1
|
Luo X, Xia R, Zeng Y, Qian Y. 19F-labeled molecular probes for fingerprint identification and quantitative analysis of malondialdehyde in urine. Talanta 2025; 289:127786. [PMID: 39993366 DOI: 10.1016/j.talanta.2025.127786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 02/26/2025]
Abstract
Aldehydes are crucial cellular intermediates and early diagnostic biomarkers for numerous diseases and injuries. Despite significant advancements in aldehyde detection, accurately distinguishing and quantifying these biomarkers remains challenging due to their similar chemical reactivities. 19F nuclear magnetic resonance (19F NMR) spectroscopy, characterized by a broad spectral range and unique chemical shifts, provides a powerful approach for the simultaneous and quantitative analysis of multiple targets. Here, we rationally designed a class of 19F-labeled molecular probes featuring a hydrazine moiety as the aldehyde recognition site, enabling specific identification and differentiation of aldehydes via easily interpretable changes in 19F chemical shifts. The chemical shift of the probe 19F-AP-1 at δ19F -120.8 ppm shifted to -112.3 ppm after its reaction with malondialdehyde (MDA). This approach allows for the selective "fingerprint" recognition of malondialdehyde (MDA) within complex aldehyde mixtures under the specified 19F NMR conditions (256 scans, 376 MHz transmitter frequency) with the acquisition time of 7 min 39 s, overcoming interferences from background matrices. This work provides a robust method that allows for qualitative and quantitative analyses of MDA directly in human urine samples without requiring pretreatment, highlighting its potential applicability for MDA detection across a range of biological fluids.
Collapse
Affiliation(s)
- Xiangjie Luo
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210046, China
| | - Ruimin Xia
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210046, China
| | - Yu Zeng
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210046, China
| | - Yong Qian
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210046, China.
| |
Collapse
|
2
|
Zhao M, Liu Z, Zhang W, Xia G, Li C, Rakariyatham K, Zhou D. Advance in aldehydes derived from lipid oxidation: A review of the formation mechanism, attributable food thermal processing technology, analytical method and toxicological effect. Food Res Int 2025; 203:115811. [PMID: 40022339 DOI: 10.1016/j.foodres.2025.115811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 01/18/2025] [Accepted: 01/19/2025] [Indexed: 03/03/2025]
Abstract
The aldehydes derived from lipid oxidation are highly active electrophilic compounds including saturated aldehydes, dialdehydes, olefin aldehydes and hydroxyl aldehydes. The active groups like carbonyls, C=C bond, and hydroxyl groups make them prone to participate in chemical reactions with protein, phospholipids, which can further affect food properties. In addition, aldehydes can attack the nucleic acids and thiol group of endogenous antioxidants, result in oxidative stress and biological damage of cells, which usually serve as the direct trigger of various diseases. However, their structure-activity relationship has not received enough attention. Therefore, to provide a comprehensive understanding of reactive aldehydes on food safety and human health, the formation mechanism of aldehydes, attributable fundamental thermal processing, analytical methods, and toxicological effects based on the structure-activity relationship, have been reviewed and discussed. It was indicated that aldehydes generation exerted significant specificity of fatty acids substrate. Significant structure-activity relationships for the toxicological effects of aldehydes could be observed. Effective, accurate and eco-friendly detection techniques should be established based on the inherent advantages and limitations for food quality preservation and safety assurance.
Collapse
Affiliation(s)
- Mantong Zhao
- College of Food Science and Engineering, Hainan University, Haikou, China 570228; Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China 116034; Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, Haikou Key Laboratory of Deep Processing of Marine Food, Haikou, China 570228
| | - Zhongyuan Liu
- College of Food Science and Engineering, Hainan University, Haikou, China 570228; Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China 116034; Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, Haikou Key Laboratory of Deep Processing of Marine Food, Haikou, China 570228.
| | - Wanli Zhang
- College of Food Science and Engineering, Hainan University, Haikou, China 570228
| | - Guanghua Xia
- College of Food Science and Engineering, Hainan University, Haikou, China 570228; Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China 116034; Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, Haikou Key Laboratory of Deep Processing of Marine Food, Haikou, China 570228
| | - Chuan Li
- College of Food Science and Engineering, Hainan University, Haikou, China 570228; Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China 116034; Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, Haikou Key Laboratory of Deep Processing of Marine Food, Haikou, China 570228
| | | | - Dayong Zhou
- Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China 116034
| |
Collapse
|
3
|
Liu Q, Niu Y, Pei Z, Yang Y, Xie Y, Wang M, Wang J, Wu M, Zheng J, Yang P, Hao H, Pang Y, Bao L, Dai Y, Niu Y, Zhang R. Gas6-Axl signal promotes indoor VOCs exposure-induced pulmonary fibrosis via pulmonary microvascular endothelial cells-fibroblasts cross-talk. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134786. [PMID: 38824778 DOI: 10.1016/j.jhazmat.2024.134786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/14/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Volatile organic compounds (VOCs) as environmental pollutants were associated with respiratory diseases. Pulmonary fibrosis (PF) was characterized by an increase of extracellular matrix, leading to deterioration of lung function. The adverse effects on lung and the potential mechanism underlying VOCs induced PF had not been elucidated clearly. In this study, the indoor VOCs exposure mouse model along with an ex vivo biosensor assay was established. Based on scRNA-seq analysis, the adverse effects on lung and potential molecular mechanism were studied. Herein, the results showed that VOCs exposure from indoor decoration contributed to decreased lung function and facilitated pulmonary fibrosis in mice. Then, the whole lung cell atlas after VOCs exposure and the heterogeneity of fibroblasts were revealed. We explored the molecular interactions among various pulmonary cells, suggesting that endothelial cells contributed to fibroblasts activation in response to VOCs exposure. Mechanistically, pulmonary microvascular endothelial cells (MPVECs) secreted Gas6 after VOCs-induced PANoptosis phenotype, bound to the Axl in fibroblasts, and then activated fibroblasts. Moreover, Atf3 as the key gene negatively regulated PANoptosis phenotype to ameliorate fibrosis induced by VOCs exposure. These novel findings provided a new perspective about MPVECs could serve as the initiating factor of PF induced by VOCs exposure.
Collapse
Affiliation(s)
- Qingping Liu
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Yong Niu
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Zijie Pei
- Department of Thoracic Surgery, the 2nd Hospital of Hebei Medical University, Shijiazhuang 050017, PR China
| | - Yizhe Yang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Yujia Xie
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Mengruo Wang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Jingyuan Wang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Mengqi Wu
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Jie Zheng
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Peihao Yang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Haiyan Hao
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China; Hebei Province Center for Disease Control and Prevention, Shijiazhuang 050021, Hebei, PR China
| | - Yaxian Pang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Lei Bao
- Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China; Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Yufei Dai
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Yujie Niu
- Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China; Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Rong Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China.
| |
Collapse
|
4
|
Qin H, Lang Y, Wang Y, Cui W, Niu Y, Luan H, Li M, Zhang H, Li S, Wang C, Liu W. Adipogenic and osteogenic effects of OBS and synergistic action with PFOS via PPARγ-RXRα heterodimers. ENVIRONMENT INTERNATIONAL 2024; 183:108354. [PMID: 38043320 DOI: 10.1016/j.envint.2023.108354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/08/2023] [Accepted: 11/24/2023] [Indexed: 12/05/2023]
Abstract
Sodium p-perfluorous nonenoxybenzenesulfonate (OBS) is a novel alternative to perfluorooctane sulfonate (PFOS), with environmental health risks largely unknown. The present study aims to unravel the adipogenesis effects and underlying molecular initiating events of OBS, which are crucial for understanding and predicting its adverse outcome. In undifferentiated human mesenchymal stem cells (hMSCs), exposure to 1-100 nM of OBS for 7 days stimulated reactive oxygen species production. In the subsequent multipotent differentiation, hMSCs favored adipogenesis and repressed osteogenesis. The point of departure (PoD) for cellular responses of OBS was 38.85 nM, higher than PFOS (0.39 nM). Notably, OBS/PFOS co-exposure inhibited osteogenesis and synergistically promoted adipogenesis. Consistently, the expression of adipogenic marker genes was up-regulated, while that of osteogenic marker genes was down-regulated. The decreased adiponectin and elevated tumor necrosis factor α (TNFα) secretion were observed in differentiated cells exposed to the mixture of OBS and PFOS. The co-treatment of a peroxisome proliferator-activated receptor γ (PPARγ) antagonist alleviated the adipogenic effects of PFOS and its combination with OBS. Moreover, OBS/PFOS co-exposure induced peroxisome PPARγ activation in reporter gene assays, and increased formation of PPARγ - retinoid X receptor α (RXRα) heterodimers measured by co-immunoprecipitation assays. Molecular docking showed interaction energy of OBS (-20.7 kcal/mol) with intact PPARγ-RXRα complex was lower than that of PFOS (-25.9 kcal/mol). Overall, single OBS exhibited lower potency in inducing adipogenesis but is comparable to PFOS in repressing osteogenesis, whereas OBS/PFOS co-exposure increases interaction with PPARγ-RXRα heterodimers, resulting in the synergistic activation of PPARγ, ultimately enhancing adipogenesis at the expense of osteogenic differentiation. The results indicate the potential health risks of increased obesity and decreased bone density caused by OBS and its co-exposure with PFOS, as well as other perfluorinated alkylated substances mixtures.
Collapse
Affiliation(s)
- Hui Qin
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yueming Lang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yiteng Wang
- Central Hospital of Dalian University of Technology, Sports Medicine Department, Dalian 116021, China
| | - Wei Cui
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yuxin Niu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Haiyang Luan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Minghan Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Han Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shujing Li
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian 116024, China
| | - Chenxi Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Wei Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
5
|
EFSA Panel name on Food Additives and Flavourings (FAF), Younes M, Aquilina G, Castle L, Degen G, Engel K, Fowler PJ, Frutos Fernandez MJ, Fürst P, Gundert‐Remy U, Gürtler R, Husøy T, Manco M, Moldeus P, Passamonti S, Shah R, Waalkens‐Berendsen I, Wright M, Benigni R, Boon P, Bolognesi C, Cordelli E, Chipman K, Sahlin U, Carfì M, Martino C, Multari S, Palaniappan V, Tard A, Mennes W. Scientific opinion on the renewal of the authorisation of Zesti Smoke Code 10 (SF-002) as a smoke flavouring Primary Product. EFSA J 2023; 21:e08364. [PMID: 38027431 PMCID: PMC10652701 DOI: 10.2903/j.efsa.2023.8364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
The EFSA Panel on Food Additives and Flavourings (FAF) was requested to evaluate the safety of the smoke flavouring Primary Product Zesti Smoke Code 10 (SF-002), for which a renewal application was submitted in accordance with Article 12(1) of Regulation (EC) No 2065/2003. This opinion refers to the assessment of data submitted on chemical characterisation, dietary exposure and genotoxicity of the Primary Product. Zesti Smoke Code 10 is obtained by pyrolysis of hickory and oak woods. Given the limitations of the quantification approach employed by the applicant, the Panel could not judge whether the applied methods meet the legal quality criterion that at least 80% of the volatile fraction shall be identified and quantified. At the maximum proposed use levels, dietary exposure estimates calculated with DietEx ranged from 0.02 to 4.6 mg/kg body weight (bw) per day at the mean and from no dietary exposure to 13.0 mg/kg bw per day at the 95th percentile. The Panel concluded that four components in the Primary Product raise a potential concern for genotoxicity. In addition, a potential concern for genotoxicity was identified for the unidentified part of the mixture. The Primary Product contains furan-2(5H)-one and benzene-1,2-diol, for which a concern for genotoxicity was identified in vivo upon oral administration. Considering that the exposure estimates for these two components are above the threshold of toxicological concern (TTC) of 0.0025 μg/kg bw per day for DNA-reactive mutagens and/or carcinogens, the Panel concluded that the Primary Product raises concern with respect to genotoxicity.
Collapse
|
6
|
EFSA Panel name on Food Additives and Flavourings (FAF), Younes M, Aquilina G, Castle L, Degen G, Engel K, Fowler PJ, Frutos Fernandez MJ, Fürst P, Gundert‐Remy U, Gürtler R, Husøy T, Manco M, Moldeus P, Passamonti S, Shah R, Waalkens‐Berendsen I, Wright M, Benigni R, Boon P, Bolognesi C, Cordelli E, Chipman K, Degen G, Sahlin U, Carfì M, Martino C, Multari S, Palaniappan V, Tard A, Mennes W. Scientific opinion on the renewal of the authorisation of SmokEz C-10 (SF-005) as a smoke flavouring Primary Product. EFSA J 2023; 21:e08367. [PMID: 38027441 PMCID: PMC10652705 DOI: 10.2903/j.efsa.2023.8367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
The EFSA Panel on Food Additives and Flavourings (FAF) was requested to evaluate the safety of the smoke flavouring Primary Product SmoKEz C-10 (SF-005), for which a renewal application was submitted in accordance with Article 12(1) of Regulation (EC) No 2065/2003. This opinion refers to the assessment of data submitted on chemical characterisation, dietary exposure and genotoxicity of the Primary Product. SmoKEz C-10 is obtained by pyrolysis of maple, oak, hickory, ash, birch, beech and cherry woods. Given the limitations of the quantification approach employed by the applicant, the Panel could not judge whether the applied methods meet the legal quality criterion that at least 80% of the volatile fraction shall be identified and quantified. At the maximum proposed use levels, dietary exposure estimates calculated with DietEx ranged from 0.01 to 5.1 mg/kg body weight (bw) per day at the mean and from no dietary exposure to 18.1 mg/kg bw per day at the 95th percentile. The Panel concluded that five components in the Primary Product raise a potential concern for genotoxicity. In addition, a potential concern for genotoxicity was identified for the unidentified part of the mixture. The Primary Product contains furan-2(5H)-one and benzene-1,2-diol, for which a concern for genotoxicity was identified in vivo upon oral administration. Considering that the exposure estimates for these two components are above the threshold of toxicological concern (TTC) of 0.0025 μg/kg bw per day for DNA-reactive mutagens and/or carcinogens, the Panel concluded that the Primary Product raises concern with respect to genotoxicity.
Collapse
|
7
|
Zhang L, Wang B, Li K, Wang Z, Xu D, Su Y, Wu D, Xie B. Non-negligible health risks caused by inhalation exposure to aldehydes and ketones during food waste treatments in megacity Shanghai. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 325:121448. [PMID: 36931489 DOI: 10.1016/j.envpol.2023.121448] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/19/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Aldehydes and ketones in urban air continue to receive regulatory and scientific attention for their environmental prevalence and potential health hazard. However, current knowledge of the health risks and losses caused by these pollutants in food waste (FW) treatment processes is still limited, especially under long-term exposure. Here, we presented the first comprehensive assessment of chronic exposure to 21 aldehydes and ketones in urban FW-air environments (e.g., storage site, mechanical dewatering, and composting) by coupling substantial measured data (383 samples) with Monte Carlo-based probabilistic health risk and impact assessment models. The results showed that acetaldehyde, acetone, 2-butanone and cyclohexanone were consistently the predominant pollutants, although the significant differences in pollution profiles across treatment sites and seasons (Adonis test, P < 0.001). According to the risk assessment results, the estimated cancer risk (CR; mean range: 1.6 × 10-5-1.12 × 10-4) and non-cancer risk (NCR; mean range: 2.98-22.7) triggered by aldehydes and ketones were both unacceptable in most cases (CR: 37.8%-99.3%; NCR: 54.2%-99.8%), and even reached the limit of concern to CR (1 × 10-4) in some exposure scenarios (6.18%-16.9%). Application of DALYs (disability adjusted life years) as a metric for predicting the damage suggested that exposure of workers to aldehydes and ketones over 20 years of working in FW-air environments could result in 0.02-0.14 DALYs per person. Acetaldehyde was the most harmful constituent of all targeted pollutants, which contributed to the vast majority of health risks (>88%) and losses (>90%). This study highlights aldehydes and ketones in FW treatments may be the critical pollutants to pose inhalation risks.
Collapse
Affiliation(s)
- Liangmao Zhang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Binghan Wang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Kaiyi Li
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Zijiang Wang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Dan Xu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Yinglong Su
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Dong Wu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China; Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
8
|
Lee J, Baek H, Jang J, Park J, Cha SR, Hong SH, Kim J, Lee JH, Hong IS, Wang SJ, Lee JY, Song MH, Yang SR. Establishment of a human induced pluripotent stem cell derived alveolar organoid for toxicity assessment. Toxicol In Vitro 2023; 89:105585. [PMID: 36931533 DOI: 10.1016/j.tiv.2023.105585] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/20/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Alveolar epithelial cells (AECs) are vulnerable to injury, which can result in epithelial hyperplasia, apoptosis, and chronic inflammation. In this study, we developed human induced pluripotent stem cell (hiPS) cell-derived AECs (iAECs) and the iAECs based organoids (AOs) for testing AEC toxicity after chemical exposure. HiPS cells were cultured for 14 days with differentiation medium corresponding to each step, and the iAECs-based AOs were maintained for another 14 days. SFTPC and AQP5 were expressed in the AOs, and mRNA levels of SOX9, NKX2.1, GATA6, HOPX, and ID2 were increased. The AOs were exposed for 24 h to nine chemical substances, and IC50 values of the nine chemicals were determined using MTT assay. When the correlations between iAECs 2D culture and AOs 3D culture were calculated using Pearson's correlation coefficient r value, the nine chemicals that caused a significant decrease of cell viability in 3D culture were found to be highly correlated in 2D culture. The cytotoxicity and nitric oxide release in AO cultured with macrophages were then investigated. When AOs with macrophages were exposed to sodium chromate for 24 h, the IC50 value and nitric oxide production were higher than when the AOs were exposed alone. Taken together, the AO-based 3D culture system provides a useful platform for understanding biological characteristics of AECs and modeling chemical exposures.
Collapse
Affiliation(s)
- Jooyeon Lee
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Hyosin Baek
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jimin Jang
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jaehyun Park
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Sang-Ryul Cha
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jieun Kim
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Jong-Hee Lee
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - In-Sun Hong
- Environmental Health Research Department, Risk Assessment Division, National Institute of Environmental Research, Incheon, Republic of Korea
| | - Seung-Jun Wang
- Department of Molecular Medicine, School of Medicine, Gachon University, 7-45 Songdo-dong, Yeonsu-ku, Incheon 406-840, Republic of Korea
| | - Ji Young Lee
- Department of Molecular Medicine, School of Medicine, Gachon University, 7-45 Songdo-dong, Yeonsu-ku, Incheon 406-840, Republic of Korea
| | - Myung Ha Song
- Department of Molecular Medicine, School of Medicine, Gachon University, 7-45 Songdo-dong, Yeonsu-ku, Incheon 406-840, Republic of Korea
| | - Se-Ran Yang
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea.
| |
Collapse
|
9
|
Zhang Y, Xu N, Liu Z, Bai Y, Wu C, Guo Z. A Knudsen diffusion model for predicting VOC emissions from porous wood-based panels based on porosimetry tests. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:34598-34611. [PMID: 36513898 DOI: 10.1007/s11356-022-24456-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Volatile organic compounds (VOCs) emitted from porous wood-based panels with fractal structure severely pollute indoor environment. Different from previous studies which the diffusion type of VOC in building materials is attributed to Fick diffusion, VOC emission from porous wood-based panels belongs to Knudsen diffusion is firstly determined by comparing the pore diameter of internal channel with VOC molecular free path in this paper. Therefore, a time fractional mass transfer model related to the fractal dimension has been proposed to analyze Knudsen diffusion characteristics firstly. This model considers areal porosity has an impact on surface emission. Analytical solution of the present model is obtained for the first time. Furthermore, it is proved that the finite difference scheme is solvable, unconditionally stable, and convergent, and numerical simulation result and experimental data match well. Moreover, the influences of the fractal dimension df, areal porosity ε, and delay time parameter λ on VOC emission are demonstrated and analyzed; results suggest that the higher ε and df, and lower λ promote VOC emission, which can provide guidance for improving indoor air quality.
Collapse
Affiliation(s)
- Yan Zhang
- School of Science Beijing, University of Civil Engineering and Architecture, Beijing, 100044, China.
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Ning Xu
- School of Science Beijing, University of Civil Engineering and Architecture, Beijing, 100044, China
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Ziyan Liu
- Overseas Chinese College, Capital University of Economics and Business, Beijing, 100070, China
| | - Yu Bai
- School of Science Beijing, University of Civil Engineering and Architecture, Beijing, 100044, China
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Chuandong Wu
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhongbao Guo
- China Building Material Test & Certification Group Co., Ltd, Beijing, 100024, China
| |
Collapse
|
10
|
Wang B, Yu L, Liu W, Yang M, Fan L, Zhou M, Ma J, Wang X, Nie X, Cheng M, Qiu W, Ye Z, Song J, Chen W. Cross-sectional and longitudinal associations of acrolein exposure with pulmonary function alteration: Assessing the potential roles of oxidative DNA damage, inflammation, and pulmonary epithelium injury in a general adult population. ENVIRONMENT INTERNATIONAL 2022; 167:107401. [PMID: 35850081 DOI: 10.1016/j.envint.2022.107401] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/13/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Acrolein is a significant high priority hazardous air pollutant with pulmonary toxicity and the leading cause of most noncancer adverse respiratory effects among air toxics that draws great attention. Whether and how acrolein exposure impacts pulmonary function remain inconclusive. OBJECTIVES To assess the association of acrolein exposure with pulmonary function and the underlying roles of oxidative DNA damage, inflammation, and pulmonary epithelium integrity. METHODS Among 3,279 Chinese adults from the Wuhan-Zhuhai cohort, associations of urinary acrolein metabolites (N-Acetyl-S-(2-carboxyethyl)-L-cysteine, CEMA; N-Acetyl-S-(3-hydroxypropyl)-L-cysteine, 3HPMA) as credible biomarkers of acrolein exposure with pulmonary function were analyzed by linear mixed models. Joint effects of biomarkers of oxidative DNA damage (8-hydroxy-deoxyguanosine), inflammation (C-reactive protein, CRP), and pulmonary epithelium integrity (Club cell secretory protein, CC16) with acrolein metabolites on pulmonary function and the mediating roles of these biomarkers were assessed. Besides, a subgroup (N = 138) was randomly recruited from the cohort to assess the stabilities of acrolein metabolites and their longitudinal associations with pulmonary function change in three years. RESULTS Significant inverse dose-response relationships between acrolein metabolites and pulmonary function were found. Each 10-fold increment in CEMA, 3HPMA, or ΣUACLM (CEMA + 3HPMA) was cross-sectionally related to a 68.56-, 40.98-, or 46.02-ml reduction in FVC and a 61.54-, 43.10-, or 50.14-ml reduction in FEV1, respectively (P < 0.05). Furthermore, acrolein metabolites with fair to excellent stabilities were found to be longitudinally associated with pulmonary function decline in three years. Joint effects of acrolein metabolites with 8-hydroxy-deoxyguanosine, CRP, and CC16 on pulmonary function were identified. CRP significantly mediated 5.97% and 5.51% of CEMA-associated FVC and FEV1 reductions, respectively. 8-hydroxy-deoxyguanosine significantly mediated 6.78%, 6.88%, and 7.61% of CEMA-, 3HPMA-, and ΣUACLM-associated FVC reductions, respectively. CONCLUSIONS Acrolein exposure of general adults was cross-sectionally and longitudinally related to pulmonary function decline, which was aggravated and/or partly mediated by oxidative DNA damage, inflammation, and pulmonary epithelium injury.
Collapse
Affiliation(s)
- Bin Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Linling Yu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wei Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Meng Yang
- Wuhan Children's Hospital (Wuhan Maternal and Child Health Care Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430019, China
| | - Lieyang Fan
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Min Zhou
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jixuan Ma
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xing Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiuque Nie
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Man Cheng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Weihong Qiu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zi Ye
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jiahao Song
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Weihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
11
|
Nicotine Inhibits the Cytotoxicity and Genotoxicity of NNK Mediated by CYP2A13 in BEAS-2B Cells. Molecules 2022; 27:molecules27154851. [PMID: 35956805 PMCID: PMC9369970 DOI: 10.3390/molecules27154851] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 12/02/2022] Open
Abstract
Both tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and nicotine can be metabolized by cytochrome P450 2A13 (CYP2A13). Previous studies have shown that nicotine has a potential inhibitory effect on the toxicity of NNK. However, due to the lack of CYP2A13 activity in conventional lung cell lines, there had been no systematic in vitro investigation for the key target organ, the lung. Here, BEAS-2B cells stably expressing CYP2A13 (B-2A13 cells) were constructed to investigate the effects of nicotine on the cytotoxicity and genotoxicity of NNK. The results showed more sensitivity for NNK-induced cytotoxicity in B-2A13 cells than in BEAS-2B and B-vector cells. NNK significantly induced DNA damage, cell cycle arrest, and chromosomal damage in B-2A13 cells, but had no significant effect on BEAS-2B cells and the vector control cells. The combination of different concentration gradient of nicotine without cytotoxic effects and a single concentration of NNK reduced or even counteracted the cytotoxicity and multi-dimensional genotoxicity in a dose-dependent manner. In conclusion, CYP2A13 caused the cytotoxicity and genotoxicity of NNK in BEAS-2B cells, and the addition of nicotine could inhibit the toxicity of NNK.
Collapse
|
12
|
Liu D, Cheng Y, Tang Z, Mei X, Cao X, Liu J. Toxicity mechanism of acrolein on DNA damage and apoptosis in BEAS-2B cells: Insights from cell biology and molecular docking analyses. Toxicology 2021; 466:153083. [PMID: 34958888 DOI: 10.1016/j.tox.2021.153083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/16/2021] [Accepted: 12/23/2021] [Indexed: 02/08/2023]
Abstract
Acrolein is a hazardous air pollutant for humans and is responsible for many pulmonary diseases, but the underlying mechanisms have not been completely elucidated. This work is focused on the genotoxicity effects of human bronchial epithelial (BEAS-2B) cells induced by acrolein (20, 40, 80 μM). The molecular mechanism was investigated base on DNA damage and mitochondrial apoptosis pathways. The results showed that after exposure to acrolein, the cell viability, glutathione (GSH) of BEAS-2B cells were reduced. Reactive oxygen species (ROS) level significantly increased, accompanied by increased levels of DNA damage-related indicators 8-hydroxy-2 deoxyguanosine (8-OHdG), DNA content of comet tail (Tail DNA%), olive tail moment (OTM), and nucleus morphology. Cell arrested at the G2/M phase. Then, the DNA damage response (DDR) signaling pathway (Ataxia-telangiectasia-mutated (ATM) and Rad-3-related (ATR)/Chk1 and ATM/Chk2) and the consequent cell cycle checkpoints were activated. The expression of γ-H2AX was significantly increased, indicating that acrolein induced DNA double-strand breaks. Molecular docking assay showed that acrolein bound to DNA in a spontaneous process. Moreover, mitochondrial apoptosis pathway involved in apoptosis, mitochondrial membrane potential (MMP) and adenosine triphosphate (ATP) content of BEAS-2B cells were significantly reduced, and the apoptosis rate was significantly increased. The protein expression of Bax/Bcl-2 and Cleaved Caspase-3 were increased, and JNK signaling pathway was activated. All the results indicated that acrolein induced DNA damage, activated DDR and mitochondrial apoptosis pathways, which might be the pivotal factors to mediate cytotoxicity in BEAS-2B cells.
Collapse
Affiliation(s)
- Dan Liu
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, 110036, PR China
| | - Ye Cheng
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, 110036, PR China
| | - Zhipeng Tang
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, 110036, PR China
| | - Xueying Mei
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, 110036, PR China
| | - Xiangyu Cao
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, 110036, PR China.
| | - Jianli Liu
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, 110036, PR China.
| |
Collapse
|