1
|
Wang X, Liu TC, Wang XW, Dang CC, Tan X, Lu Y, Liu BF, Xing DF, Ren NQ, Xie GJ. Microbial manganese redox cycling drives co-removal of nitrate and ammonium. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124095. [PMID: 39848182 DOI: 10.1016/j.jenvman.2025.124095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/13/2024] [Accepted: 01/08/2025] [Indexed: 01/25/2025]
Abstract
Manganese (Mn), abundant in the Earth's crust, can act as an oxidant or a reductant for diverse nitrogen biotransformation processes. However, the functional microorganisms and their metabolic pathways, as well as interactions, remain largely elusive. Here, a microbial consortium was enriched from a mixture of freshwater sediments and activated sludge by feeding ammonium, nitrate and Mn(II), which established manganese-driven co-removal of nitrate and ammonium with removal rates of 5.83 and 2.30 mg N L-1 d-1, respectively. The batch tests and metagenomic analyses revealed a nitrate-dependent anaerobic manganese oxidation (NDMO) process mediated by Anaerolineales and Phycisphaerales and a manganese reduction coupled to anaerobic ammonium oxidation (Mnammox) process mediated by Chthonomonadales. Based on identified key genes involved in the nitrogen and manganese metabolic pathways, nitrate was likely reduced to nitrite and nitrogen gas in the NDMO process while ammonium was oxidized to nitrite in the Mnammox process, which in turn fuelled the Anammox process carried out by Candidatus Brocadia. This revealed the microbial interactions of NDMO, Mnammox, and Anammox processes responsible for manganese-driven co-removal of ammonium and nitrate. These findings provide a potential solution for biological nitrogen removal and expand our understanding of the nitrogen and manganese biogeochemical cycles.
Collapse
Affiliation(s)
- Xuan Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Tian-Chen Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xiao-Wei Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Cheng-Cheng Dang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xin Tan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yang Lu
- Water Innovation and Smart Environment Laboratory, School of Civil and Environmental Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, 4001, Australia
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - De-Feng Xing
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Guo-Jun Xie
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
2
|
Li X, Xiao L, Sui X, Li M, Wang N, Sun Z, Li T, Cao X, Li B. Municipal solid waste leachate treatment by three-stage membrane aeration biofilm reactor system. CHEMOSPHERE 2024; 363:142847. [PMID: 39009090 DOI: 10.1016/j.chemosphere.2024.142847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/18/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
A combined process of coagulation pretreatment and three-stage membrane aeration biofilm reactor (MABR) system was successfully applied for the first time to treat actual municipal solid waste leachate (MSWL), which was characterized by high concentrations of toxic hard-to-degrade organics and salinity. The results showed that 9.8%-21.3% of organics could be removed from actual MSWL by coagulation with polymeric aluminum chloride (PAC). Three-stage MABR contributed 95.6% of the chemical oxygen demand (COD) removal, with the influent COD concentration ranging from 6000 to 7000 mg/L. At the same time, the removal efficiencies of total nitrogen (TN) and ammonia (NH4+-N) could reach to 84.3% and 79.9% without the addition of external carbon source, respectively. The nitrifying/denitrifying bacteria were enriched in the biofilm including Thiobacillus, Azoarcus and Methyloversatilis, which supported the MABR with high nitrogen removal efficiency and significantly toxic tolerance. Principal component analysis (PCA) and the Pearson correlation coefficients (r) illustrated that aeration pressure is a crucial operational parameter, exhibiting a strong correlation between the MABR performance and microbial communities. This work demonstrates that MABR is an effective and low-energy option for simultaneous removal of carbon and nitrogen in the treatment of MSWL.
Collapse
Affiliation(s)
- Xinglin Li
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-media Pollution, Carbon Neutrality Interdisciplinary Science Centre, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Ling Xiao
- Hydroking Science and Technology Co., Ltd., Tianjin, 300384, PR China
| | - Xiaopeng Sui
- Taihuan Regeneration Resource Utilization Co., Ltd., Tianjin, 300304, PR China
| | - Ming Li
- School of Resources and Environment (College of Carbon Neutrality), Linyi University, Shandong, 276005, PR China
| | - Ning Wang
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-media Pollution, Carbon Neutrality Interdisciplinary Science Centre, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Zhiye Sun
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-media Pollution, Carbon Neutrality Interdisciplinary Science Centre, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Ting Li
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-media Pollution, Carbon Neutrality Interdisciplinary Science Centre, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Xiwei Cao
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-media Pollution, Carbon Neutrality Interdisciplinary Science Centre, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Baoan Li
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-media Pollution, Carbon Neutrality Interdisciplinary Science Centre, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China.
| |
Collapse
|
3
|
Zhao ZC, Li RL, Fan SQ, Lu Y, Liu BF, Xing DF, Ren NQ, Xie GJ. Deciphering the formation of granules by n-DAMO and Anammox microorganisms. ENVIRONMENTAL RESEARCH 2024; 255:119209. [PMID: 38782336 DOI: 10.1016/j.envres.2024.119209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Nitrate/nitrite-dependent anaerobic methane oxidation (n-DAMO) process is a promising wastewater treatment technology, but the slow microbial growth rate greatly hinders its practical application. Although high-level nitrogen removal and excellent biomass accumulation have been achieved in n-DAMO granule process, the formation mechanism of n-DAMO granules remains unresolved. To elucidate the role of functional microbes in granulation, this study attempted to cultivate granules dominated by n-DAMO microorganisms and granules coupling n-DAMO with anaerobic ammonium oxidation (Anammox). After long-term operation, dense granules were developed in the two systems where both n-DAMO archaea and n-DAMO bacteria were enriched, whereas granulation did not occur in the other system dominated by n-DAMO bacteria. Extracellular polymeric substances (EPS) measurement indicated the critical role of EPS production in the granulation of n-DAMO process. Metagenomic and metatranscriptomic analyses revealed that n-DAMO archaea and Anammox bacteria were active in EPS biosynthesis, while n-DAMO bacteria were inactive. Consequently, more EPS were produced in the systems containing n-DAMO archaea and Anammox bacteria, leading to the successful development of n-DAMO granules. Furthermore, EPS biosynthesis in n-DAMO systems is potentially regulated by acyl-homoserine lactones and c-di-GMP. These findings not only provide new insights into the mechanism of granule formation in n-DAMO systems, but also hint at potential strategies for management of the granule-based n-DAMO process.
Collapse
Affiliation(s)
- Zhi-Cheng Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Ruo-Lin Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Sheng-Qiang Fan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Yang Lu
- The Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - De-Feng Xing
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Guo-Jun Xie
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
4
|
Zhao ZC, Fan SQ, Lu Y, Tan X, Liu LY, Wang XW, Liu BF, Xing DF, Ren NQ, Xie GJ. Deep insights into the biofilm formation mechanism and nitrogen-transformation network in a nitrate-dependent anaerobic methane oxidation biofilm. ENVIRONMENTAL RESEARCH 2024; 252:118810. [PMID: 38552829 DOI: 10.1016/j.envres.2024.118810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Nitrate/nitrite-dependent anaerobic methane oxidation (n-DAMO) process offers a promising solution for simultaneously achieving methane emissions reduction and efficient nitrogen removal in wastewater treatment. Although nitrogen removal at a practical rate has been achieved by n-DAMO biofilm process, the mechanisms of biofilm formation and nitrogen transformation remain to be elucidated. In this study, n-DAMO biofilms were successfully developed in the membrane aerated moving bed biofilm reactor (MAMBBR) and removed nitrate at a rate of 159 mg NO3--N L-1 d-1. The obvious increase in the content of extracellular polymeric substances (EPS) indicated that EPS production was important for biofilm development. n-DAMO microorganisms dominated the microbial community, and n-DAMO bacteria were the most abundant microorganisms. However, the expression of biosynthesis genes for proteins and polysaccharides encoded by n-DAMO archaea was significantly more active compared to other microorganisms, suggesting the central role of n-DAMO archaea in EPS production and biofilm formation. In addition to nitrate reduction, n-DAMO archaea were revealed to actively express dissimilatory nitrate reduction to ammonium and nitrogen fixation. The produced ammonium was putatively converted to dinitrogen gas through the joint function of n-DAMO archaea and n-DAMO bacteria. This study revealed the biofilm formation mechanism and nitrogen-transformation network in n-DAMO biofilm systems, shedding new light on promoting the application of n-DAMO process.
Collapse
Affiliation(s)
- Zhi-Cheng Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Sheng-Qiang Fan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Yang Lu
- The Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Xin Tan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lu-Yao Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiao-Wei Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - De-Feng Xing
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guo-Jun Xie
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
5
|
Chen X, Chen S, Chen X, Tang Y, Nie WB, Yang L, Liu Y, Ni BJ. Impact of hydrogen sulfide on anammox and nitrate/nitrite-dependent anaerobic methane oxidation coupled technologies. WATER RESEARCH 2024; 257:121739. [PMID: 38728778 DOI: 10.1016/j.watres.2024.121739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/08/2024] [Accepted: 05/04/2024] [Indexed: 05/12/2024]
Abstract
The coupling between anammox and nitrate/nitrite-dependent anaerobic methane oxidation (n-DAMO) has been considered a sustainable technology for nitrogen removal from sidestream wastewater and can be implemented in both membrane biofilm reactor (MBfR) and granular bioreactor. However, the potential influence of the accompanying hydrogen sulfide (H2S) in the anaerobic digestion (AD)-related methane-containing mixture on anammox/n-DAMO remains unknown. To fill this gap, this work first constructed a model incorporating the C/N/S-related bioprocesses and evaluated/calibrated/validated the model using experimental data. The model was then used to explore the impact of H2S on the MBfR and granular bioreactor designed to perform anammox/n-DAMO at practical levels (i.e., 0∼5% (v/v) and 0∼40 g/S m3, respectively). The simulation results indicated that H2S in inflow gas did not significantly affect the total nitrogen (TN) removal of the MBfR under all operational conditions studied in this work, thus lifting the concern about applying AD-produced biogas to power up anammox/n-DAMO in the MBfR. However, the presence of H2S in the influent would either compromise the treatment performance of the granular bioreactor at a relatively high influent NH4+-N/NO2--N ratio (e.g., >1.0) or lead to increased energy demand associated with TN removal at a relatively low influent NH4+-N/NO2--N ratio (e.g., <0.7). Such a negative effect of the influent H2S could not be attenuated by regulating the hydraulic residence time and should therefore be avoided when applying the granular bioreactor to perform anammox/n-DAMO in practice.
Collapse
Affiliation(s)
- Xueming Chen
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, PR China
| | - Siying Chen
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, PR China
| | - Xinyan Chen
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, PR China
| | - Yi Tang
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118, PR China
| | - Wen-Bo Nie
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China.
| | - Linyan Yang
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia.
| |
Collapse
|
6
|
Ishaq A, Said MIM, Azman SB, Dandajeh AA, Lemar GS, Jagun ZT. Utilization of microbial fuel cells as a dual approach for landfill leachate treatment and power production: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:41683-41733. [PMID: 38012494 PMCID: PMC11219420 DOI: 10.1007/s11356-023-30841-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/26/2023] [Indexed: 11/29/2023]
Abstract
Landfill leachate, which is a complicated organic sewage water, presents substantial dangers to human health and the environment if not properly handled. Electrochemical technology has arisen as a promising strategy for effectively mitigating contaminants in landfill leachate. In this comprehensive review, we explore various theoretical and practical aspects of methods for treating landfill leachate. This exploration includes examining their performance, mechanisms, applications, associated challenges, existing issues, and potential strategies for enhancement, particularly in terms of cost-effectiveness. In addition, this critique provides a comparative investigation between these treatment approaches and the utilization of diverse kinds of microbial fuel cells (MFCs) in terms of their effectiveness in treating landfill leachate and generating power. The examination of these technologies also extends to their use in diverse global contexts, providing insights into operational parameters and regional variations. This extensive assessment serves the primary goal of assisting researchers in understanding the optimal methods for treating landfill leachate and comparing them to different types of MFCs. It offers a valuable resource for the large-scale design and implementation of processes that ensure both the safe treatment of landfill leachate and the generation of electricity. The review not only provides an overview of the current state of landfill leachate treatment but also identifies key challenges and sets the stage for future research directions, ultimately contributing to more sustainable and effective solutions in the management of this critical environmental issue.
Collapse
Affiliation(s)
- Aliyu Ishaq
- Department of Water and Environmental Engineering, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81300, Johor Bahru, Malaysia
- Department of Water Resources and Environmental Engineering, Ahmadu Bello University, Zaria, Kaduna, Nigeria
| | - Mohd Ismid Mohd Said
- Department of Water and Environmental Engineering, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81300, Johor Bahru, Malaysia
| | - Shamila Binti Azman
- Department of Water and Environmental Engineering, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81300, Johor Bahru, Malaysia
| | - Aliyu Adamu Dandajeh
- Department of Water Resources and Environmental Engineering, Ahmadu Bello University, Zaria, Kaduna, Nigeria
| | - Gul Sanga Lemar
- Department of Biology, Faculty of Science, Kabul University, Jamal Mina, Kabul, Afghanistan
- Faculty of Biology, Department of Botany, Kabul University, Kart-e-Char, Kabul, Afghanistan
| | - Zainab Toyin Jagun
- Department of Real Estate, School of Built Environment Engineering and Computing, Leeds Beckett University, City Campus, Leeds, UK.
| |
Collapse
|
7
|
Fan SQ, Wen WR, Xie GJ, Lu Y, Nie WB, Liu BF, Xing DF, Ma J, Ren NQ. Revisiting the Engineering Roadmap of Nitrate/Nitrite-Dependent Anaerobic Methane Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20975-20991. [PMID: 37931214 DOI: 10.1021/acs.est.3c02806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Nitrate/nitrite-dependent anaerobic oxidation of methane (n-DAMO) is a recently discovered process, which provides a sustainable perspective for simultaneous nitrogen removal and greenhouse gas emission (GHG) mitigation by using methane as an electron donor for denitrification. However, the engineering roadmap of the n-DAMO process is still unclear. This work constitutes a state-of-the-art review on the classical and most recently discovered metabolic mechanisms of the n-DAMO process. The versatile combinations of the n-DAMO process with nitrification, nitritation, and partial nitritation for nitrogen removal are also clearly presented and discussed. Additionally, the recent advances in bioreactor development are systematically reviewed and evaluated comprehensively in terms of methane supply, biomass retention, membrane requirement, startup time, reactor performance, and limitations. The key issues including enrichment and operation strategy for the scaling up of n-DAMO-based processes are also critically addressed. Moreover, the challenges inherent to implementing the n-DAMO process in practical applications, including application scenario recognition, GHG emission mitigation, and operation under realistic conditions, are highlighted. Finally, prospects as well as opportunities for future research are proposed. Overall, this review provides a roadmap for potential applications and further development of the n-DAMO process in the field of wastewater treatment.
Collapse
Affiliation(s)
- Sheng-Qiang Fan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wan-Ru Wen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guo-Jun Xie
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yang Lu
- The Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Wen-Bo Nie
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - De-Feng Xing
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
8
|
Chen X, Zhao Q, Yang L, Wei W, Ni BJ, Chen X. Impacts of granular sludge properties on the bioreactor performing nitrate/nitrite-dependent anaerobic methane oxidation/anammox processes. BIORESOURCE TECHNOLOGY 2023; 386:129510. [PMID: 37495161 DOI: 10.1016/j.biortech.2023.129510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 07/28/2023]
Abstract
In this work, a bioprocess model was applied to first determine the impacts of influent substrates conditions on the granular bioreactor performing nitrate/nitrite-dependent anaerobic methane oxidation (n-DAMO) and anammox integrated processes and then investigate the roles of granular sludge properties in regulating the bioreactor performance and start-up process. The ideal influent substrates conditions were identified at NO2--N/NH4+-N of 1:1 and dissolved CH4 concentration of 85 g COD m-3, which achieved 98.6% total nitrogen removal and 87.7% dissolved CH4 utilization. Under such ideal influent conditions, the initial properties of granular sludge didn't significantly affect the granular bioreactor performance. However, inoculation of granular sludge with a relatively small granular sludge size and a high abundance of n-DAMO archaea or/and anammox bacteria could effectively shorten the bioreactor start-up. Meanwhile, reducing the diffusivity of solutes within granular sludge was also beneficial for expediting the start-up process and promoting dissolved CH4 utilization.
Collapse
Affiliation(s)
- Xinyan Chen
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China
| | - Qi Zhao
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China
| | - Linyan Yang
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Xueming Chen
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China.
| |
Collapse
|
9
|
Liu T, Hu S, Yuan Z, Guo J. Simultaneous dissolved methane and nitrogen removal from low-strength wastewater using anaerobic granule-based sequencing batch reactor. WATER RESEARCH 2023; 242:120194. [PMID: 37320879 DOI: 10.1016/j.watres.2023.120194] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
Anaerobic treatment of mainstream wastewater has been proposed as a promising solution to enhance bioenergy recovery for wastewater treatment plants (WWTPs). However, the limited organics for downstream nitrogen removal and emissions of dissolved methane into the atmosphere are two major barriers to the broad application of anaerobic wastewater treatment. This study aims to develop a novel technology to overcome these two challenges by achieving simultaneous removal of dissolved methane and nitrogen, and unravel the microbial competitions underpinning the process from the microbial and kinetic perspectives. To this end, a laboratory granule-based sequencing batch reactor (GSBR) coupling anammox and nitrite/nitrate-dependent anaerobic methane oxidation (n-DAMO) microorganisms was developed to treat wastewater mimicking effluent from mainstream anaerobic treatment. The GSBR achieved high-level nitrogen and dissolved methane removal rates (> 250 mg N/L/d and > 65 mg CH4/L/d) and efficiencies (> 99% total nitrogen removal and > 90% total methane removal) during the long-term demonstration. The availability of different electron acceptors (nitrite or nitrate) imposed significant effects on the removal of ammonium and dissolved methane, as well as on the microbial communities, and the abundance and expression of functional genes. The analysis of apparent microbial kinetics showed that anammox bacteria had a higher nitrite affinity than n-DAMO bacteria, while n-DAMO bacteria had a higher methane affinity than n-DAMO archaea. These kinetics underpin the observation that nitrite is a preferred electron acceptor for removing ammonium and dissolved methane than nitrate. The findings not only extend the applications of novel n-DAMO microorganisms in nitrogen and dissolved methane removal, but also provide insights into microbial cooperation and competition in granular systems.
Collapse
Affiliation(s)
- Tao Liu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Shihu Hu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Zhiguo Yuan
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia.
| |
Collapse
|
10
|
Cheng L, Yang W, Liang H, Nabi M, Li Y, Wang H, Hu J, Chen T, Gao D. Nitrogen removal from mature landfill leachate through enhanced Partial Nitrification-Anammox process in an innovative multi-stage fixed biofilm reactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162959. [PMID: 36948321 DOI: 10.1016/j.scitotenv.2023.162959] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 05/06/2023]
Abstract
In the current integrated PN/A method/process for mature landfill leachate treatment, microbial inhibition and low nitrogen removal capacity are the big barriers due to high ammonia concentration and low C/N. This study aimed to evaluate the performance of a high-rate nitrogen removal lab-scale reactor, which combines pre-denitrification and Partial Nitrification-Anammox (PN/A) in a multi-stage fixed biofilm reactor (MFBR), for mature landfill leachate treatment. A nitrogen removal efficiency (NRE) of 90.43 % and an average nitrogen removal rate (NRR) of 0.94 kg/m3·d were observed at an influent NH+ 4-N concentration of 2274.39 mg/L during the last operational phase. The nitrogen mass balance showed that the nitrogen concentration gradually decreases along the course, and nitrogen was mainly removed in the aerobic chambers, in which Anammox contributed to 86.4 % of the removed nitrogen, while the front anoxic chamber is mainly used to remove NO- 3-N from the recirculation. Redundancy analysis showed that the variation in NH+ 4-N concentration along the course was the main factor affecting microbial community succession, which shows that the reactor configuration enables efficient cooperation and distribution of different microorganisms. Moreover, economic analysis of MFBR process showed that the energy consumption and carbon addition were reduced by 58.9 % and 100 %, respectively. Therefore, the MFBR established in this study, with its new configuration, achieves efficient treatment of landfill leachate in a single reactor and is environmentally friendly, and could be considered as a reference for full-scale landfill leachate treatment.
Collapse
Affiliation(s)
- Lang Cheng
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Wenbo Yang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Hong Liang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Key Laboratory of Urban Stormwater System & Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Mohammad Nabi
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Yuqi Li
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Huan Wang
- Shanghai SUS Environmental Remediation Co., LTD, Shanghai 201703, China
| | - Jiachen Hu
- Shanghai SUS Environmental Remediation Co., LTD, Shanghai 201703, China
| | - Tao Chen
- Key Laboratory of Urban Stormwater System & Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Dawen Gao
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Key Laboratory of Urban Stormwater System & Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Key Laboratory of Urban Stormwater System & Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| |
Collapse
|
11
|
Liu T, Hu S, Yuan Z, Guo J. Microbial Stratification Affects Conversions of Nitrogen and Methane in Biofilms Coupling Anammox and n-DAMO Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4608-4618. [PMID: 36826448 DOI: 10.1021/acs.est.2c07294] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A methane-based membrane biofilm reactor (MBfR) has a suitable configuration to incorporate anammox and nitrite/nitrate-dependent anaerobic methane oxidation (n-DAMO) processes because of its high gas-transfer efficiency and efficient biomass retention. In this study, the spatial distribution of microorganisms along with the biofilm depth in methane-based MBfRs was experimentally revealed, showing the dominance of anammox bacteria, n-DAMO bacteria, and n-DAMO archaea in the outer layer, middle layer, and inner layer of biofilms, respectively. The long-term and short-term experimental investigations in conjunction with mathematical modeling collectively revealed that microorganisms living in the outer layer of biofilms tend to use substrates from wastewater, while microorganisms inhabiting the inner layer of biofilms tend to use substrates originating from biofilm substratum. Specifically, anammox bacteria dominating the biofilm surface preferentially removed the nitrite provided from wastewater, while n-DAMO bacteria mostly utilized the nitrite generated from n-DAMO archaea as these two methane-related populations spatially clustered together inside the biofilm. Likewise, the methane supplied from the membrane was mostly consumed by n-DAMO archaea, while the dissolved methane in wastewater would be primarily utilized by n-DAMO bacteria. This study offers novel insights into the impacts of microbial stratification in biofilm systems, not only expanding the fundamental understanding of biofilms and microbial interactions therein but also providing a rationale for the potential applications of methane-based MBfRs in sewage treatment.
Collapse
Affiliation(s)
- Tao Liu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, Formerly AWMC), The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Shihu Hu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, Formerly AWMC), The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Zhiguo Yuan
- Australian Centre for Water and Environmental Biotechnology (ACWEB, Formerly AWMC), The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, Formerly AWMC), The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| |
Collapse
|
12
|
Zhao ZC, Fan SQ, Lu Y, Dang CC, Wang X, Liu BF, Xing DF, Ma J, Ren NQ, Wang Q, Xie GJ. Reactivated biofilm coupling n-DAMO with anammox achieved high-rate nitrogen removal in membrane aerated moving bed biofilm reactor. ENVIRONMENTAL RESEARCH 2023; 220:115184. [PMID: 36586714 DOI: 10.1016/j.envres.2022.115184] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
As a promising technology, the combination of nitrate/nitrite-dependent anaerobic methane oxidation (n-DAMO) with Anammox offers a solution to achieve effective and sustainable wastewater treatment. However, this sustainable process faces challenges to accumulate sufficient biomass for reaching practical nitrogen removal performance. This study developed an innovative membrane aerated moving bed biofilm reactor (MAMBBR), which supported sufficient methane supply and excellent biofilm attachment, for cultivating biofilms coupling n-DAMO with Anammox. Biofilms were developed rapidly on the polyurethane foam with the supply of ammonium and nitrate, achieving the bioreactor performance of 275 g N m-3 d-1 within 102 days. After the preservation at -20 °C for 8 months, the biofilm was successfully reactivated and achieved 315 g N m-3 d-1 after 188 days. After reactivation, MAMBBR was applied to treat synthetic sidestream wastewater. Up to 99.9% of total nitrogen was removed with the bioreactor performance of 4.0 kg N m-3 d-1. Microbial community analysis and mass balance calculation demonstrated that n-DAMO microorganisms and Anammox bacteria collectively contributed to nitrogen removal in MAMBBR. The MAMBBR developed in this study provides an ideal system of integrating n-DAMO with Anammox for sustainable wastewater treatment.
Collapse
Affiliation(s)
- Zhi-Cheng Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Sheng-Qiang Fan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Yang Lu
- The Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Cheng-Cheng Dang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xuan Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - De-Feng Xing
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Guo-Jun Xie
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
13
|
Chen X, Chen X, Zeng RJ, Nie WB, Yang L, Wei W, Ni BJ. Instrumental role of bioreactors in nitrate/nitrite-dependent anaerobic methane oxidation-based biotechnologies for wastewater treatment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159728. [PMID: 36302422 DOI: 10.1016/j.scitotenv.2022.159728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Recently, the nitrate/nitrite-dependent anaerobic methane oxidation (n-DAMO) processes have become a research hotspot in the field of wastewater treatment. The n-DAMO processes could not only mitigate direct and indirect carbon emissions from wastewater treatment plants but also strengthen biological nitrogen removal. However, the applications of n-DAMO-based biotechnologies face practical difficulties mainly caused by the distinctive properties of n-DAMO microorganisms and the limited/availability of methane with poor solubility. In this sense, the choice of bioreactors will play important roles that influence the growth and functioning of n-DAMO microorganisms, thus enabling dedicated development of the n-DAMO processes and efficient applications of n-DAMO-based biotechnologies. Therefore, this paper aims to discuss the three commonly-applied types of bioreactors, covering the individual working principle and state-of-the-art removal performance of nitrogen as well as dissolved methane observed when adopted for n-DAMO-based biotechnologies. With noted limitations for each bioreactor type, several key perspectives were proposed which hopefully would inspire future investigation and practical applications of the n-DAMO processes.
Collapse
Affiliation(s)
- Xinyan Chen
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China
| | - Xueming Chen
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China.
| | - Raymond Jianxiong Zeng
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wen-Bo Nie
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Linyan Yang
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
14
|
Contreras JA, Valenzuela EI, Quijano G. Nitrate/nitrite-dependent anaerobic oxidation of methane (N-AOM) as a technology platform for greenhouse gas abatement in wastewater treatment plants: State-of-the-art and challenges. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 319:115671. [PMID: 35816965 DOI: 10.1016/j.jenvman.2022.115671] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/21/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Nitrate/nitrite-dependent anaerobic oxidation of methane (N-AOM) is a metabolic process recently discovered and partially characterized in terms of the microorganisms and pathways involved. The N-AOM process can be a powerful tool for mitigating the impacts of greenhouse gas emissions from wastewater treatment plants by coupling the reduction of nitrate or nitrite with the oxidation of residual dissolved methane. Besides specific anaerobic methanotrophs such as bacteria members of the phylum NC10 and archaea belonging to the lineage ANME-2d, recent reports suggested that other methane-oxidizing bacteria in syntrophy with denitrifiers can also perform the N-AOM process, which facilitates the application of this metabolic process for the oxidation of residual methane under realistic scenarios. This work constitutes a state-of-art review that includes the fundamentals of the N-AOM process, new information on process microbiology, bioreactor configurations, and operating conditions for process implementation in WWTP. Potential advantages of the N-AOM process over aerobic methanotrophic biotechnologies are presented, including the potential interrelation of the N-AOM with other nitrogen removal processes within the WWTP, such as the anaerobic ammonium oxidation. This work also addressed the challenges of this biotechnology towards its application at full scale, identifying and discussing critical research niches.
Collapse
Affiliation(s)
- José A Contreras
- Laboratory for Research on Advanced Processes for Water Treatment, Instituto de Ingeniería, Unidad Académica Juriquilla, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro, 76230, Mexico
| | - Edgardo I Valenzuela
- Laboratory for Research on Advanced Processes for Water Treatment, Instituto de Ingeniería, Unidad Académica Juriquilla, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro, 76230, Mexico
| | - Guillermo Quijano
- Laboratory for Research on Advanced Processes for Water Treatment, Instituto de Ingeniería, Unidad Académica Juriquilla, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro, 76230, Mexico.
| |
Collapse
|
15
|
Chen X, Li F, Huo P, Liu J, Yang L, Li X, Wei W, Ni BJ. Influences of longitudinal gradients on methane-driven membrane biofilm reactor for complete nitrogen removal: A model-based investigation. WATER RESEARCH 2022; 220:118665. [PMID: 35640508 DOI: 10.1016/j.watres.2022.118665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/13/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Integrating anammox with denitrifying anaerobic methane oxidation (DAMO) in the membrane biofilm reactor (MBfR) is a promising technology capable of achieving complete nitrogen removal from wastewater. However, it remains unknown whether reactor configurations featuring longitudinal gradients parallel to the membrane surface would affect the performance of the CH4-driven MBfR. To this end, this work aims to study the impacts of longitudinal heterogeneity potentially present in the gas and liquid phases on a representative CH4-driven MBfR performing anammox/DAMO by applying the reported modified compartmental modeling approach. Through comparing the modeling results of different reactor configurations, this work not only offered important guidance for better design, operation and monitoring of the CH4-driven MBfR, but also revealed important implications for prospective related modeling research. The total nitrogen removal efficiency of the MBfR at non-excessive CH4 supply (e.g., surface loading of ≤0.064 g-COD m-2 d-1 in this work) was found to be insensitive to both longitudinal gradients in the liquid and gas phases. Comparatively, the longitudinal gradient in the liquid phase led to distinct longitudinal biomass stratification and therefore played an influential role in the effective CH4 utilization efficiency, which was also related to the extent of reactor compartmentation considered in modeling. When supplied with non-excessive CH4, the MBfR is recommended to be designed/operated with both the biofilm reactor and the membrane lumen as plug flow reactors (PFRs) with co-current flow of wastewater and CH4, which could mitigate dissolved CH4 discharge in the effluent. For the reactor configurations with the biofilm reactor designed/operated as a PFR, multi-spot sampling in the longitudinal direction is needed to obtain a correct representation of the microbial composition of the MBfR.
Collapse
Affiliation(s)
- Xueming Chen
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, Fujian 350116, China.
| | - Fuyi Li
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, Fujian 350116, China
| | - Pengfei Huo
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, Fujian 350116, China
| | - Jinzhong Liu
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, Fujian 350116, China
| | - Linyan Yang
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xianhui Li
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney NSW 2007, Australia
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney NSW 2007, Australia.
| |
Collapse
|
16
|
Zhang F, Peng Y, Wang Z, Jiang H, Ren S, Qiu J, Zhang L. An Innovative Process for Mature Landfill Leachate and Waste Activated Sludge Simultaneous Treatment Based on Partial Nitrification, In Situ Fermentation, and Anammox (PNFA). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1310-1320. [PMID: 34941249 DOI: 10.1021/acs.est.1c06049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An innovative partial nitrification, in situ fermentation, and Anammox (PNFA) system was developed to achieve mature landfill leachate and waste activated sludge simultaneous treatment. Three separate sequencing batch reactors (SBRs) were used for partial nitrification (PN-SBR), integrated fermentation-denitrification (IFD-SBR), and partial nitrification-Anammox (PNA-SBR). After 200 days of continuous operation, a satisfactory nitrogen removal efficiency (NRE) of 99.2 ± 0.1% was obtained, with an effluent total nitrogen (TN) of 15.2 ± 3.2 mg/L. In IFD-SBR, the volatile fatty acids generated from fermentation drove efficient denitrification, obtaining sludge and nitrogen reduction rates of 4.2 ± 0.7 and 0.61 ± 0.04 kg/m3·day, respectively. Furthermore, unwanted fermentation metabolites (134.1 mg/L NH4+-N) were further treated by PNA-SBR using a combination of step-feed and intermittent aeration strategies. In PNA-SBR, Anammox significantly contributed to 82.1% nitrogen removal, and Anammox bacteria (Candidatus Brocadia, 2.3%) mutually benefited with partially denitrifying microorganisms (Thauera, 4.2%), with 66.3% of generated nitrate reduced to nitrite and then reutilized in situ by Anammox. Compared with the conventional nitrification-denitrification process, PNFA reduced oxygen energy consumption, external carbon source dosage, and CO2 emission by 21.3, 100, and 38.9%, respectively, and obtained 50.1% external WAS reduction efficiency.
Collapse
Affiliation(s)
- Fangzhai Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Zhong Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Hao Jiang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Shang Ren
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jingang Qiu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
17
|
Li Y, Liu Y, Luo J, Li YY, Liu J. Emerging onsite electron donors for advanced nitrogen removal from anammox effluent of leachate treatment: A review and future applications. BIORESOURCE TECHNOLOGY 2021; 341:125905. [PMID: 34523566 DOI: 10.1016/j.biortech.2021.125905] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/29/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Partial nitrification-anammox process is promising in leachate treatment, but the 11% residue nitrate limits the total nitrogen removal efficiency. Denitrification or partial denitrification and anammox are both practical polishing processes of anammox effluent, requiring extra electron donors. Fortunately, there are organic matter, sulfide and methane in leachate or produced by leachate treatment, which can serve as onsite electron donors. In this review, the mechanisms and processes using these three kinds of electron donors for residue nitrate reduction in anammox effluent of leachate are systematically summarized and discussed. It can be concluded that, biodegradable organic matter is an effective electron donor, sulfide is a promising electron donor, methane is a potential electron donor. Two possible applications in future based on anammox treatment of fresh and mature leachate using sulfide and methane as onsite electron donors are proposed. Through sulfide reutilization, energy-saving with about 14% of aeration reduction can be achieved.
Collapse
Affiliation(s)
- Yanyan Li
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Yanxu Liu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Jinghuan Luo
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Jianyong Liu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China.
| |
Collapse
|
18
|
Harb R, Laçin D, Subaşı I, Erguder TH. Denitrifying anaerobic methane oxidation (DAMO) cultures: Factors affecting their enrichment, performance and integration with anammox bacteria. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 295:113070. [PMID: 34153588 DOI: 10.1016/j.jenvman.2021.113070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/16/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
The recently discovered process, denitrifying anaerobic methane oxidation (DAMO), links the carbon and nitrogen biogeochemical cycles via coupling the anaerobic oxidation of methane to denitrification. The DAMO process, in this respect, has the potential to mitigate the greenhouse effect through the assimilation of dissolved methane. Denitrification via methane oxidation rather than organic matter, provides a new perspective to performing this once thought to be well established process. The two main species responsible for this process are "Candidatus Methylomirabilis oxyfera (M. oxyfera), and "Candidatus Methanoperedens nitroreducens" (M. nitroreducens). M. oxyfera is responsible of reducing nitrite while M. nitroreducens reduces nitrate to nitrite. These two microorganisms, despite their different pathways, were found to exist together in nature through a syntrophic relationship. Their co-existence with anaerobic ammonium oxidation (Anammox) bacteria was also revealed in the last decade. Anammox bacteria are chemolithoautotrophs, converting ammonium and nitrite to N2 and nitrate. They are responsible for the release of more than 50% of oceanic N2, hence play an important role in the global nitrogen cycle. Factors leading to the enrichment of DAMO cultures and their cultivation with Anammox cultures are of significance for improved nitrogen removal systems with decreased greenhouse effect, and even for further full-scale applications. This study, therefore, aims to present an updated review of the DAMO process, by focusing on the factors that might have a significant role in enrichment of DAMO microorganisms and their co-existence with Anammox bacteria. Factors such as temperature, pH, inoculum and feed type, trace metals and reactor configuration are among the ones discussed in detail. Factors, which have not been investigated, are also elucidated to provide a better understanding of the process and set research goals that will aid in the development of DAMO-centered wastewater treatment alternatives.
Collapse
Affiliation(s)
- Rayaan Harb
- Department of Environmental Engineering, Middle East Technical University, Ankara, Turkey
| | - Dilan Laçin
- Department of Environmental Engineering, Middle East Technical University, Ankara, Turkey
| | - Irmak Subaşı
- Department of Environmental Engineering, Middle East Technical University, Ankara, Turkey
| | - Tuba H Erguder
- Department of Environmental Engineering, Middle East Technical University, Ankara, Turkey.
| |
Collapse
|
19
|
Simultaneous Anaerobic and Aerobic Ammonia and Methane Oxidation under Oxygen Limitation Conditions. Appl Environ Microbiol 2021; 87:e0004321. [PMID: 33893122 DOI: 10.1128/aem.00043-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methane and ammonia have to be removed from wastewater treatment effluent in order to discharge it to receiving water bodies. A potential solution for this is a combination of simultaneous ammonia and methane oxidation by anaerobic ammonia oxidation (anammox) bacteria and nitrite/nitrate-dependent anaerobic methane oxidation (N-damo) microorganisms. When applied, these microorganisms will be exposed to oxygen, but little is known about the effect of a low concentration of oxygen on a culture containing these microorganisms. In this study, a stable coculture containing anammox and N-damo microorganisms in a laboratory scale bioreactor was established under oxygen limitation. Membrane inlet mass spectrometry (MIMS) was used to directly measure the in situ simultaneous activity of N-damo, anammox, and aerobic ammonia-oxidizing microorganisms. In addition, batch tests revealed that the bioreactor also harbored aerobic methanotrophs and anaerobic methanogens. Together with fluorescence in situ hybridization (FISH) analysis and metagenomics, these results indicate that the combination of N-damo and anammox activity under the continuous supply of limiting oxygen concentrations is feasible and can be implemented for the removal of methane and ammonia from anaerobic digester effluents. IMPORTANCE Nitrogen in wastewater leads to eutrophication of the receiving water bodies, and methane is a potent greenhouse gas; it is therefore important that these are removed from wastewater. A potential solution for the simultaneous removal of nitrogenous compounds and methane is the application of a combination of nitrite/nitrate-dependent methane oxidation (N-damo) and anaerobic ammonia oxidation (annamox). In order to do so, it is important to investigate the effect of oxygen on these two anaerobic processes. In this study, we investigate the effect of a continuous oxygen supply on the activity of an anaerobic methane- and ammonia-oxidizing coculture. The findings presented in this study are important for the potential application of these two microbial processes in wastewater treatment.
Collapse
|
20
|
Nie WB, Ding J, Xie GJ, Tan X, Lu Y, Peng L, Liu BF, Xing DF, Yuan Z, Ren N. Simultaneous nitrate and sulfate dependent anaerobic oxidation of methane linking carbon, nitrogen and sulfur cycles. WATER RESEARCH 2021; 194:116928. [PMID: 33618110 DOI: 10.1016/j.watres.2021.116928] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/02/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
ANaerobic MEthanotrophic (ANME) archaea are critical microorganisms mitigating methane emission from anoxic zones. In previous studies, sulfate-dependent anaerobic oxidation of methane (AOM) and nitrate-dependent AOM, performed by different clades of ANME archaea, were detected in marine sediments and freshwater environments, respectively. This study shows that simultaneous sulfate- and nitrate-dependent AOM can be mediated by a clade of ANME archaea, which may occur in estuaries and coastal zones, at the interface of marine and freshwater environments enriched with sulfate and nitrate. Long-term (~1,200 days) performance data of a bioreactor, metagenomic analysis and batch experiments demonstrated that ANME-2d not only conducted AOM coupled to reduction of nitrate to nitrite, but also coupled to the conversion of sulfate to sulfide, in collaboration with sulfate-reducing bacteria (SRB). Sulfide was oxidized back to sulfate by sulfide-oxidizing autotrophic denitrifiers with nitrate or nitrite as electron acceptors, in turn alleviating sulfide accumulation. In addition, dissimilatory nitrate reduction to ammonium performed by ANME-2d was detected, providing substrates to Anammox. Metatranscriptomic analysis revealed significant upregulation of flaB in ANME-2d and pilA in Desulfococcus, which likely resulted in the formation of unique nanonets connecting cells and expanding within the biofilm, and putatively providing structural links between ANME-2d and SRB for electron transfer. Simultaneous nitrate- and sulfate-dependent AOM as observed in this study could be an important link between the carbon, nitrogen and sulfur cycles in natural environments, such as nearshore environments.
Collapse
Affiliation(s)
- Wen-Bo Nie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No.73, Huanghe Road, Nangang District, Harbin, Heilongjiang, 150090, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No.73, Huanghe Road, Nangang District, Harbin, Heilongjiang, 150090, China
| | - Guo-Jun Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No.73, Huanghe Road, Nangang District, Harbin, Heilongjiang, 150090, China.
| | - Xin Tan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No.73, Huanghe Road, Nangang District, Harbin, Heilongjiang, 150090, China
| | - Yang Lu
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore 637551, Singapore
| | - Lai Peng
- School of Resources and Environmental Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No.73, Huanghe Road, Nangang District, Harbin, Heilongjiang, 150090, China
| | - De-Feng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No.73, Huanghe Road, Nangang District, Harbin, Heilongjiang, 150090, China
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane QLD, 4072, Australia
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No.73, Huanghe Road, Nangang District, Harbin, Heilongjiang, 150090, China
| |
Collapse
|
21
|
Liu C, Liu T, Zheng X, Meng J, Chen H, Yuan Z, Hu S, Guo J. Rapid formation of granules coupling n-DAMO and anammox microorganisms to remove nitrogen. WATER RESEARCH 2021; 194:116963. [PMID: 33652229 DOI: 10.1016/j.watres.2021.116963] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/30/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Granular sludge exhibits unique features, including rapid settling velocity, high loading rate and relative insensitivity against inhibitors, thus being a favorable platform for the cultivation of slow-growing and vulnerable microorganisms, such as anaerobic ammonium oxidation (anammox) bacteria and nitrite/nitrate-dependent anaerobic methane oxidation (n-DAMO) microorganisms. While anammox granules have been widely applied, little is known about how to speed up the granulation process of n-DAMO microorganisms, which grow even slower than anammox bacteria. In this study, we used mature anammox granules as biotic carriers to embed n-DAMO microorganisms, which obtained combined anammox + n-DAMO granules within 6 months. The results of whole-granule 16S rRNA gene amplicon sequencing showed the coexistence of anammox bacteria, n-DAMO bacteria and n-DAMO archaea. The microbial stratification along granule radius was further elucidated by cryosection-16S rRNA gene amplicon sequencing, showing the dominance of n-DAMO archaea and anammox bacteria at inner and outer layers, respectively. Moreover, the images of cryosection-fluorescence in situ hybridization (FISH) verified this stratification and also indicated a shift in microbial stratification. Specifically, n-DAMO bacteria and n-DAMO archaea attached to the anammox granule surface initially, which moved to the inner layer after 4-months operation. On the basis of combined anammox + n-DAMO granules, a practically useful nitrogen removal rate (1.0 kg N/m3/d) was obtained from sidestream wastewater, which provides new avenue to remove nitrogen from wastewater using methane as carbon source.
Collapse
Affiliation(s)
- Chunshuang Liu
- The University of Queensland, Advanced Water Management Centre, St Lucia, QLD 4072, Australia; College of Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| | - Tao Liu
- The University of Queensland, Advanced Water Management Centre, St Lucia, QLD 4072, Australia
| | - Xiaoying Zheng
- The University of Queensland, Advanced Water Management Centre, St Lucia, QLD 4072, Australia; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jia Meng
- The University of Queensland, Advanced Water Management Centre, St Lucia, QLD 4072, Australia
| | - Hui Chen
- The University of Queensland, Advanced Water Management Centre, St Lucia, QLD 4072, Australia
| | - Zhiguo Yuan
- The University of Queensland, Advanced Water Management Centre, St Lucia, QLD 4072, Australia
| | - Shihu Hu
- The University of Queensland, Advanced Water Management Centre, St Lucia, QLD 4072, Australia
| | - Jianhua Guo
- The University of Queensland, Advanced Water Management Centre, St Lucia, QLD 4072, Australia.
| |
Collapse
|
22
|
Xiao R, Ni BJ, Liu S, Lu H. Impacts of organics on the microbial ecology of wastewater anammox processes: Recent advances and meta-analysis. WATER RESEARCH 2021; 191:116817. [PMID: 33461083 DOI: 10.1016/j.watres.2021.116817] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/16/2020] [Accepted: 01/05/2021] [Indexed: 05/25/2023]
Abstract
Anaerobic ammonium oxidation (anammox) represents a promising technology for wastewater nitrogen removal. Organics management is critical to achieving efficient and stable performance of anammox or integrated processes, e.g., denitratation-anammox. The aim of this systematic review is to synthesize the state-of-the-art knowledge on the multifaceted impacts of organics on wastewater anammox community structure and function. Both exogenous and endogenous organics are discussed with respect to their effects on the biofilm/granule structure and function, as well as the interactions between anammox bacteria (AnAOB) and a broad range of coexisting functional groups. A global core community consisting of 19 taxa is identified and a co-occurrence network is constructed by meta-analysis on the 16S rDNA sequences of 149 wastewater anammox samples. Correlations between core taxa, keystone taxa, and environmental factors, including COD, nitrogen loading rate (NLR) and C/N ratio are obtained. This review provides a holistic understanding of the microbial responses to different origins and types of organics in wastewater anammox reactors, which will facilitate the design and operation of more efficient anammox-based wastewater nitrogen removal process.
Collapse
Affiliation(s)
- Rui Xiao
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Sitong Liu
- Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Huijie Lu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China.
| |
Collapse
|
23
|
Ding J, Zeng RJ. Fundamentals and potential environmental significance of denitrifying anaerobic methane oxidizing archaea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143928. [PMID: 33316511 DOI: 10.1016/j.scitotenv.2020.143928] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/01/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
Many properties of denitrifying anaerobic methane oxidation (DAMO) bacteria have been explored since their first discovery, while DAMO archaea have attracted less attention. Since nitrate is more abundant than nitrite not only in wastewater but also in the natural environment, in depth investigations of the nitrate-DAMO process should be conducted to determine its environmental significance in the global carbon and nitrogen cycles. This review summarizes the status of research on DAMO archaea and the catalyzed nitrate-dependent anaerobic methane oxidation, including such aspects as laboratory enrichment, environmental distribution, and metabolic mechanism. It is shown that appropriate inocula and enrichment parameters are important for the culture enrichment and thus the subsequent DAMO activity, but there are still relatively few studies on the environmental distribution and physiological metabolism of DAMO archaea. Finally, some hypotheses and directions for future research on DAMO archaea, anaerobic methanotrophic archaea, and even anaerobically metabolizing archaea are also discussed.
Collapse
Affiliation(s)
- Jing Ding
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China; Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Raymond Jianxiong Zeng
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; CAS Key Laboratory for Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
24
|
Fan SQ, Xie GJ, Lu Y, Liu BF, Xing DF, Ding J, Han HJ, Ren NQ. Nitrate/nitrite dependent anaerobic methane oxidation coupling with anammox in membrane biotrickling filter for nitrogen removal. ENVIRONMENTAL RESEARCH 2021; 193:110533. [PMID: 33285154 DOI: 10.1016/j.envres.2020.110533] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/10/2020] [Accepted: 11/22/2020] [Indexed: 06/12/2023]
Abstract
Combining nitrate/nitrite dependent anaerobic methane oxidation (n-DAMO) and anaerobic ammonium oxidation (Anammox) is a promising sustainable wastewater treatment technology, which simultaneously achieve nitrogen removal and methane emission mitigation. However, the practical application of n-DAMO has been greatly limited by its extremely slow growth-rate and low reaction rate. This work proposes an innovative Membrane BioTrickling Filter (MBTF), which consist of hollow fiber membrane for effective methane supplementation and polyurethane sponge as support media for the attachment and growth of biofilm coupling n-DAMO with Anammox. When steady state with a hydraulic retention time (HRT) of 6.00 h was reached, above 99.9% of nitrogen was removed from synthetic sidestream wastewater at a rate of 3.99 g N L-1 d-1. This system presented robust capacity to withstand unstable partial nitritation effluent, achieving complete nitrogen removal at a varied nitrite to ammonium ratio in the range of 1.10-1.40. It is confirmed that n-DAMO and Anammox microorganisms jointly dominated the microbial community by pyrosequencing technology. The complete nitrogen removal potential at high-rate and efficient biomass retention (12.4 g VSS L-1) of MBTF offers promising alternative for sustainable wastewater treatment by the combination of n-DAMO and Anammox.
Collapse
Affiliation(s)
- Sheng-Qiang Fan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Guo-Jun Xie
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Yang Lu
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, 637551, Singapore
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - De-Feng Xing
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Hong-Jun Han
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
25
|
Nie WB, Ding J, Xie GJ, Yang L, Peng L, Tan X, Liu BF, Xing DF, Yuan Z, Ren NQ. Anaerobic Oxidation of Methane Coupled with Dissimilatory Nitrate Reduction to Ammonium Fuels Anaerobic Ammonium Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1197-1208. [PMID: 33185425 DOI: 10.1021/acs.est.0c02664] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nitrate/nitrite-dependent anaerobic methane oxidation (n-DAMO) is critical for mitigating methane emission and returning reactive nitrogen to the atmosphere. The genomes of n-DAMO archaea show that they have the potential to couple anaerobic oxidation of methane to dissimilatory nitrate reduction to ammonium (DNRA). However, physiological details of DNRA for n-DAMO archaea were not reported yet. This work demonstrated n-DAMO archaea coupling the anaerobic oxidation of methane to DNRA, which fueled Anammox in a methane-fed membrane biofilm reactor with nitrate as only electron acceptor. Microelectrode analysis revealed that ammonium accumulated where nitrite built up in the biofilm. Ammonium production and significant upregulation of gene expression for DNRA were detected in suspended n-DAMO culture with nitrite exposure, indicating that nitrite triggered DNRA by n-DAMO archaea. 15N-labeling batch experiments revealed that n-DAMO archaea produced ammonium from nitrate rather than from external nitrite. Localized gradients of nitrite produced by n-DAMO archaea in biofilms induced ammonium production via the DNRA process, which promoted nitrite consumption by Anammox bacteria and in turn helped n-DAMO archaea resist stress from nitrite. As biofilms predominate in various ecosystems, anaerobic oxidation of methane coupled with DNRA could be an important link between the global carbon and nitrogen cycles that should be investigated in future research.
Collapse
Affiliation(s)
- Wen-Bo Nie
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang, Harbin 150090, Heilongjiang, China
| | - Jie Ding
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang, Harbin 150090, Heilongjiang, China
| | - Guo-Jun Xie
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang, Harbin 150090, Heilongjiang, China
| | - Lu Yang
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore 637551, Singapore
| | - Lai Peng
- School of Resources and Environmental Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Xin Tan
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang, Harbin 150090, Heilongjiang, China
| | - Bing-Feng Liu
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang, Harbin 150090, Heilongjiang, China
| | - De-Feng Xing
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang, Harbin 150090, Heilongjiang, China
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Nan-Qi Ren
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang, Harbin 150090, Heilongjiang, China
| |
Collapse
|
26
|
Diversity, enrichment, and genomic potential of anaerobic methane- and ammonium-oxidizing microorganisms from a brewery wastewater treatment plant. Appl Microbiol Biotechnol 2020; 104:7201-7212. [PMID: 32607646 PMCID: PMC7374466 DOI: 10.1007/s00253-020-10748-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/11/2020] [Accepted: 06/16/2020] [Indexed: 10/29/2022]
Abstract
Anaerobic wastewater treatment offers several advantages; however, the effluent of anaerobic digesters still contains high levels of ammonium and dissolved methane that need to be removed before these effluents can be discharged to surface waters. The simultaneous anaerobic removal of methane and ammonium by denitrifying (N-damo) methanotrophs in combination with anaerobic ammonium-oxidizing (anammox) bacteria could be a potential solution to this challenge. After a molecular survey of a wastewater plant treating brewery effluent, indicating the presence of both N-damo and anammox bacteria, we started an anaerobic bioreactor with a continuous supply of methane, ammonium, and nitrite to enrich these anaerobic microorganisms. After 14 months of operation, a stable enrichment culture containing two types of 'Candidatus Methylomirabilis oxyfera' bacteria and two strains of 'Ca. Brocadia'-like anammox bacteria was achieved. In this community, anammox bacteria converted 80% of the nitrite with ammonium, while 'Ca. Methylomirabilis' contributed to 20% of the nitrite consumption. The analysis of metagenomic 16S rRNA reads and fluorescence in situ hybridization (FISH) correlated well and showed that, after 14 months, 'Ca. Methylomirabilis' and anammox bacteria constituted approximately 30 and 20% of the total microbial community. In addition, a substantial part (10%) of the community consisted of Phycisphaera-related planctomycetes. Assembly and binning of the metagenomic sequences resulted in high-quality draft genome of two 'Ca. Methylomirabilis' species containing the marker genes pmoCAB, xoxF, and nirS and putative NO dismutase genes. The anammox draft genomes most closely related to 'Ca. Brocadia fulgida' included the marker genes hzsABC, hao, and hdh. Whole-reactor and batch anaerobic activity measurements with methane, ammonium, nitrite, and nitrate revealed an average anaerobic methane oxidation rate of 0.12 mmol h-1 L-1 and ammonium oxidation rate of 0.5 mmol h-1 L-1. Together, this study describes the enrichment and draft genomes of anaerobic methanotrophs from a brewery wastewater treatment plant, where these organisms together with anammox bacteria can contribute significantly to the removal of methane and ammonium in a more sustainable way. KEY POINTS: • An enrichment culture containing both N-damo and anammox bacteria was obtained. • Simultaneous consumption of ammonia, nitrite, and methane under anoxic conditions. • In-depth metagenomic biodiversity analysis of inoculum and enrichment culture.
Collapse
|