, (5) drew samples from existing cohort studies, and (6) have been published since 2017. Given substantial heterogeneity in MRI measures, toxicant measures, and age groups assessed, more research is needed on all toxicants reviewed here. Future studies should also include larger samples, employ personal exposure monitoring, study independent samples in diverse world regions, and assess toxicant mixtures.
Collapse
Affiliation(s)
| | | | | | - Aaron Reuben
- Duke University, 417 Chapel Drive, Durham, NC 27708, USA
| | | |
Collapse
|
45
|
Nishihama Y, Lai Y, Isobe T, Nakayama SF. Optimal method for determining the intraclass correlation coefficients of urinary biomarkers such as dialkylphosphates from imputed data. ENVIRONMENT INTERNATIONAL 2022; 170:107553. [PMID: 36228551 DOI: 10.1016/j.envint.2022.107553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/19/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Urinary biomarkers are commonly used in epidemiological studies as surrogates or indicators of exposure to chemical substances. Evaluating the reliability of a biomarker is highly important because use of an unreliable marker may lead to misclassification and attenuation bias, resulting in flawed interpretations and conclusions. Although intraclass correlation coefficient (ICC) is regarded as a typical index of test reliability, methods for determining the ICCs of urinary biomarkers have not been standardised, and different methods have been used. This study evaluated different imputation methods for left-censored data, i.e., four imputation or one substitution methods, before calculating ICCs, and at the same time mathematically assessed the impact of the left-censoring proportion on the estimated ICCs. Biomarkers of exposure to organophosphate pesticides, i.e., dialkylphosphates, were used as an example. The Gibbs sampler-based left-censored missing value imputation approach had the best performance for imputation of values below reporting limits, with lower values on Kolmogorov-Smirnov test statistics than other imputation/substitution methods, i.e., a univariate distribution fitting approach, multiple imputation by chained equation, a bootstrap expectation-maximisation algorithm approach, and a single value substitution. In all imputation methods, however, ICCs decreased as censoring rates increased. We propose a method to estimate true ICCs based on mathematical estimation.
Collapse
Affiliation(s)
- Yukiko Nishihama
- Japan Environment and Children's Study Programme Office, Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan.
| | - Yonghang Lai
- Japan Environment and Children's Study Programme Office, Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan.
| | - Tomohiko Isobe
- Japan Environment and Children's Study Programme Office, Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan.
| | - Shoji F Nakayama
- Japan Environment and Children's Study Programme Office, Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan.
| |
Collapse
|
46
|
Roggeman M, Gys C, Klimowska A, Bastiaensen M, Wielgomas B, Ait Bamai Y, Covaci A. Reviewing the variability in urinary concentrations of non-persistent organic chemicals: evaluation across classes, sampling strategies and dilution corrections. ENVIRONMENTAL RESEARCH 2022; 215:114332. [PMID: 36116496 DOI: 10.1016/j.envres.2022.114332] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/01/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Various biomonitoring studies have been carried out to investigate the exposure of populations by measuring non-persistent organic chemicals in urine. To accurately assess the exposure, study designs should be carefully developed to maximise reproducibility and achieve good characterization of the temporal variability. To test these parameters, the intraclass correlation coefficients (ICCs) are calculated from repeated measurements and range from poor (<0.4) to excellent (≥0.75). Several studies have reported ICCs based on diverse study designs, but an overview, including recommendations for future studies, was lacking. Therefore, this review aimed to collect studies describing ICCs of non-persistent organic chemicals, discuss variations due to study design and formulate recommendations for future studies. More than 60 studies were selected, considering various chemical classes: bisphenols, pyrethroids, parabens, phthalates, alternative plasticizers and phosphate flame retardants. The variation in ICCs for an individual chemical was high (e.g. ICC of propyl paraben = 0.28-0.91), showing the large impact of the study design and of the specific exposure sources. The highest ICCs were reported for parabens (median = 0.52), while lowest ICCs were for 3-phenoxybenzoic acid (median = 0.08) and bisphenol A (median = 0.20). Overall, chemicals that had an exposure source with high variation, such as the diet, showed lower ICCs than those with more stable exposure sources, such as indoor materials. Urine correction by specific gravity had an overall positive effect on reducing the variability of ICCs. However, this effect was mostly seen in the adult population, while specific compounds showed less variation with creatinine correction. Single samples might not accurately capture the exposure to most non-persistent organic chemicals, especially when small populations are sampled. Future studies that examine compounds with low ICCs should take adequate measures to improve accuracy, such as correcting dilution with specific gravity or collecting multiple samples for one participant.
Collapse
Affiliation(s)
- Maarten Roggeman
- Toxicological Center, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610, Belgium
| | - Celine Gys
- Toxicological Center, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610, Belgium
| | - Anna Klimowska
- Toxicological Center, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610, Belgium; Department of Toxicology, Medical University of Gdańsk, Al. Gen. Hallera 107, Gdańsk, 80-416, Poland
| | - Michiel Bastiaensen
- Toxicological Center, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610, Belgium
| | - Bartosz Wielgomas
- Department of Toxicology, Medical University of Gdańsk, Al. Gen. Hallera 107, Gdańsk, 80-416, Poland
| | - Yu Ait Bamai
- Toxicological Center, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610, Belgium; Hokkaido University Center for Environmental and Health Sciences, Kita 12, Nishi 7, Kita-ku Sapporo, 060-0812, Japan
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610, Belgium.
| |
Collapse
|
47
|
Nishihama Y, Nakayama SF, Tabuchi T. Population attributable fraction of risk factors for low birth weight in the Japan Environment and Children's Study. ENVIRONMENT INTERNATIONAL 2022; 170:107560. [PMID: 36240622 DOI: 10.1016/j.envint.2022.107560] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/15/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Low birth weight (LBW), which is considered a birth weight of <2500 g, poses significant health problems for children. However, population attributable fraction (PAF) of risk factors for LBW have not been well studied. OBJECTIVE We aimed to re-evaluate associations between risk factors for LBW reported in previous studies that used the Japan Environment and Children's Study (JECS) data, and to estimate the magnitude of risk using PAF. METHODS Data including 91,559 mother-child dyads were obtained from JECS. Risk factors identified by previous studies that used JECS data were used to calculate odds ratios for LBW using a Bayesian logistic regression model. Based on calculated odds ratios, the PAF was calculated. RESULTS Parity, history of adenomyosis, hypertension disorder of pregnancy, maternal age at birth, prepregnancy body mass index, gestational weight gain (GWG), maternal smoking and lead (Pb) exposure were all significantly associated with LBW. The sum of the PAF of all factors was 79.4 %, with the largest PAF among single risk factors being GWG (16.5 %); the environmental portion of the PAF (Pb exposure, 14.6 % + maternal smoking, 12.1 %) surpassed the PAF of GWG. CONCLUSION Our findings suggest that the number of births classified as LBW can be reduced by approximately 27% if Pb exposure is reduced to the lowest quartile and maternal smoking is eliminated. Further investigations are needed to identify unknown risk factors for LBW.
Collapse
Affiliation(s)
- Yukiko Nishihama
- Japan Environment and Children's Study Programme Office, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan.
| | - Shoji F Nakayama
- Japan Environment and Children's Study Programme Office, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan.
| | - Takahiro Tabuchi
- Cancer Control Center, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 541-8567, Japan.
| |
Collapse
|
48
|
Maitre L, Bustamante M, Hernández-Ferrer C, Thiel D, Lau CHE, Siskos AP, Vives-Usano M, Ruiz-Arenas C, Pelegrí-Sisó D, Robinson O, Mason D, Wright J, Cadiou S, Slama R, Heude B, Casas M, Sunyer J, Papadopoulou EZ, Gutzkow KB, Andrusaityte S, Grazuleviciene R, Vafeiadi M, Chatzi L, Sakhi AK, Thomsen C, Tamayo I, Nieuwenhuijsen M, Urquiza J, Borràs E, Sabidó E, Quintela I, Carracedo Á, Estivill X, Coen M, González JR, Keun HC, Vrijheid M. Multi-omics signatures of the human early life exposome. Nat Commun 2022; 13:7024. [PMID: 36411288 PMCID: PMC9678903 DOI: 10.1038/s41467-022-34422-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 10/25/2022] [Indexed: 11/23/2022] Open
Abstract
Environmental exposures during early life play a critical role in life-course health, yet the molecular phenotypes underlying environmental effects on health are poorly understood. In the Human Early Life Exposome (HELIX) project, a multi-centre cohort of 1301 mother-child pairs, we associate individual exposomes consisting of >100 chemical, outdoor, social and lifestyle exposures assessed in pregnancy and childhood, with multi-omics profiles (methylome, transcriptome, proteins and metabolites) in childhood. We identify 1170 associations, 249 in pregnancy and 921 in childhood, which reveal potential biological responses and sources of exposure. Pregnancy exposures, including maternal smoking, cadmium and molybdenum, are predominantly associated with child DNA methylation changes. In contrast, childhood exposures are associated with features across all omics layers, most frequently the serum metabolome, revealing signatures for diet, toxic chemical compounds, essential trace elements, and weather conditions, among others. Our comprehensive and unique resource of all associations ( https://helixomics.isglobal.org/ ) will serve to guide future investigation into the biological imprints of the early life exposome.
Collapse
Affiliation(s)
- Léa Maitre
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Mariona Bustamante
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Carles Hernández-Ferrer
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Denise Thiel
- Department of Mathematics, Imperial College London, South Kensington, London, UK
| | - Chung-Ho E Lau
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Alexandros P Siskos
- Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery & Cancer, Imperial College London, London, UK
| | - Marta Vives-Usano
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Carlos Ruiz-Arenas
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Dolors Pelegrí-Sisó
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Oliver Robinson
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Dan Mason
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Solène Cadiou
- Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Inserm, CNRS, Université Grenoble Alpes, Grenoble, France
| | - Rémy Slama
- Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Inserm, CNRS, Université Grenoble Alpes, Grenoble, France
| | - Barbara Heude
- Centre for Research in Epidemiology and Statistics (CRESS), Inserm, Université de Paris, Paris, France
| | - Maribel Casas
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Jordi Sunyer
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Eleni Z Papadopoulou
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Kristine B Gutzkow
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Sandra Andrusaityte
- Department of Environmental Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | | | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Leda Chatzi
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Amrit K Sakhi
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Cathrine Thomsen
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Ibon Tamayo
- Computational Biology program, CIMA-University of Navarra, Pamplona, Spain
| | - Mark Nieuwenhuijsen
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Jose Urquiza
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Eva Borràs
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Eduard Sabidó
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Inés Quintela
- Medicine Genomics Group, Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), University of Santiago de Compostela, CIMUS, Santiago de Compostela, Spain
| | - Ángel Carracedo
- Medicine Genomics Group, Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), University of Santiago de Compostela, CIMUS, Santiago de Compostela, Spain
- Galician Foundation of Genomic Medicine, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Galicia, Spain
| | - Xavier Estivill
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Muireann Coen
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Oncology Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Juan R González
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Hector C Keun
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery & Cancer, Imperial College London, London, UK
| | - Martine Vrijheid
- Institute for Global Health (ISGlobal), Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| |
Collapse
|
49
|
Nakiwala D, Noyes PD, Faure P, Chovelon B, Corne C, Gauchez AS, Guergour D, Lyon-Caen S, Sakhi AK, Sabaredzovic A, Thomsen C, Pin I, Slama R, Philippat C. Phenol and Phthalate Effects on Thyroid Hormone Levels during Pregnancy: Relying on In Vitro Assays and Adverse Outcome Pathways to Inform an Epidemiological Analysis. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:117004. [PMID: 36350136 PMCID: PMC9645207 DOI: 10.1289/ehp10239] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 08/01/2022] [Accepted: 10/07/2022] [Indexed: 05/29/2023]
Abstract
BACKGROUND Studies characterizing associations between phenols, phthalates and thyroid hormones during pregnancy produce inconsistent results. This divergence may be partly attributable to false positives due to multiple comparison testing of large numbers of chemicals, and measurement error as studies rely on small numbers of biospecimens despite high intra-individual variability in urinary chemical metabolite concentrations. OBJECTIVES This study employs a priori chemical filtering and expanded urinary biomonitoring to evaluate associations between phenol/phthalate exposures and serum thyroid hormones assessed during pregnancy. METHODS A two-tiered approach was implemented: a) In vitro high-throughput screening results from the ToxCast/Tox21 database, as informed by a thyroid Adverse Outcome Pathway network, were evaluated to select phenols/phthalates with activity on known and putative molecular initiating events in the thyroid pathway; and b) Adjusted linear regressions were used to study associations between filtered compounds and serum thyroid hormones measured in 437 pregnant women recruited in Grenoble area (France) between 2014 and 2017. Phenol/phthalate metabolites were measured in repeated spot urine sample pools (median: 21 samples/women). RESULTS The ToxCast/Tox21 screening reduced the chemical set from 16 to 13 and the associated number of statistical comparisons by 19%. Parabens were negatively associated with free triiodothyronine (T3) and the T3/T4 (total thyroxine) ratio. Monobenzyl phthalate was positively associated with total T4 and negatively with the T3/T4 ratio. Effect modification by iodine status was detected for several compounds (among them ΣDEHP and mono-n-butyl phthalate) that were associated with some hormones among women with normal iodine levels. CONCLUSION For these chemicals, screening for compounds with an increased likelihood for thyroid-related effects and relying on repeated urine samples to assess exposures improved the overall performance of multichemical analyses of thyroid disruption. This approach may improve future evaluations of human data for the thyroid pathway with implication for fetal health and may serve as a model for evaluating other toxicity outcomes. https://doi.org/10.1289/EHP10239.
Collapse
Affiliation(s)
- Dorothy Nakiwala
- Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Institut national de la santé et de la recherche médicale (Inserm) U1209, Centre national de la recherche scientifique (CNRS) UMR 5309, Université Grenoble Alpes, Grenoble, France
| | - Pamela D. Noyes
- Center for Public Health and Environmental Assessment, Office of Research and Development (ORD), U.S. Environmental Protection Agency, Washington, District of Columbia, USA
| | - Patrice Faure
- Service de Biochimie SB2TE, Institut de Biologie et Pathologie CHU Grenoble Alpes, Université Grenoble Alpes, Grenoble, France
| | - Benoît Chovelon
- Service de Biochimie SB2TE, Institut de Biologie et Pathologie CHU Grenoble Alpes, Université Grenoble Alpes, Grenoble, France
- Département de Pharmacochimie Moleculaire, CNRS, UMR 5063, Université Grenoble Alpes, Grenoble, France
| | - Christelle Corne
- Service de Biochimie SB2TE, Institut de Biologie et Pathologie CHU Grenoble Alpes, Université Grenoble Alpes, Grenoble, France
| | - Anne Sophie Gauchez
- Service de Biochimie SB2TE, Institut de Biologie et Pathologie CHU Grenoble Alpes, Université Grenoble Alpes, Grenoble, France
| | - Dorra Guergour
- Service de Biochimie SB2TE, Institut de Biologie et Pathologie CHU Grenoble Alpes, Université Grenoble Alpes, Grenoble, France
| | - Sarah Lyon-Caen
- Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Institut national de la santé et de la recherche médicale (Inserm) U1209, Centre national de la recherche scientifique (CNRS) UMR 5309, Université Grenoble Alpes, Grenoble, France
| | - Amrit K. Sakhi
- Department of Food Safety, Norwegian Institute of Public Health, Oslo, Norway
| | | | - Cathrine Thomsen
- Department of Food Safety, Norwegian Institute of Public Health, Oslo, Norway
| | - Isabelle Pin
- Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Institut national de la santé et de la recherche médicale (Inserm) U1209, Centre national de la recherche scientifique (CNRS) UMR 5309, Université Grenoble Alpes, Grenoble, France
- Pediatric Department, Grenoble University Hospital, La Tronche, France
| | - Rémy Slama
- Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Institut national de la santé et de la recherche médicale (Inserm) U1209, Centre national de la recherche scientifique (CNRS) UMR 5309, Université Grenoble Alpes, Grenoble, France
| | - Claire Philippat
- Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Institut national de la santé et de la recherche médicale (Inserm) U1209, Centre national de la recherche scientifique (CNRS) UMR 5309, Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
50
|
Pirard C, Charlier C. Urinary levels of parabens, phthalate metabolites, bisphenol A and plasticizer alternatives in a Belgian population: Time trend or impact of an awareness campaign? ENVIRONMENTAL RESEARCH 2022; 214:113852. [PMID: 35820649 DOI: 10.1016/j.envres.2022.113852] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
A human biomonitoring study was carried out in 2015 within an adult population living in Liege (Belgium). Some phthalate metabolites and parabens were measured in the urine of 252 participants, and information were collected about their food habits, life styles and home environment to identify some predictors of exposure. Concomitantly, an awareness campaign was initiated by the Provincial Authorities of Liege and spread over 2 years. Three years later (2018), 92 of the initial participants provided again urine samples, and the levels of phthalate metabolites, phthalate substitute (DINCH), parabens, bisphenol-A and bisphenol alternatives (bisphenol-S, -F, -Z, -P) were determined and compared to those obtained in 2015 to assess time trends. In 2015, methyl- and ethylparaben were the most abundant parabens (P50 = 9.12 μg/L and 1.1 μg/L respectively), while propyl- and butylparaben were sparsely detected. Except for mono-2-ethylhexyl phthalate and 6-OH-mono-propyl-heptyl phthalate, all other targeted phthalate metabolites were positively quantified in most of the urine samples (between 89 and 98%) with median concentrations ranging between 2.7 μg/L and 21.3 μg/L depending on the metabolite. The multivariate regression models highlighted some significant associations between urinary phthalate metabolite or paraben levels and age, rural or urban character of the residence place, and the use of some personal care products. However, all determination coefficients were weak meaning that the usual covariates included in the models only explained a small part of the variance. Between 2015 and 2018, levels of parabens and phthalate metabolites significantly decreased (from 1.3 to 2.5 fold) except for monoethyl phthalate which seemed to remain quite constant. Contrariwise, all bisphenol alternatives and DINCH metabolites were measured in higher concentrations in 2018 vs 2015 while BPA levels did not differ significantly. However, it was not feasible to unequivocally highlight an impact of the awareness campaign on the exposure levels of the population.
Collapse
Affiliation(s)
- Catherine Pirard
- Laboratory of Clinical, Forensic and Environmental Toxicology, CHU of Liege, B35, 4000, Liege, Belgium; Center for Interdisciplinary Research on Medicines (CIRM), University of Liege (ULiege), CHU (B35), 4000, Liege, Belgium.
| | - Corinne Charlier
- Laboratory of Clinical, Forensic and Environmental Toxicology, CHU of Liege, B35, 4000, Liege, Belgium; Center for Interdisciplinary Research on Medicines (CIRM), University of Liege (ULiege), CHU (B35), 4000, Liege, Belgium
| |
Collapse
|