1
|
Peng P, Yan X, Zhou X, Chen L, Li X, Miao Y, Zhao F. Enhancing degradation of antibiotic-combined pollutants by a hybrid system containing advanced oxidation and microbial treatment, a review. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136300. [PMID: 39471633 DOI: 10.1016/j.jhazmat.2024.136300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/01/2024]
Abstract
Antibiotics often co-exist with other pollutants, posing a significant threat to ecosystems. This review first examines the applications and limitations of microbial treatments for various types of antibiotic-combined pollutants. Then, it explores the mechanisms and application of hybrid systems that integrate advanced oxidation with microbial treatment, categorized into two-stage and intimately hybrid systems. Finally, the review highlights key knowledge gaps in hybrid systems and provides new insight into the removal of combined pollutants.
Collapse
Affiliation(s)
- Pin Peng
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, Fujian 361021, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Xinyu Yan
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, Fujian 361021, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Xudong Zhou
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, Fujian 361021, China
| | - Lixiang Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, Fujian 361021, China
| | - Xiang Li
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, Fujian 361021, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Yijing Miao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, Fujian 361021, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Feng Zhao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, Fujian 361021, China.
| |
Collapse
|
2
|
Zhang HL, Wang HW, Yang JH, Chen JJ, Liu J, Shi QC, Zhao HC, Chen MX, Yang R, Ji QT, Wang PY. From dansyl-modified biofilm disruptors to β-cyclodextrin-optimized multifunctional supramolecular nanovesicles: their improved treatment for plant bacterial diseases. J Nanobiotechnology 2024; 22:739. [PMID: 39609837 PMCID: PMC11603638 DOI: 10.1186/s12951-024-03028-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND Bacterial diseases caused by phytopathogenic Xanthomonas pose a significant threat to global agricultural production, causing substantial economic losses. Biofilm formation by these bacteria enhances their resistance to environmental stressors and chemical treatments, complicating disease control. The key to overcoming this challenge lies in the development of multifunctional green bactericides capable of effectively breaking down biofilm barriers, improving foliar deposition properties, and achieving the control of bacterial diseases. RESULTS We have developed a kind of innovative green bactericide from small-molecule conception to eco-friendly supramolecular nanovesicles (DaPA8@β -CD) by host-guest supramolecular technology. These nanoscale assemblies demonstrated the ability to inhibit and eradicate biofilm formation, while also promoted foliar wetting and effective deposition properties, laying the foundation for improving agrochemical utilization. Studies revealed that DaPA8@β -CD exhibited significant biofilm inhibition (78.66% at 7.0 µ g mL- 1) and eradication (83.50% at 25.0 µ g mL- 1), outperforming DaPA8 alone (inhibition: 59.71%, eradication: 66.79%). These nanovesicles also reduced exopolysaccharide formation and bacterial virulence. In vivo experiments showed enhanced control efficiency against citrus bacterial canker (protective: 78.04%, curative: 50.80%) at a low dose of 200 µ g mL- 1, superior to thiodiazole-copper-20%SC and DaPA8 itself. CONCLUSION This study demonstrates the potential of DaPA8@β -CD nanovesicles as multifunctional bactericides for managing Xanthomonas -induced plant diseases, highlighting the advantages of using host-guest supramolecular technology to enhance agrochemical bioavailability.
Collapse
Affiliation(s)
- Hui-Ling Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Hong-Wei Wang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Jing-Han Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Jia-Jia Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Juan Liu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Qing-Chuan Shi
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Hai-Cong Zhao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Mo-Xian Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| | - Run Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Qing-Tian Ji
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Pei-Yi Wang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
3
|
Wang YF, Liu YJ, Fu YM, Xu JY, Zhang TL, Cui HL, Qiao M, Rillig MC, Zhu YG, Zhu D. Microplastic diversity increases the abundance of antibiotic resistance genes in soil. Nat Commun 2024; 15:9788. [PMID: 39532872 PMCID: PMC11557862 DOI: 10.1038/s41467-024-54237-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
The impact of microplastics on antibiotic resistance has attracted widespread attention. However, previous studies primarily focused on the effects of individual microplastics. In reality, diverse microplastic types accumulate in soil, and it remains less well studied whether microplastic diversity (i.e., variations in color, shape or polymer type) can be an important driver of increased antibiotic resistance gene (ARG) abundance. Here, we employed microcosm studies to investigate the effects of microplastic diversity on soil ARG dynamics through metagenomic analysis. Additionally, we evaluated the associated potential health risks by profiling virulence factor genes (VFGs) and mobile genetic elements (MGEs). Our findings reveal that as microplastic diversity increases, there is a corresponding rise in the abundance of soil ARGs, VFGs and MGEs. We further identified microbial adaptive strategies involving genes (changed genetic diversity), community (increased specific microbes), and functions (enriched metabolic pathways) that correlate with increased ARG abundance and may thus contribute to ARG dissemination. Additional global change factors, including fungicide application and plant diversity reduction, also contributed to elevated ARG abundance. Our findings suggest that, in addition to considering contamination levels, it is crucial to monitor microplastic diversity in ecosystems due to their potential role in driving the dissemination of antibiotic resistance through multiple pathways.
Collapse
Affiliation(s)
- Yi-Fei Wang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, China
| | - Yan-Jie Liu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- Ecology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Yan-Mei Fu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Jia-Yang Xu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tian-Lun Zhang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hui-Ling Cui
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Min Qiao
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
| | - Matthias C Rillig
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, China
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China.
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, China.
| |
Collapse
|
4
|
Zhao Y, Xu X, Huang T, Ahmed HG, Jha K, Wu B. Efficient photochemical conversion of naproxen by butanedione: Role of energy transfer. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134258. [PMID: 38608588 DOI: 10.1016/j.jhazmat.2024.134258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/17/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
Photochemical active species generated from photosensitizers, e.g., dissolved organic matter (DOM), play vital roles in the transformation of micropollutants in water. Here, butanedione (BD), a redox-active moiety in DOM and widely found in nature, was employed to photo-transform naproxen (NPX) with peracetic acid (PAA) and H2O2 as contrasts. The results obtained showed that the BD exhibited more applicable on NPX degradation. It works in the lake or river water under UV and solar irradiation, and its NPX degradation efficiency was 10-30 times faster than that of PAA and H2O2. The reason for the efficient transformation of pollutants is that the BD system was proved to be a non-free radical dominated mechanism. The quantum yield of BD (Ф254 nm) was calculated to be 0.064, which indicates that photophysical process is the dominant mode of BD conversion. By adding trapping agents, direct energy transfer from 3BD* to NPX (in anoxic environment) or dissolved oxygen (in aerobic environment) was proved to play a major role (> 91 %). Additionally, the BD process reduces the toxicity of NPX and promotes microbial growth after irradiation. Overall, this study significantly deepened the understanding of the transformation between BD and micropollutants, and provided a potential BD-based process for micropollutants removal under solar irradiation.
Collapse
Affiliation(s)
- Yue Zhao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China
| | - Xiaoyi Xu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China; Key Laboratory of Suzhou Sponge City Technology, Suzhou 215009, People's Republic of China
| | - Tianyin Huang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China; Key Laboratory of Suzhou Sponge City Technology, Suzhou 215009, People's Republic of China
| | - Hewr Gailani Ahmed
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China
| | - Kartikesh Jha
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China
| | - Bingdang Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China; Key Laboratory of Suzhou Sponge City Technology, Suzhou 215009, People's Republic of China.
| |
Collapse
|
5
|
Castaño-Ortiz JM, Romero F, Cojoc L, Barceló D, Balcázar JL, Rodríguez-Mozaz S, Santos LHMLM. Accumulation of polyethylene microplastics in river biofilms and effect on the uptake, biotransformation and toxicity of the antimicrobial triclosan. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123369. [PMID: 38253165 DOI: 10.1016/j.envpol.2024.123369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024]
Abstract
The interaction of multiple stressors in freshwater ecosystems may lead to adverse effects on aquatic communities and their ecological functions. Microplastics (MPs) are a class of contaminants of emerging concern that can exert both direct and indirect ecotoxicological effects. A growing number of studies have investigated MPs-attached microbial communities, but the interaction between MPs and substrate-associated biofilm (i.e., on natural river substrates, such as stones and sediments) remains poorly studied. In this work, the combined effects of polyethylene MPs (PE-MPs) with a particle size of 10-45 μm (2 mg/L) and the antimicrobial triclosan (TCS) (20 μg/L) were investigated on river biofilms through a short-term exposure experiment (72 h). To the best of authors' knowledge, this is the first time that the combined effects of MPs and chemical contaminants in substrate-associated river biofilms were assessed. Different response parameters were evaluated, including (i) exposure assessment and ii) contaminants effects at different levels: bacterial community composition, antibiotic resistance, extracellular polymeric substances (EPS), photosynthetic efficiency (Yeff), and leucine aminopeptidase activity (LAPA). Triclosan was accumulated in river biofilms (1189-1513 ng/g dw) alongside its biotransformation product methyl-triclosan (20-29 ng/g dw). Also, PE-MPs were detected on biofilms (168-292 MP/cm2), but they had no significant influence on the bioaccumulation and biotransformation of TCS. A moderate shift in bacterial community composition was driven by TCS, regardless of PE-MPs co-exposure (e.g., increased relative abundance of Sphingomonadaceae family). Additionally, Yeff and EPS content were significantly disrupted in TCS-exposed biofilms. Therefore, the most remarkable effects on river biofilms were related to the antimicrobial TCS, whereas single PE-MPs exposure did not alter any of the evaluated parameters. These results demonstrate that biofilms might act as environmental sink of MPs. Although no interaction between PE-MPs and TCS was observed, the possible indirect impact of other MPs-adsorbed contaminants on biofilms should be further assessed.
Collapse
Affiliation(s)
- J M Castaño-Ortiz
- Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003, Girona, Spain; University of Girona, Girona, Spain
| | - F Romero
- Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003, Girona, Spain; University of Girona, Girona, Spain; Plant-Soil Interactions group, Agroscope, 8046, Zurich, Switzerland
| | - L Cojoc
- Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003, Girona, Spain; University of Girona, Girona, Spain
| | - D Barceló
- Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003, Girona, Spain; University of Girona, Girona, Spain; IDAEA-CSIC, Department of Environmental Chemistry, C/ Jordi Girona 18-26, 08034, Barcelona, Spain
| | - J L Balcázar
- Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003, Girona, Spain; University of Girona, Girona, Spain
| | - S Rodríguez-Mozaz
- Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003, Girona, Spain; University of Girona, Girona, Spain
| | - L H M L M Santos
- Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003, Girona, Spain; University of Girona, Girona, Spain.
| |
Collapse
|
6
|
Fang Y, Lin G, Liu Y, Zhang J. Advanced treatment of antibiotic-polluted wastewater by a consortium composed of bacteria and mixed cyanobacteria. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123293. [PMID: 38184153 DOI: 10.1016/j.envpol.2024.123293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/15/2023] [Accepted: 01/03/2024] [Indexed: 01/08/2024]
Abstract
This study constructed a cyanobacteria-bacteria consortium using a mixture of non-toxic cyanobacteria (Synechococcus sp. and Chroococcus sp.) immobilized in calcium alginate and native bacteria in wastewater. The consortium was used for the advanced treatment of sulfamethoxazole-polluted wastewater and the production of cyanobacterial lipid. Mixed cyanobacteria increased the abundances of denitrifying bacteria and phosphorus-accumulating bacteria as well as stimulated various functional enzymes in the wastewater bacterial community, which efficiently removed 70.01-71.86% of TN, 91.45-97.04% of TP and 70.72-76.85% of COD from the wastewater. The removal efficiency of 55.29-69.90% for sulfamethoxazole was mainly attributed to the upregulation of genes encoding oxidases, reductases, oxidoreductases and transferases in two cyanobacterial species as well as the increased abundances of Stenotrophomonas, Sediminibacterium, Arenimonas, Novosphingobium, Flavobacterium and Hydrogenophaga in wastewater bacterial community. Transcriptomic responses proved that mixed cyanobacteria presented an elevated lipid productivity of 33.90 mg/L/day as an adaptive stress response to sulfamethoxazole. Sediminibacterium, Flavobacterium and Exiguobacterium in the wastewater bacterial community may also promote cyanobacterial lipid synthesis through symbiosis. Results of this study proved that the mixed cyanobacteria-bacteria consortium was a promising approach for advanced wastewater treatment coupled to cyanobacterial lipid production.
Collapse
Affiliation(s)
- Youshuai Fang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China.
| | - Guannan Lin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China
| | - Ying Liu
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China.
| | - Jian Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| |
Collapse
|
7
|
Zuo X, Zhang S, Chen S. The role of water matrix on antibiotic resistance genes transmission in substrate layer from stormwater bioretention cells. WATER RESEARCH 2024; 251:121103. [PMID: 38183842 DOI: 10.1016/j.watres.2024.121103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/01/2024] [Accepted: 01/02/2024] [Indexed: 01/08/2024]
Abstract
Recently, extensive attention has been paid to antibiotic resistance genes (ARGs) transmission. However, little available literature could be found about ARGs transmission in stormwater bioretention cells, especially the role of water matrix on ARGs transmission. Batch experiments were conducted to investigate target ARGs (blaTEM, tetR and aphA) transmission behaviors in substrate layer from stormwater bioretention cells under different water matrices, including nutrient elements (e.g., carbon, nitrogen and phosphorus), water environmental conditions (dissolved oxygen (DO), pH and salinity, etc.) and pollution factors (like heavy metals, antibiotics and disinfectants), showing that ARGs conjugation frequency increased sharply with the enhancement of water matrices (expect DO and pH), while there were obvious increasing tendencies for all ARGs transformation frequencies under only the pollution factor. The correlation between dominant bacteria and ARGs transmission implied that conjugation and transformation of ARGs were mainly determined by Firmicutes, Bacteroidota, Latescibacterota, Chloroflexi and Cyanobacteria at the phylum level, and by Sphingomonas, Ensifer, IMCC26256, Rubellimicrobium, Saccharimonadales, Vicinamibacteraceae, Nocardioides, JG30-KF-CM66 at the genus level. The mentioned dominant bacteria were responsible for intracellular reactive oxygen species (ROS) and cell membrane permeability (CMP) in the substrate layer, where the amplification of intracellular ROS variation were the largest with 144 and 147 % under the condition of TP and salinity, respectively, and the one of CMP variation were the highest more than 165 % under various pollution factors. Furthermore, both increasing DO and reducing salinity could be potential approaches for the inhibition of ARGs transmission in bioretention cells taking into account the simultaneous removal of conventional pollutants.
Collapse
Affiliation(s)
- XiaoJun Zuo
- Jiangsu Engineering Lab of Water and Soil Eco-remediation, School of Environment, Nanjing Normal University, Nanjing 210023, China.
| | - SongHu Zhang
- School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - ShaoJie Chen
- School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| |
Collapse
|
8
|
Liu S, Zhang Z, Gu P, Yang K, Huang X, Li M, Miao H. Elucidating applied voltage on the fate of antibiotic resistance genes in microbial electrolysis cell: Focusing on its transmission between anolyte and biofilm microbes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166901. [PMID: 37683855 DOI: 10.1016/j.scitotenv.2023.166901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/23/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Microbial electrolysis cell (MEC) system to treat wastewater containing antibiotics has been researched actively in past years. However, the fate of antibiotic resistant genes (ARGs) in MEC is not fully revealed. The effect of applied voltage on the migration of ARGs between anolyte and biofilm microbes via examining the microbial physiology and abundances of macrolide resistance genes (MRGs) and mobile genetic elements (MGEs) was elucidated in this research. Results showed that the abundance of MRGs and MGEs was decreased in the anolyte, but their abundances were increased on the electrode biofilm, indicating their transmission from anolyte to biofilm microbes. Increased applied voltage enhanced adenosine triphosphate (ATP), reactive oxygen species (ROS), and cell membrane permeability of electrode microorganisms. The structure of the electrode microbial community was shifted through applied voltage, and the abundance of electroactive microorganisms (Geobacter, Azospirillum and Dechlorobacter) was significantly improved. Network analysis revealed that Geobacter and Geothrix were potential hosts for MRGs. Therefore, the horizontal and vertical gene transfer of ARGs could be increased by the applied voltage, leading to the enriched ARGs at the electrode biofilm. This study provides evidence and insights into the transmission of ARGs between anolyte and biofilm microbes in MEC system. SYNOPSIS: This study revealed the effect of applied voltage on ARGs in MEC and the potential migration mechanism of ARGs.
Collapse
Affiliation(s)
- Shiguang Liu
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Zengshuai Zhang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Engineering Laboratory of Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, PR China.
| | - Peng Gu
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Kunlun Yang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Xin Huang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Manman Li
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Hengfeng Miao
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Engineering Laboratory of Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, PR China; Water Treatment Technology and Material Innovation Center, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| |
Collapse
|
9
|
Chen D, Zou J, Chen D, He X, Zhang C, Li J, Lan S, Liu ZJ, Zou S, Qian X. Chicken manure application alters microbial community structure and the distribution of antibiotic-resistance genes in rhizosphere soil of Cinnamomum camphora forests. FEMS Microbiol Ecol 2023; 99:fiad155. [PMID: 38006232 PMCID: PMC10710299 DOI: 10.1093/femsec/fiad155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/19/2023] [Accepted: 11/23/2023] [Indexed: 11/26/2023] Open
Abstract
The distribution of antibiotic-resistance genes (ARGs) in environmental soil is greatly affected by livestock and poultry manure fertilization, the application of manure will lead to antibiotic residues and ARGs pollution, and increase the risk of environmental pollution and human health. Cinnamomum camphora is an economically significant tree species in Fujian Province, China. Here, through high-throughput sequencing analysis, significant differences in the composition of the bacterial community and ARGs were observed between fertilized and unfertilized rhizosphere soil. The application of chicken manure organic fertilizer significantly increased the relative abundance and alpha diversity of the bacterial community and ARGs. The content of organic matter, soluble organic nitrogen, available phosphorus, nitrate reductase, hydroxylamine reductase, urease, acid protease, β-glucosidase, oxytetracycline, and tetracycline in the soil of C. camphora forests have significant effects on bacterial community and ARGs. Significant correlations between environmental factors, bacterial communities, and ARGs were observed in the rhizosphere soil of C. camphora forests according to Mantel tests. Overall, the findings of this study revealed that chicken manure organic fertilizer application has a significant effect on the bacterial community and ARGs in the rhizosphere soil of C. camphora forests, and several environmental factors that affect the bacterial community and ARGs were identified.
Collapse
Affiliation(s)
- Deqiang Chen
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, Fujian Province, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Colleage of Landscape Architecture, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, Fujian Province, China
| | - Jiawei Zou
- School of Pharmacy, Fujian Medical University, No. 1 Xuefu North Road, University Town, Fuzhou 350002, Fujian Province, China
| | - Dexing Chen
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, Fujian Province, China
| | - Xin He
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, Fujian Province, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Colleage of Landscape Architecture, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, Fujian Province, China
| | - Cuili Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Colleage of Landscape Architecture, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, Fujian Province, China
| | - Jinwei Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Colleage of Landscape Architecture, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, Fujian Province, China
| | - Siren Lan
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, Fujian Province, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Colleage of Landscape Architecture, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, Fujian Province, China
| | - Zhong-Jian Liu
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, Fujian Province, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Colleage of Landscape Architecture, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, Fujian Province, China
| | - Shuangquan Zou
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, Fujian Province, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Colleage of Landscape Architecture, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, Fujian Province, China
| | - Xin Qian
- College of Life Sciences, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, Fujian Province, China
| |
Collapse
|
10
|
Yan W, Wang Y, Li Y, Rong C, Wang D, Wang C, Wang Y, Yuen YL, Wong FF, Chui HK, Li YY, Zhang T. Treatment of fresh leachate by anaerobic membrane bioreactor: On-site investigation, long-term performance and response of microbial community. BIORESOURCE TECHNOLOGY 2023; 383:129243. [PMID: 37257727 DOI: 10.1016/j.biortech.2023.129243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
This study proposed fresh leachate treatment with anaerobic membrane bioreactor (AnMBR) based on the on-site investigation of the characteristics of fresh leachate. Temperature-related profiles of fresh leachate properties, like chemical oxygen demand (COD), were observed. In addition, AnMBR achieved a high COD removal of 98% with a maximum organic loading rate (OLR) of 19.27 kg-COD/m3/d at the shortest hydraulic retention time (HRT) of 1.5 d. The microbial analysis implied that the abundant protein and carbohydrate degraders (e.g., Thermovirga and Petrimonas) as well as syntrophic bacteria, such as Syntrophomonas, ensured the effective adaptation of AnMBR to the reduced HRTs. However, an excessive OLR at 36.55 kg-COD/m3/d at HRT of 1 d resulted in a sharp decrease in key microbes, such as archaea (from 37% to 15%), finally leading to the deterioration of AnMBR. This study provides scientific guidance for treating fresh leachate by AnMBR and its full-scale application for high-strength wastewater.
Collapse
Affiliation(s)
- Weifu Yan
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Yulin Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Yemei Li
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Chao Rong
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Dou Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Chunxiao Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Yubo Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Yee-Lok Yuen
- Environmental Protection Department, The Government of the Hong Kong Special Administrative Region, Hong Kong Special Administrative Region
| | - Fanny Fong Wong
- Environmental Protection Department, The Government of the Hong Kong Special Administrative Region, Hong Kong Special Administrative Region
| | - Ho-Kwong Chui
- Environmental Protection Department, The Government of the Hong Kong Special Administrative Region, Hong Kong Special Administrative Region
| | - Yu-You Li
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
11
|
Zhou L, Li S, Li F. Damage and elimination of soil and water antibiotic and heavy metal pollution caused by livestock husbandry. ENVIRONMENTAL RESEARCH 2022; 215:114188. [PMID: 36030917 DOI: 10.1016/j.envres.2022.114188] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
The combination of antibiotics and heavy metals (HMs) increases the toxicity range of influence and requires additional research attention. This article analyzed the toxicity mechanisms and damage of combined pollution. Cross-resistance, co-resistance, and co-regulation are the primary toxicity mechanisms. Combined pollution increases antibiotic resistance genes (ARGs), increases bacterial resistance, and promotes the horizontal transfer of ARGs, affecting the types and distribution of microorganisms. The hazard of combined pollution varies with concentration and composition. The physicochemical and biological technologies for eliminating combined pollution are primarily elaborated. Adsorption, photocatalytic degradation, and microbial treatment show high removal rates and good recyclability, indicating good application potential. This review provides a basis and reference for the further study the elimination of combined antibiotic and HM pollution.
Collapse
Affiliation(s)
- Lu Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Shengnan Li
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Fengxiang Li
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
12
|
Yang C, Zhao Y, Cao W, Xing M, Xu X, Wang Z, Sun J. Metagenomic analysis reveals antibiotic resistance genes and virulence factors in the saline-alkali soils from the Yellow River Delta, China. ENVIRONMENTAL RESEARCH 2022; 214:113823. [PMID: 35839905 DOI: 10.1016/j.envres.2022.113823] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/06/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
The propagation of antibiotic resistance genes (ARGs) and virulence factors (VFs) in the saline-alkali soils and associated environmental factors remains unknown. In this study, soil samples from the Yellow River Delta, China with four salinity gradients were characterized by their physiochemical properties, and shotgun metagenomic sequencing was used to identify the ARGs and VFs carried by microorganisms. Soil salinization significantly reduced the relative abundances of Solirubrobacterales, Propionibacteriales, and Micrococcales, and quorum sensing in microorganisms. The number of ARGs and VFs significantly decreased in medium and high saline-alkali soils as compared with that in non-saline-alkali soil, however, the ARGs of Bacitracin, and the VFs of iron uptake system, adherence, and stress protein increased significantly in saline-alkali soils. Spearman analysis showed that the ARGs of fluoroquinolone, tetracycline, aminoglycoside, beta-lactam, and tigecycline were positively correlated with soil pH. Similarly, we observed an increased contribution to the ARGs and VFs by taxa belonging to Solirubrobacterales and Gemmatimonadales, respectively. The control plot was mainly improved from saline-alkali land through application of animal manure, which tended to contain large amounts of ARGs and VFs in this study. Further studies are needed to observe ARGs and VFs in the saline-alkali land for multiple years and speculate the potential risks caused by varied ARGs and VFs to the soil ecosystem and human health.
Collapse
Affiliation(s)
- Chao Yang
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Yanhua Zhao
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Wei Cao
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Mengxin Xing
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Xiaoyan Xu
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Zengyu Wang
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Juan Sun
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong 266109, China.
| |
Collapse
|
13
|
Chen C, Li Y, Yin G, Hou L, Liu M, Jiang Y, Zheng D, Wu H, Zheng Y, Sun D. Antibiotics sulfamethoxazole alter nitrous oxide production and pathways in estuarine sediments: Evidenced by the N 15-O 18 isotopes tracing. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129281. [PMID: 35709624 DOI: 10.1016/j.jhazmat.2022.129281] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/22/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Estuarine antibiotic residues are profoundly impacting microbial nitrogen (N) cycling and associated N2O production, but the response of N2O production pathways to antibiotics remains poorly understood. Here, 15N-18O labeling technique combined with molecular methods were used to investigate the impacts of sulfamethoxazole on the contribution of ammonia oxidation (nitrifier nitrification, nitrifier denitrification, and nitrification-coupled denitrification) and heterotrophic denitrification (HD) to N2O production in estuarine sediments. Results showed that environmental concentration of sulfamethoxazole (4 ng/g) promoted the total N2O production by 17.1% through nitrifier denitrification. Environmentally relevant (40-4000 ng/g) and irrelevant (40,000 ng/g) concentration of sulfamethoxazole drove nitrification denitrification to gradually lose the dominant role in total N2O production and ammonia oxidation-derived N2O, replaced by HD and nitrifier nitrification, while total N2O production were inhibited. Furthermore, when HD dominated the total N2O production, the HD-derived N2O increased by 63.6% with sulfamethoxazole concentration reaching 40,000 ng/g. The mechanistic investigation further showed that nitrifying bacteria were more susceptible to sulfamethoxazole than nitrifying archaea and denitrifiers. The increased expression of nirS gene carried by non-dominant denitrifiers improved the ratio of nirS:nosZ and hence increased HD-derived N2O under high sulfamethoxazole stresses. Overall, our results provide a comprehensive view into how antibiotics regulate N2O production and its pathways in estuarine sediments.
Collapse
Affiliation(s)
- Cheng Chen
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China; School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Ye Li
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China; School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Guoyu Yin
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China; School of Geographic Sciences, East China Normal University, Shanghai 200241, China.
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Min Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China; School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Yinghui Jiang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Dongsheng Zheng
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China; School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Han Wu
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China; School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Yanling Zheng
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China; School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Dongyao Sun
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China; School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
14
|
Li ZH, Yuan L, Yang CW, Wang R, Sheng GP. Anaerobic electrochemical membrane bioreactor effectively mitigates antibiotic resistance genes proliferation under high antibiotic selection pressure. ENVIRONMENT INTERNATIONAL 2022; 166:107381. [PMID: 35810547 DOI: 10.1016/j.envint.2022.107381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/06/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
The spread of antibiotics and antibiotic resistance genes (ARGs) in environments has posed potential threats to public health. Unfortunately, conventional biological wastewater treatment technologies generally show insufficient removal of antibiotics and ARGs. Bioelectrochemical systems, which can effectively degrade refractory organic pollutants via enhancing microbial metabolisms through electrochemical redox reaction, may provide an alternative for the control of antibiotics and ARGs. Herein, an anaerobic electrochemical membrane bioreactor (AnEMBR) was conducted by combining bioelectrochemical system and anaerobic membrane bioreactor to treat antibiotic-containing wastewater. The AnEMBR at open circuit showed stable CH4 production and high removal of COD and chlortetracycline (CTC) in treating 2.5-15 mg/L CTC. However, increasing CTC to 45 mg/L completely inhibited the methanogenesis of AnEMBR at open circuit. After applying external voltage in AnEMBR, the performances of AnEMBR were significantly improved (e.g., increased CH4 production and CTC removal). Moreover, CTC exposure significantly increased the relative abundances of ARGs in sludge, supernatant, and effluent in AnEMBR at open circuit. Applying voltage greatly attenuated the total relative abundances of ARGs in the supernatant and effluent of AnEMBR compared to those at open circuit. This could be attributed to the enrichment of tetracycline degradation gene tetX, which greatly enhanced the removal of CTC by the AnEMBR and thus reduced the selective pressure of CTC on the microorganisms in supernatant and effluent for ARGs proliferation. These results would provide an effective wastewater treatment technology for treating high-level antibiotic-containing wastewater to mitigate the potential risk of ARGs and antibiotics spread in receiving water body.
Collapse
Affiliation(s)
- Zheng-Hao Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Li Yuan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Chuan-Wang Yang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Rui Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Guo-Ping Sheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
15
|
Qing L, Qigen D, Jian H, Hongjun W, Jingdu C. Profiles of tetracycline resistance genes in paddy soils with three different organic fertilizer applications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119368. [PMID: 35489540 DOI: 10.1016/j.envpol.2022.119368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 04/01/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
The rapid expansion of organic rice cultivation areas have been accompanied by increased application of organic fertilizers. The high prevalence of soil antibiotic resistance caused by organic fertilizer application poses a severe threat to the agricultural and soil ecosystems. To date, research efforts and understanding of the effects and mechanism of action of the various organic fertilizers on antibiotic resistance in paddy soils remain poorly investigated. Tetracycline resistance genes (TRGs, including tetB, tetC, tetL, tetZ, tetM, tetO, tetT, and tetX), class 1 integron-integrase gene (intI1) and bacterial communities were characterized using quantitative-PCR and Illumina MiSeq sequencing, in paddy soils exposed to inorganic fertilizer (NPK), animal-derived organic fertilizer (AOF, composted swine and/or chicken manure), plant-derived organic fertilizer (POF, rapeseed cake and/or astragalus) and commercial organic fertilizer (COF, composted of animal manure mix with crop residues) applications. Compared with NPK, AOF applications significantly increased the relative abundance of TRGs, which was predominantly expressed in the increase of the relative abundance of tetC, tetM, tetO, tetT, and tetX, while POF and COF had no significant effect on the relative abundance of TRGs. Principal coordinate analysis revealed that AOF and POF significantly altered bacterial communities in paddy soils relative to NPK, while COF had no significant change of bacterial communities. Variation partitioning analysis indicated that soil physicochemical properties were the decisive factors for the changes of TRGs in organic paddy fields. Furthermore, redundancy analysis and the Mantel test showed that TRG profiles in AOF applied paddy soils were strongly influenced by electrical conductivity (EC). Total nitrogen (TN) and organic matter (OM) affected the distribution of TRGs in COF and POF applied paddy soils through a different mechanism. This study provides insights into the impacts of different types of organic fertilizer on the profiles of TRGs in paddy soils.
Collapse
Affiliation(s)
- Li Qing
- Jiangsu Key Laboratory of Crop Genetic and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, 225009, China
| | - Dai Qigen
- Jiangsu Key Laboratory of Crop Genetic and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Hu Jian
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Wu Hongjun
- Yangzhou Supervision & Inspection Center for Agri-products, Yangzhou, 225101, China
| | - Chen Jingdu
- Yangzhou Municipal Bureau of Agriculture and Rural Affairs, Yangzhou, 225000, China
| |
Collapse
|
16
|
Kaviani Rad A, Balasundram SK, Azizi S, Afsharyzad Y, Zarei M, Etesami H, Shamshiri RR. An Overview of Antibiotic Resistance and Abiotic Stresses Affecting Antimicrobial Resistance in Agricultural Soils. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:4666. [PMID: 35457533 PMCID: PMC9025980 DOI: 10.3390/ijerph19084666] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 01/29/2023]
Abstract
Excessive use of antibiotics in the healthcare sector and livestock farming has amplified antimicrobial resistance (AMR) as a major environmental threat in recent years. Abiotic stresses, including soil salinity and water pollutants, can affect AMR in soils, which in turn reduces the yield and quality of agricultural products. The objective of this study was to investigate the effects of antibiotic resistance and abiotic stresses on antimicrobial resistance in agricultural soils. A systematic review of the peer-reviewed published literature showed that soil contaminants derived from organic and chemical fertilizers, heavy metals, hydrocarbons, and untreated sewage sludge can significantly develop AMR through increasing the abundance of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARBs) in agricultural soils. Among effective technologies developed to minimize AMR's negative effects, salinity and heat were found to be more influential in lowering ARGs and subsequently AMR. Several strategies to mitigate AMR in agricultural soils and future directions for research on AMR have been discussed, including integrated control of antibiotic usage and primary sources of ARGs. Knowledge of the factors affecting AMR has the potential to develop effective policies and technologies to minimize its adverse impacts.
Collapse
Affiliation(s)
- Abdullah Kaviani Rad
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz 71946-85111, Iran;
| | - Siva K. Balasundram
- Department of Agriculture Technology, Faculty of Agriculture, University Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Shohreh Azizi
- UNESCO-UNISA Africa Chair in Nanosciences and Nanotechnology, College of Graduate Studies, University of South Africa, Pretoria 0003, South Africa;
- Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, Cape Town 7129, South Africa
| | - Yeganeh Afsharyzad
- Department of Microbiology, Faculty of Modern Sciences, The Islamic Azad University of Tehran Medical Sciences, Tehran 19496-35881, Iran;
| | - Mehdi Zarei
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz 71946-85111, Iran;
- Department of Agriculture and Natural Resources, Higher Education Center of Eghlid, Eghlid 73819-43885, Iran
| | - Hassan Etesami
- Department of Soil Science, University of Tehran, Tehran 14179-35840, Iran;
| | - Redmond R. Shamshiri
- Leibniz Institute for Agricultural Engineering and Bioeconomy, 14469 Potsdam-Bornim, Germany;
| |
Collapse
|
17
|
Xu Y, You G, Zhang M, Peng D, Jiang Z, Qi S, Yang S, Hou J. Antibiotic resistance genes alternation in soils modified with neutral and alkaline salts: interplay of salinity stress and response strategies of microbes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:152246. [PMID: 34896144 DOI: 10.1016/j.scitotenv.2021.152246] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/22/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
Growing evidence points to the pivotal roles of salt accumulation in mediating antibiotic resistance genes (ARGs) spread in soil, whereas how salt mediates ARGs dissemination remains unknown. Herein, the effects of neutral or alkaline (Ne/Al) salt at low, moderate and high levels (Ne/Al-L, Ne/Al-M, Ne/Al-H) on the dissemination of ten typical ARGs in soils were explored, by simultaneously considering the roles of salinity stress and response strategies of microbes. In the soils amended with Ne/Al-L and Al-M salt, the dissemination of ARGs was negligible and the relative abundances of ARGs and mobile genetic elements (MGEs) were decreased. However, Ne-M and Al-H salt contributed to the dissemination of ARGs in soils, with the significantly increased absolute and relative abundances of ARGs and MGEs. In Ne-H soil, although the absolute abundance of ARGs declined drastically due to serious oxidative damage, their relative abundances were promoted. The facilitated ARGs transfer was potentially related to the excessive generation of intracellular reactive oxygen species and increased activities of DNA repair enzymes involved in SOS system. In addition, the activated intracellular protective response including quorum sensing and energy metabolism largely provided essential factors for ARGs dissemination. The co-occurrence of ARGs and over-expressed salt-tolerant genes in specific halotolerant bacteria further suggested the selection of salt stress on ARGs. Moreover, less disturbance of alkaline salt than neutral salt on ARGs evolution was observed, due to the lower abiotic stress and selective pressure on microbes. This study highlights that soil salinity-sodicity could dose-dependently reshape the dissemination of ARGs and community structure of microbes, which may increase the ecological risks of ARGs in agricultural environment.
Collapse
Affiliation(s)
- Yi Xu
- College of Agricultural Science and Engineering, Hohai University, Nanjing, PR China, 210098
| | - Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, PR China, 210098
| | - Mairan Zhang
- College of Agricultural Science and Engineering, Hohai University, Nanjing, PR China, 210098
| | - Dengyun Peng
- College of Agricultural Science and Engineering, Hohai University, Nanjing, PR China, 210098
| | - Zewei Jiang
- College of Agricultural Science and Engineering, Hohai University, Nanjing, PR China, 210098
| | - Suting Qi
- College of Agricultural Science and Engineering, Hohai University, Nanjing, PR China, 210098
| | - Shihong Yang
- College of Agricultural Science and Engineering, Hohai University, Nanjing, PR China, 210098; State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, PR China.
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, PR China, 210098
| |
Collapse
|
18
|
Khan HK, Rehman MYA, Junaid M, Lv M, Yue L, Haq IU, Xu N, Malik RN. Occurrence, source apportionment and potential risks of selected PPCPs in groundwater used as a source of drinking water from key urban-rural settings of Pakistan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:151010. [PMID: 34662624 DOI: 10.1016/j.scitotenv.2021.151010] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/23/2021] [Accepted: 10/11/2021] [Indexed: 05/08/2023]
Abstract
BACKGROUND Pharmaceuticals and personal care products (PPCPs) are emerging contaminants that have been extensively used in present time to improve the living standards. Their persistence in water resources due to various anthropogenic sources such as wastewater treatment plants, pharmaceutical industries, and runoff from agricultural and livestock farms has not only threaten aquatic life but their occurrence in groundwater has also raised concerns related to humans' wellbeing. METHODS Considering this as a neglected area of research in Pakistan, a systematic monitoring study was designed to investigate their occurrence, sources, and potential environmental and human health risks in groundwater from urban-rural areas of six cities. Ultra-High-Performance Liquid Chromatography-Tandem Mass Spectrometry (UHPLC-MS/MS) was used to analyze the collected samples preceded by solid-phase extraction. RESULTS Overall, 8 out of 11 selected PPCPs were detected in groundwater samples with detection frequency ranging from 5.5-65%. Their concentrations ranged from below limit of detection (<LOD) to 1961 ng/L. The overall mean concentrations of detected PPCPs were found below 100 ng/L. The highest mean concentration was reported for Ibuprofen (154 ng/L) in Rawalpindi/Islamabad. Results of PCA-MLR revealed that domestic wastewater discharge (76.4%) was the dominant source contributing to PPCPs contamination in groundwater. Followed by mixed source (pharmaceutical & hospital waste) 17.8%, and rural discharge/animal husbandry 5.8%. No appreciable risk to human health upon exposure to detected PPCPs via drinking water was anticipated. However, environmental risk assessment indicated moderate risk posed to P. subcapitata (RQ = 0.98) and D. magna (RQ = 0.2) by ibuprofen. CONCLUSION The current study reports the first evidence of PPCPs occurrence in groundwater in Pakistan. Reporting their occurrence in groundwater is a fundamental initial step to inform public-health decisions concerning sewage systems and drinking water quality. Hence, comprehensive monitoring programs are required to further investigate contamination of emerging contaminants in groundwater and their associated risks.
Collapse
Affiliation(s)
- Hudda Khaleeq Khan
- Environmental Health Laboratory, Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Yasir Abdur Rehman
- Environmental Health Laboratory, Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Junaid
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Ming Lv
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Linxia Yue
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Ihsan-Ul Haq
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Nan Xu
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Riffat Naseem Malik
- Environmental Health Laboratory, Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
19
|
Zhang R, Xu X, Jia D, Lyu Y, Hu J, Chen Q, Sun W. Sediments alleviate the inhibition effects of antibiotics on denitrification: Functional gene, microbial community, and antibiotic resistance gene analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150092. [PMID: 34520908 DOI: 10.1016/j.scitotenv.2021.150092] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/28/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Both antibiotics and sediments can affect the denitrification in aquatic systems. However, little is known how antibiotics influence the denitrification in the presence of sediments. Here, the effects of antibiotics (sulfamethoxazole, tetracycline and ofloxacin) on denitrification in the absence and presence of sediments were investigated. The influencing mechanisms were revealed by quantifying the denitrification functional genes (DNGs), 16S-seq of bacteria, and antibiotic resistance genes (ARGs). The results showed that the presence of antibiotics inhibited NO3-N reduction by decreasing the abundances of narG, nirK, nosZ, total DNGs, and denitrifying bacteria. However, the inhibition effect was alleviated by sediments, which promoted the growth of bacteria and decreased the selective pressure of antibiotics as the vector of bacteria and antibiotics, thus increasing the abundances of denitrifying bacteria and all the DNGs. Partial least-squares path model disclosed that antibiotics had negative effects on bacteria, ARGs and DNGs, while sediments had negative effects on ARGs but positive effects on bacteria and DNGs. The network analysis further revealed the close relation of the genera Bacillus, Acinetobacter, and Enterobacter with the ARGs and DNGs. The findings are helpful to understand the denitrification in antibiotic-polluted natural waters.
Collapse
Affiliation(s)
- Ruijie Zhang
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China
| | - Xuming Xu
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China
| | - Dantong Jia
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China
| | - Yitao Lyu
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China
| | - Jingrun Hu
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China
| | - Qian Chen
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China
| | - Weiling Sun
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China.
| |
Collapse
|
20
|
Shamsizadeh Z, Ehrampoush MH, Nikaeen M, Mokhtari M, Gwenzi W, Khanahmad H. Antibiotic resistance and class 1 integron genes distribution in irrigation water-soil-crop continuum as a function of irrigation water sources. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117930. [PMID: 34391043 DOI: 10.1016/j.envpol.2021.117930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/11/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
The increasing demand for fresh water coupled with the need to recycle water and nutrients has witnessed a global increase in wastewater irrigation. However, the development of antibiotic resistance hotspots in different environmental compartments, as a result of wastewater reuse is becoming a global health concern. The effect of irrigation water sources (wastewater, surface water, fresh water) on the presence and abundance of antibiotic resistance genes (ARGs) (blaCTX-m-32, tet-W, sul1, cml-A, and erm-B) and class 1 integrons (intI1) were investigated in the irrigation water-soil-crop continuum using quantitative real-time PCR (qPCR). Sul1 and blaCTX-m-32 were the most and least abundant ARGs in three environments, respectively. The abundance of ARGs and intI1 significantly decreased from wastewater to surface water and then fresh water. However, irrigation water sources had no significant effect on the abundance of ARGs and intI1 in soil and crop samples. Principal component analysis (PCA) showed that UV index and air temperature attenuate the abundance of ARGs and intI1 in crop samples whereas the air humidity and soil electrical conductivity (EC) promotes the ARGs and intI1. So that the climate condition of semi-arid regions significantly affects the abundance of ARGs and intI1 in crop samples. The results suggest that treated wastewater might be safely reused in agricultural practice in semi-arid regions without a significant increase of potential health risks associated with ARGs transfer to the food chain. However, further research is needed for understanding and managing ARGs transfer from the agricultural ecosystem to humans through the food chain.
Collapse
Affiliation(s)
- Zahra Shamsizadeh
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Hassan Ehrampoush
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahnaz Nikaeen
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mehdi Mokhtari
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Willis Gwenzi
- Biosystems and Environmental Engineering Research Group, Department of Soil Science and Agricultural Engineering, University of Zimbabwe, Harare, Zimbabwe
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
21
|
Feng G, Huang H, Chen Y. Effects of emerging pollutants on the occurrence and transfer of antibiotic resistance genes: A review. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126602. [PMID: 34273886 DOI: 10.1016/j.jhazmat.2021.126602] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/05/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
The emergence and spread of antibiotic resistance genes (ARGs) have become major concerns for both public health and environmental ecosystems. Emerging pollutants (EPs) that accumulate in environmental compartments also pose a potential risk for the enrichment of ARGs in indigenous microorganisms. This paper presents a comprehensive review of the effects and intrinsic mechanisms of EPs, including microplastics, engineered nanomaterials, disinfection byproducts, pharmaceuticals, and personal care products, on the occurrence and dissemination of ARGs. State-of-the-art methods for identifying culture-independent ARG-host interactions and monitoring horizontal gene transfer (HGT) processes in real-time are first reviewed. The contributions of EPs to the abundance and diversity of ARGs are then summarized. Finally, we discussed the underlying mechanisms related to the regulation of HGT, increased mutagenesis, and the evolution of microbial communities. Further details of three HGT (i.e., conjugation, transformation, and transduction) frequency patterns in response to various EPs are also examined. This review contemplates and reassesses the risks of ARG evolution posed by the manufacture and application of EPs.
Collapse
Affiliation(s)
- Guanqun Feng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Haining Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
22
|
Paes Leme RC, da Silva RB. Antimicrobial Activity of Non-steroidal Anti-inflammatory Drugs on Biofilm: Current Evidence and Potential for Drug Repurposing. Front Microbiol 2021; 12:707629. [PMID: 34385992 PMCID: PMC8353384 DOI: 10.3389/fmicb.2021.707629] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/05/2021] [Indexed: 12/20/2022] Open
Abstract
It has been demonstrated that some non-steroidal anti-inflammatory drugs (NSAIDs), like acetylsalicylic acid, diclofenac, and ibuprofen, have anti-biofilm activity in concentrations found in human pharmacokinetic studies, which could fuel an interest in repurposing these well tolerated drugs as adjunctive therapies for biofilm-related infections. Here we sought to review the currently available data on the anti-biofilm activity of NSAIDs and its relevance in a clinical context. We performed a systematic literature review to identify the most commonly tested NSAIDs drugs in the last 5 years, the bacterial species that have demonstrated to be responsive to their actions, and the emergence of resistance to these molecules. We found that most studies investigating NSAIDs' activity against biofilms were in vitro, and frequently tested non-clinical bacterial isolates, which may not adequately represent the bacterial populations that cause clinically-relevant biofilm-related infections. Furthermore, studies concerning NSAIDs and antibiotic resistance are scarce, with divergent outcomes. Although the potential to use NSAIDs to control biofilm-related infections seems to be an exciting avenue, there is a paucity of studies that tested these drugs using appropriate in vivo models of biofilm infections or in controlled human clinical trials to support their repurposing as anti-biofilm agents.
Collapse
Affiliation(s)
- Rodrigo Cuiabano Paes Leme
- Laboratório Especial de Microbiologia Clínica (LEMC), Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, Brazil.,Department of Infectious Diseases, Centro Universitário de Volta Redonda, Volta Redonda, Brazil
| | | |
Collapse
|
23
|
Xie B, Liang H, You H, Deng S, Yan Z, Tang X. Microbial community dynamic shifts associated with sulfamethoxazole degradation in microbial fuel cells. CHEMOSPHERE 2021; 274:129744. [PMID: 33540308 DOI: 10.1016/j.chemosphere.2021.129744] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
Though sulfamethoxazole (SMX) degradation at the low or medium concentration (SMX< 30 mg/L) has been reported in the microbial fuel cell (MFC), further exploration is still urgently required to investigate how the high concentration of SMX affect the anode biofilm formation. In this study, the degradation mechanism of SMX and the response of microbial community to SMX at different initial concentrations (0, 0.5, 5 and 50 mg/L) were investigated in MFCs. The highest SMX removal efficiency of 98.4% was obtained in MFC (5 mg/L). SMX at optimal concentration (5 mg/L) could serve as substrate accelerating the extracellular electron transfer. However, high concentration of SMX (50 mg/L) conferred significant inhibition on the electron transfer with SMX removal decline to 84.4%. The 16S rRNA high-throughput sequencing revealed the significant shift of the anode biofilms communities with different initial SMX concentrations were observed in MFCs. Thauera and Geobacter were the predominant genus, with relative abundance of 31.9% in MFC (50 mg/L SMX) and 52.7% in MFC (5 mg/L SMX). Methylophilus exhibited a huge increase with the highest percentage of 16.4% in MFC (50 mg/L). Hence, the functional bacteria of Thauera, Geobacter and Methylophilus endowed significant tolerance to the selection pressure from high concentration of SMX in MFCs. Meanwhile, some bacteria including Ornatilinea, Dechloromonas and Longilinea exhibited a decrease or even disappeared in MFCs. Therefore, initial concentrations of SMX played a fundamental role in modifying the relative abundance of predominant populations. This finding would promote theories support for understanding the evolution of anode biofilm formation related to the different initial concentrations of SMX in MFCs.
Collapse
Affiliation(s)
- Binghan Xie
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, 264209, PR China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Hong You
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, 264209, PR China
| | - Shihai Deng
- National University of Singapore Environmental Research Institute, National University of Singapore, 5A Engineering Dr. 1, Singapore, 117411, Singapore.
| | - Zhongsen Yan
- College of Civil Engineering, Fuzhou University, Fuzhou, 350116, PR China
| | - Xiaobin Tang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
24
|
Zhang Y, Xu R, Xiang Y, Lu Y, Jia M, Huang J, Xu Z, Cao J, Xiong W, Yang Z. Addition of nanoparticles increases the abundance of mobile genetic elements and changes microbial community in the sludge anaerobic digestion system. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124206. [PMID: 33535360 DOI: 10.1016/j.jhazmat.2020.124206] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 06/12/2023]
Abstract
This study explored the fate of mobile genetic elements (MGEs) in anaerobic digestion (AD) system with four nanoparticles (NPs) added, including carbon NPs, Al2O3 NPs, ZnO NPs, and CuO NPs. 16S rRNA amplicon sequencing and quantitative PCR to investigate the microbial community, MGEs abundance and the potential host in the AD process. The results of high-throughput sequencing showed that ZnO NPs and CuO NPs significantly reduced the microbial diversity and significantly changed the microbial community structure. Simultaneously, the absolute abundance of MGEs increased by 145.01%, 159.67%, 354.70%, and 132.80% on the carbon NPs, Al2O3 NPs, ZnO NPs, and CuO NPs. The enrichment rate of tnpA-03 in ZnO NPs group was the highest, which could reach up to 2854.80%. Co-occurrence analysis revealed that Proteobacteria harbored the vast majority of MGEs followed by Firmicutes. Redundancy analysis and variation partitioning analysis showed that metabolites were the main factors that shifted the succession of bacterial communities. Moreover, there were significant positive correlations between metabolites and part MGEs (such as tnpA-01, tnpA-02, tnpA-03, tnpA-04, tnpA-05, tnpA-07 and ISCR1). This study provides a new perspective that NPs increase the risk of antibiotic resistance through MGEs during AD process.
Collapse
Affiliation(s)
- Yanru Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Rui Xu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science Technology, Guangzhou 510650, PR China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, PR China
| | - Yinping Xiang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yue Lu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Meiying Jia
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jing Huang
- Hunan Academy of Forestry and State Key Laboratory of Utilization of Woody Oil Resource, Changsha 410004, PR China
| | - Zhengyong Xu
- Hunan Provincial Science and Technology Affairs Center, Changsha 410013, PR China
| | - Jiao Cao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Weiping Xiong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Zhaohui Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| |
Collapse
|
25
|
Abbas AO, Alaqil AA, El-Beltagi HS, Abd El-Atty HK, Kamel NN. Modulating Laying Hens Productivity and Immune Performance in Response to Oxidative Stress Induced by E. coli Challenge Using Dietary Propolis Supplementation. Antioxidants (Basel) 2020; 9:E893. [PMID: 32967097 PMCID: PMC7555396 DOI: 10.3390/antiox9090893] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023] Open
Abstract
Propolis (PR) is a resin product of bee colonies that has rich bioactive antioxidant and bactericidal compounds. Endotoxin, a byproduct of bacterial growth, is reported to cause progressive induction of endogenous oxidative stress and has negative impacts on individual health and wellbeing. Hereby, we investigated the ability of PR to alleviate the oxidative stress and immunosuppression imposed by avian pathogenic Escherichia coli using laying hen as a based model. In this study, PR was dietary supplemented to hens for 4 weeks at a concentration of 0.1%. At the beginning of the 4th week of the experiment, hens from control and PR treatment were injected with E. coli (O157:H7; 107 colonies/hen) or saline. The results showed significant (p < 0.05) negative impact of E. coli challenge on antioxidant status, immune response and productive performance. PR supplementation reduced (p < 0.05) inflammation markers levels (tumor necrosis factor α (TNFα) and interleukin 1β (IL-1β)) and plasma corticosterone concentration. The antioxidant status was ameliorated with dietary PR supplementation to challenged hens, showing significant (p < 0.05) reduction in malondialdehyde (MDA) levels and increasing total antioxidant capacity (TAC) concentrations. Cell mediated, as well as, humeral immune response improved significantly (p < 0.05) with dietary PR verified by the enhancement of T- and B-lymphocyte proliferation and the positive respond to phytohemagglutinin (PHA). Leucocyte cells viability increased significantly and the apoptotic factor forkhead box O3 (Foxo3) was reduced with PR supplementation. The current study revealed that dietary PR supplementation can effectively be used as an organic feed additive to overcome the endogenous oxidative stress induced by endotoxins challenge.
Collapse
Affiliation(s)
- Ahmed O. Abbas
- Department of Animal and Fish Production, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia;
- Department of Animal Production, Faculty of Agriculture, Cairo University, Gamma St., Giza, Cairo P.O. Box 12613, Egypt
| | - Abdulaziz A. Alaqil
- Department of Animal and Fish Production, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia;
| | - Hossam S. El-Beltagi
- Department of Agricultural Biotechnology, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia;
- Department of Biochemistry, Faculty of Agriculture Cairo University, Gamma St., Giza, Cairo P.O. Box 12613, Egypt
| | - Hanaa K. Abd El-Atty
- Department of Poultry breeding, Animal Production Research Institute, Agricultural Research Center, Dokki, Giza P.O. Box 12611, Egypt;
| | - Nancy N. Kamel
- Department of Animal Production, National Research Center, El Buhouth St., Dokki, Giza, Cairo P.O. Box 12622, Egypt
| |
Collapse
|