1
|
Wright CY, Kapwata T, Kunene S, Kwatala N, Mahlangeni N, Laban T, Webster C. Heat in the transport sector: measured heat exposure and interventions to address heat-related health impacts in the minibus taxi industry in South Africa. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2025:10.1007/s00484-025-02935-2. [PMID: 40355751 DOI: 10.1007/s00484-025-02935-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 04/17/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025]
Abstract
High temperatures, heat and heatwaves are being experienced more frequently and with greater intensity in many parts of the world, including South Africa, and record-breaking maximum temperatures are becoming more common. Exposure to heat has adverse impacts on human health and wellbeing. The transport sector and its users are vulnerable to heat both inside vehicles as well as in places where people wait for public transport. We sought to assess the temperatures experienced in minibus taxis, a common mode of transport in South Africa and in minibus taxi ranks as well as the heat-related perceptions of minibus taxi drivers working in the Chesterville Taxi Association in Durban. We also observed heat-related elements in minibus taxi ranks. Data from temperature loggers showed that temperatures inside minibus taxis reached up to 39 °C and were between 3-4 °C warmer than outdoors. For around 11 h every day, temperatures inside minibus taxis were warmer than 27 °C - the temperature that is linked to heat-health symptoms. Taxi drivers (N = 16) all agreed they feel hot in the minibus taxi and more than 90% said they drink water to try to cool down. Taxi ranks were lacking in supply of drinking water and shade for minibus taxis and seating. With the projected increase in temperatures caused by climate change, it is imperative to co-develop mitigation and adaptation strategies to minimise heat-related human health impacts in minibus taxis and taxi ranks especially in low- and middle-income countries.
Collapse
Affiliation(s)
- Caradee Y Wright
- Climate Change and Health Research Programme, Environment and Health Research Unit, South African Medical Research Council, 1 Soutpansberg Road, Pretoria, 0001, South Africa.
- Department of Geography, Geoinformatics and Meteorology, University of Pretoria, Pretoria, South Africa.
| | - Thandi Kapwata
- Climate Change and Health Research Programme, Environment and Health Research Unit, South African Medical Research Council, Johannesburg, South Africa
- Department of Environmental Health, University of Johannesburg, Johannesburg, South Africa
| | - Siyathemba Kunene
- Climate Change and Health Research Programme, Environment and Health Research Unit, South African Medical Research Council, Johannesburg, South Africa
| | - Ngwako Kwatala
- Climate Change and Health Research Programme, Environment and Health Research Unit, South African Medical Research Council, Johannesburg, South Africa
| | - Nomfundo Mahlangeni
- Department of Environmental Health, University of Johannesburg, Johannesburg, South Africa
- Climate Change and Health Research Programme, Environment and Health Research Unit, South African Medical Research Council, Cape Town, South Africa
| | - Tracey Laban
- Climate Change and Health Research Programme, Environment and Health Research Unit, South African Medical Research Council, 1 Soutpansberg Road, Pretoria, 0001, South Africa
| | - Candice Webster
- Climate Change and Health Research Programme, Environment and Health Research Unit, South African Medical Research Council, Johannesburg, South Africa
| |
Collapse
|
2
|
Hass AL, Monteblanco AD. An exploratory study of household conditions and youth personal exposure to extreme heat during a heatwave in urban Nashville, Tennessee, USA. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2025; 69:427-440. [PMID: 39562352 DOI: 10.1007/s00484-024-02822-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/21/2024] [Accepted: 11/05/2024] [Indexed: 11/21/2024]
Abstract
Extreme heat is the deadliest meteorological hazard and is increasingly affecting the southeastern United States. Health effects of extreme heat are often not felt for hours or days after exposure and disproportionately affect vulnerable populations (e.g., youth, minorities). Personal heat exposure research has focused on occupational and everyday heat exposure among adults. To date, heat exposure in teenage populations has not been investigated. This population has unique heat exposure patterns that result from lifestyles that include outdoor jobs (e.g., lifeguard) and participation in outdoor sports. Better understanding of these exposure patterns is needed to reduce youth exposure and illnesses during heat events. Likewise, there have been no studies comparing paired indoor home conditions with individual exposure. Participants (n = 10) wore sensors to collect six days of personal heat exposure data (temperature and humidity) and placed sensors in and around their homes to collect ambient household data. When comparing individual exposure with ambient outdoor conditions and household conditions, this study revealed that: 1) teenagers are less exposed to dangerous heat (> 37.8 °C heat index) during the day; 2) teenagers are more exposed to dangerous heat (> 23.9 °C temperature) at night; 2) some teenagers are exposed to long periods of high heat at night, which is typically a time for heat recovery; and 3) household temperatures are typically not representative of heat exposure. To better understand teen exposure, we recommend future research focus on larger, representative sample sizes, collecting exposure data during the school year, and comparing exposure between heatwave and normal summer conditions.
Collapse
Affiliation(s)
- Alisa L Hass
- Department of Geosciences, Middle Tennessee State University, MTSU, P.O. Box 9, Murfreesboro, TN, USA.
| | - Adelle Dora Monteblanco
- Department of Public Health, Pacific University, 2043 College Way, Forest Grove, Oregon, USA
| |
Collapse
|
3
|
Weitz CA. Coping with extreme heat: current exposure and implications for the future. Evol Med Public Health 2024; 12:eoae015. [PMID: 39359409 PMCID: PMC11445678 DOI: 10.1093/emph/eoae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 07/02/2024] [Indexed: 10/04/2024] Open
Abstract
A preview of how effective behavioral, biological and technological responses might be in the future, when outdoor conditions will be at least 2°C hotter than current levels, is available today from studies of individuals already living in extreme heat. In areas where high temperatures are common-particularly those in the hot and humid tropics-several studies report that indoor temperatures in low-income housing can be significantly hotter than those outdoors. A case study indicates that daily indoor heat indexes in almost all the 123 slum dwellings monitored in Kolkata during the summer were above 41°C (106°F) for at least an hour. Economic constraints make it unlikely that technological fixes, such as air conditioners, will remedy conditions like these-now or in the future. People without access to air conditioning will have to rely on behavioral adjustments and/or biological/physiological acclimatization. One important unknown is whether individuals who have lived their entire lives in hot environments without air conditioning possess natural levels of acclimatization greater than those indicated by controlled laboratory studies. Answering questions about the future will require more studies of heat conditions experienced by individuals, more information on indoor versus outdoor heat conditions, and a greater understanding of the behavioral and biological adjustments made by people living today in extremely hot conditions.
Collapse
Affiliation(s)
- Charles A Weitz
- Department of Anthropology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
4
|
Vecellio DJ, Vanos JK. Aligning thermal physiology and biometeorological research for heat adaptation and resilience in a changing climate. J Appl Physiol (1985) 2024; 136:1322-1328. [PMID: 38385187 PMCID: PMC11365541 DOI: 10.1152/japplphysiol.00098.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 02/23/2024] Open
Affiliation(s)
- Daniel J Vecellio
- Center for Healthy Aging, Pennsylvania State University, University Park, Pennsylvania, United States
- Virginia Climate Center, George Mason University, Fairfax, Virginia, United States
| | - Jennifer K Vanos
- School of Sustainability, Arizona State University, Tempe, Arizona, United States
| |
Collapse
|
5
|
Ming Y, Liu Y, Liu X, Tian Z. Demographic disparity in diurnal surface urban Heat Island exposure across local climate zones: A case study of Chongqing, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171203. [PMID: 38428601 DOI: 10.1016/j.scitotenv.2024.171203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/06/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024]
Abstract
Surface urban heat island (SUHI) exposure significantly harms human health during rapid urbanization. Identifying the areas and demographic groups under high SUHI exposure is critical for mitigating heat-related hazards. However, despite broad concern in US-European countries, rare studies discuss the diurnal SUHI exposure of demographic subgroups across Local Climate Zones (LCZs) in Chinese cities. Therefore, taking Chongqing as the case study, we measured the diurnal SUHI exposure of demographic subgroups (e.g., gender, age, and income) across different LCZs (compact, open, and sparsely-built zones) by coupling the ECOSTRESS data and mobile phone signaling data. The results indicated that Chongqing's compact high/middle-rise zones suffered a higher SUHI exposure due to high land surface temperature (LST) and a larger size of population than open zones. Despite a relatively low population density, extremely high LST in compact low-rise zones (e.g., industrial parks) contributes to considerable accumulated SUHI exposure. The SUHI exposure risk exhibited the differences between daytime and nighttime, resulting from SUHI variation and population flow. The demographic analysis showed that Chongqing's demographic subgroups are exposed disproportionately to SUHI. Elderly groups suffered relatively high exposure in compact high-rise zones. Low-incomers witnessed a high exposure in open zones. These findings call for alleviating SUHI exposure risk by targeting vulnerable groups and high-intensity exposure areas.
Collapse
Affiliation(s)
- Yujia Ming
- School of Management Science and Real Estate, Chongqing University, Chongqing 400045, PR China.
| | - Yong Liu
- School of Management Science and Real Estate, Chongqing University, Chongqing 400045, PR China.
| | - Xue Liu
- School of Geographic Sciences, East China Normal University, Shanghai 200241, PR China.
| | - Zongshun Tian
- School of Management Science and Real Estate, Chongqing University, Chongqing 400045, PR China.
| |
Collapse
|
6
|
Pan X, Mavrokapnidis D, Ly HT, Mohammadi N, Taylor JE. Assessing and forecasting collective urban heat exposure with smart city digital twins. Sci Rep 2024; 14:9653. [PMID: 38671018 PMCID: PMC11053083 DOI: 10.1038/s41598-024-59228-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Due to population growth, climate change, and the urban heat island effect, heat exposure is becoming an important issue faced by urban built environments. Heat exposure assessment is a prerequisite for mitigation measures to reduce the impact of heat exposure. However, there is limited research on urban heat exposure assessment approaches that provides fine-scale spatiotemporal heat exposure information, integrated with meteorological status and human collective exposure as they move about in cities, to enable proactive heat exposure mitigation measures. Smart city digital twins (SCDTs) provide a new potential avenue for addressing this gap, enabling fine spatiotemporal scales, human-infrastructure interaction modeling, and predictive and decision support capabilities. This study aims to develop and test an SCDT for collective urban heat exposure assessment and forecasting. Meteorological sensors and computer vision techniques were implemented in Columbus, Georgia, to acquire temperature, humidity, and passersby count data. These data were then integrated into a collective temperature humidity index. A time-series prediction model and a crowd simulation were employed to predict future short-term heat exposures based on the data accumulated by this SCDT and to support heat exposure mitigation efforts. The results demonstrate the potential of SCDT to enhance public safety by providing city officials with a tool for discovering, predicting, and, ultimately, mitigating community exposure to extreme heat.
Collapse
Affiliation(s)
- Xiyu Pan
- School of Civil and Environmental Engineering, Georgia Institute of Technology, 790 Atlantic Dr NW, Atlanta, GA, 30332, USA
| | - Dimitris Mavrokapnidis
- Faculty of the Built Environment, University College London, Gower St, London, WC1E 6BT, UK
| | - Hoang T Ly
- School of Civil and Environmental Engineering, Georgia Institute of Technology, 790 Atlantic Dr NW, Atlanta, GA, 30332, USA
| | - Neda Mohammadi
- School of Civil and Environmental Engineering, Georgia Institute of Technology, 790 Atlantic Dr NW, Atlanta, GA, 30332, USA
| | - John E Taylor
- School of Civil and Environmental Engineering, Georgia Institute of Technology, 790 Atlantic Dr NW, Atlanta, GA, 30332, USA.
| |
Collapse
|
7
|
Ellis KN, First JM, Kintziger KW, Hunter E. Overnight heat in sleep spaces of housed and unhoused residents: results and recommendations from a Knoxville, Tennessee, case study. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:637-646. [PMID: 38189990 DOI: 10.1007/s00484-023-02611-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/07/2023] [Accepted: 12/17/2023] [Indexed: 01/09/2024]
Abstract
Nighttime heat is an important factor in heat-health outcomes, though nighttime heat exposure and its impacts are poorly understood. We assessed overnight heat in indoor (n = 12) and outdoor (n = 3) living spaces in Knoxville, Tennessee, using iButton Hygrochrons in August 2021. Indoor sleep spaces, all of which were air conditioned, reported a variety of overnight conditions. Indoor sleep spaces were both warmer and cooler than outdoor temperatures overnight, and some participants noted having physical health effects of overnight heat in their homes. Downtown outdoor sleep spaces, including a park and encampment, exhibited an urban heat island signal, staying warmer than other outdoor areas. Future research should focus on the intensity and length of the overnight recovery period for individuals and how that affects heat-health outcomes, especially after being exposed to daytime heat. Specifically, do homes reach a cool enough temperature for recovery, and do outdoor sleeping spaces offer a long enough and cool enough period for recovery? We provide some recommendations for such future studies, including (1) focus on purposeful sampling, (2) use deliberate sensor placement for representative results, (3) prepare for participant drop-off due to non-compliance and technological problems, and (4) strategically gather demographic information.
Collapse
Affiliation(s)
- Kelsey N Ellis
- Department of Geography and Sustainability, University of Tennessee, Knoxville, TN, USA.
| | - Jennifer M First
- College of Social Work, University of Tennessee, Knoxville, TN, USA
| | | | - Ella Hunter
- Department of Geography and Sustainability, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
8
|
Meade RD, Akerman AP, Notley SR, Kirby NV, Sigal RJ, Kenny GP. Effects of Daylong Exposure to Indoor Overheating on Thermal and Cardiovascular Strain in Older Adults: A Randomized Crossover Trial. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:27003. [PMID: 38329752 PMCID: PMC10852046 DOI: 10.1289/ehp13159] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 11/29/2023] [Accepted: 12/22/2023] [Indexed: 02/09/2024]
Abstract
BACKGROUND Health agencies recommend that homes of heat-vulnerable occupants (e.g., older adults) be maintained below 24-28°C to prevent heat-related mortality and morbidity. However, there is limited experimental evidence to support these recommendations. OBJECTIVE To aid in the development of evidence-based guidance on safe indoor temperatures for temperate continental climates, we evaluated surrogate physiological outcomes linked with heat-related mortality and morbidity in older adults during simulated indoor overheating. METHODS Sixteen older adults [six women; median age: 72 y, interquartile range (IQR): 70-73 y; body mass index: 24.6 ( IQR : 22.1 - 27.0 ) kg / m 2 ] from the Ottawa, Ontario, Canada, region (warm summer continental climate) completed four randomized, 8-h exposures to conditions experienced indoors during hot weather in continental climates (e.g., Ontario, Canada; 64 participant exposures). Ambient conditions simulated an air-conditioned environment (22°C; control), proposed indoor temperature upper limits (26°C), and temperatures experienced in homes without air-conditioning (31°C and 36°C). Core temperature (rectal) was monitored as the primary outcome; based on previous recommendations, between-condition differences > 0.3 ° C were considered clinically meaningful. RESULTS Compared with 22°C, core temperature was elevated to a meaningful extent in 31°C [+ 0 . 7 ° C ; 95% confidence interval (CI): 0.5, 0.8] and 36°C (+ 0 . 9 ° C ; 95% CI: 0.8, 1.1), but not 26°C (+ 0 . 2 ° C , 95% CI: 0.0, 0.3). Increasing ambient temperatures were also associated with elevated heart rate and reduced arterial blood pressure and heart rate variability at rest, as well as progressive impairments in cardiac and blood pressure responses to standing from supine. DISCUSSION Core temperature and cardiovascular strain were not appreciably altered following 8-h exposure to 26°C but increased progressively in conditions above this threshold. These data support proposals for the establishment of a 26°C indoor temperature upper limit for protecting vulnerable occupants residing in temperate continental climates from indoor overheating. https://doi.org/10.1289/EHP13159.
Collapse
Affiliation(s)
- Robert D. Meade
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Ashley P. Akerman
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Sean R. Notley
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Nathalie V. Kirby
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Ronald J. Sigal
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Glen P. Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
9
|
Van Tol Z, Vanos JK, Middel A, Ferguson KM. Concurrent Heat and Air Pollution Exposures among People Experiencing Homelessness. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:15003. [PMID: 38261303 PMCID: PMC10805133 DOI: 10.1289/ehp13402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024]
Abstract
BACKGROUND Extreme heat and air pollution are important human health concerns; exposure can affect mental and physical well-being, particularly during periods of co-occurrence. Yet, the impacts on people are largely determined by underlying health conditions, coupled with the length and intensity of exposure. Preexisting adverse health conditions and prolonged exposure times are more common for people experiencing homelessness, particularly those with intersectional identity characteristics (e.g., disease, ability, age, etc.). Partially due to methodological limitations, such as data scarcity, there is a lack of research at the intersection of this at-risk population within the climate-health domain. OBJECTIVES We have three distinct objectives throughout this article: a) to advance critical discussions around the state of concurrent high heat and air pollution exposure research as it relates to people experiencing homelessness; b) to assert the importance of heat and air pollution exposure research among a highly vulnerable, too-often homogenized population-people experiencing homelessness; and c) to underline challenges in this area of study while presenting potential ways to address such shortcomings. DISCUSSION The health insights from concurrent air pollution and heat exposure studies are consequential when studying unhoused communities who are already overexposed to harmful environmental conditions. Without holistic data sets and more advanced methods to study concurrent exposures, appropriate and targeted prevention and intervention strategies cannot be developed to protect this at-risk population. We highlight that a) concurrent high heat and air pollution exposure research among people experiencing homelessness is significantly underdeveloped considering the pressing human health implications; b) the severity of physiological responses elicited by high heat and air pollution are predicated on exposure intensity and time, and thus people without means of seeking climate-controlled shelter are most at risk; and c) collaboration among transdisciplinary teams is needed to resolve data resolution issues and enable targeted prevention and intervention strategies. https://doi.org/10.1289/EHP13402.
Collapse
Affiliation(s)
- Zachary Van Tol
- School of Sustainability, Arizona State University, Tempe, Arizona, USA
| | - Jennifer K. Vanos
- School of Sustainability, Arizona State University, Tempe, Arizona, USA
| | - Ariane Middel
- School of Arts, Media and Engineering, Arizona State University, Tempe, Arizona, USA
| | | |
Collapse
|
10
|
Stone B, Gronlund CJ, Mallen E, Hondula D, O’Neill MS, Rajput M, Grijalva S, Lanza K, Harlan S, Larsen L, Augenbroe G, Krayenhoff ES, Broadbent A, Georgescu M. How Blackouts during Heat Waves Amplify Mortality and Morbidity Risk. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:8245-8255. [PMID: 37219950 PMCID: PMC10249403 DOI: 10.1021/acs.est.2c09588] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023]
Abstract
The recent concurrence of electrical grid failure events in time with extreme temperatures is compounding the population health risks of extreme weather episodes. Here, we combine simulated heat exposure data during historical heat wave events in three large U.S. cities to assess the degree to which heat-related mortality and morbidity change in response to a concurrent electrical grid failure event. We develop a novel approach to estimating individually experienced temperature to approximate how personal-level heat exposure changes on an hourly basis, accounting for both outdoor and building-interior exposures. We find the concurrence of a multiday blackout event with heat wave conditions to more than double the estimated rate of heat-related mortality across all three cities, and to require medical attention for between 3% (Atlanta) and more than 50% (Phoenix) of the total urban population in present and future time periods. Our results highlight the need for enhanced electrical grid resilience and support a more spatially expansive use of tree canopy and high albedo roofing materials to lessen heat exposures during compound climate and infrastructure failure events.
Collapse
Affiliation(s)
- Brian Stone
- School
of City & Regional Planning, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Carina J. Gronlund
- University
of Michigan Institute for Social Research, Ann Arbor, Michigan 48106, United States
- University
of Michigan School of Public Health, Ann Arbor, Michigan 48109, United States
| | - Evan Mallen
- School
of City & Regional Planning, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - David Hondula
- School
of Geographical Sciences and Urban Planning, Arizona State University, Tempe, Arizona 85281, United States
| | - Marie S. O’Neill
- University
of Michigan School of Public Health, Ann Arbor, Michigan 48109, United States
| | - Mayuri Rajput
- School
of Architecture, Georgia Institute of Technology, Atlanta, Georgia 30332 United States
| | - Santiago Grijalva
- School
of
Electrical and Computing Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Kevin Lanza
- University
of Texas Health Science Center at Houston School of Public Health, Austin, Texas 78701, United States
| | - Sharon Harlan
- Department
of Health Sciences, Northeastern University, Boston, Massachusetts 02115, United States
- School
of Human Evolution and Social Change, Arizona
State University, Tempe, Arizona 85281, United States
| | - Larissa Larsen
- Taubman
College of Architecture and Urban Planning, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Godfried Augenbroe
- School
of Architecture, Georgia Institute of Technology, Atlanta, Georgia 30332 United States
| | - E. Scott Krayenhoff
- School of
Environmental Sciences, University
of Guelph, Guelph N1G2W1, Canada
| | - Ashley Broadbent
- School
of Geographical Sciences and Urban Planning, Arizona State University, Tempe, Arizona 85281, United States
| | - Matei Georgescu
- School
of Geographical Sciences and Urban Planning, Arizona State University, Tempe, Arizona 85281, United States
| |
Collapse
|
11
|
Guzman-Echavarria G, Middel A, Vanos J. Beyond heat exposure - new methods to quantify and link personal heat exposure, stress, and strain in diverse populations and climates: The journal Temperature toolbox. Temperature (Austin) 2022; 10:358-378. [PMID: 37554380 PMCID: PMC10405775 DOI: 10.1080/23328940.2022.2149024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/31/2022] [Accepted: 11/12/2022] [Indexed: 11/21/2022] Open
Abstract
Fine-scale personal heat exposure (PHE) information can help prevent or minimize weather-related deaths, illnesses, and reduced work productivity. Common methods to estimate heat risk do not simultaneously account for the intensity, frequency, and duration of thermal exposures, nor do they include inter-individual factors that modify physiological response. This study demonstrates new whole-body net thermal load estimations to link PHE to heat stress and strain over time. We apply a human-environment heat exchange model to examine how time-varying net thermal loads differ across climate contexts, personal attributes, and spatiotemporal scales. First, we investigate summertime climatic PHE impacts for three US cities: Phoenix, Miami, and New York. Second, we model body morphology and acclimatization for three profiles (middle-aged male/female; female >65 years). Finally, we quantify model sensitivity using representative data at synoptic and micro-scales. For all cases, we compare required and potential evaporative heat losses that can lead to dangerous thermal exposures based on (un)compensable heat stress. Results reveal misclassifications in heat stress or strain due to incomplete environmental data and assumed equivalent physiology and activities between people. Heat strain is most poorly represented by PHE alone for the elderly, non-acclimatized, those engaged in strenuous activities, and when negating solar radiation. Moreover, humid versus dry heat across climates elicits distinct thermal responses from the body. We outline criteria for inclusive PHE evaluations connecting heat exposure, stress, and strain while using physiological-based methods to avoid misclassifications. This work underlines the value of moving from "one-size-fits-all" thermal indices to "fit-for-purpose" approaches using personalized information.
Collapse
Affiliation(s)
- Gisel Guzman-Echavarria
- School of Geographical Sciences and Urban Planning, Arizona State University, Tempe, AZ, USA
| | - Ariane Middel
- School of Arts, Media and Engineering, Arizona State University, Tempe, AZ, USA
- School of Computing and Augmented Intelligence, Arizona State University,Tempe, AZ, USA
| | - Jennifer Vanos
- School of Sustainability, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
12
|
Milando CW, Black-Ingersoll F, Heidari L, López-Hernández I, de Lange J, Negassa A, McIntyre AM, Martinez MPB, Bongiovanni R, Levy JI, Kinney PL, Scammell MK, Fabian MP. Mixed methods assessment of personal heat exposure, sleep, physical activity, and heat adaptation strategies among urban residents in the Boston area, MA. BMC Public Health 2022; 22:2314. [PMID: 36496371 PMCID: PMC9739346 DOI: 10.1186/s12889-022-14692-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
The growing frequency, intensity, and duration of extreme heat events necessitates interventions to reduce heat exposures. Local opportunities for heat adaptation may be optimally identified through collection of both quantitative exposure metrics and qualitative data on perceptions of heat. In this study, we used mixed methods to characterize heat exposure among urban residents in the area of Boston, Massachusetts, US, in summer 2020. Repeated interviews of N = 24 study participants ascertained heat vulnerability and adaptation strategies. Participants also used low-cost sensors to collect temperature, location, sleep, and physical activity data. We saw significant differences across temperature metrics: median personal temperature exposures were 3.9 °C higher than median ambient weather station temperatures. Existing air conditioning (AC) units did not adequately control indoor temperatures to desired thermostat levels: even with AC use, indoor maximum temperatures increased by 0.24 °C per °C of maximum outdoor temperature. Sleep duration was not associated with indoor or outdoor temperature. On warmer days, we observed a range of changes in time-at-home, expected given our small study size. Interview results further indicated opportunities for heat adaptation interventions including AC upgrades, hydration education campaigns, and amelioration of energy costs during high heat periods. Our mixed methods design informs heat adaptation interventions tailored to the challenges faced by residents in the study area. The strength of our community-academic partnership was a large part of the success of the mixed methods approach.
Collapse
Affiliation(s)
- Chad W Milando
- Department of Environmental Health, School of Public Health, Boston University, 715 Albany St, Boston, MA, 02118, USA.
| | - Flannery Black-Ingersoll
- Department of Environmental Health, School of Public Health, Boston University, 715 Albany St, Boston, MA, 02118, USA
| | - Leila Heidari
- Department of Environmental Health, School of Public Health, Boston University, 715 Albany St, Boston, MA, 02118, USA
| | | | - Julie de Lange
- Department of Environmental Health, School of Public Health, Boston University, 715 Albany St, Boston, MA, 02118, USA
| | - Abgel Negassa
- Department of Environmental Health, School of Public Health, Boston University, 715 Albany St, Boston, MA, 02118, USA
| | - Alina M McIntyre
- Department of Environmental Health, School of Public Health, Boston University, 715 Albany St, Boston, MA, 02118, USA
| | - M Pilar Botana Martinez
- Department of Environmental Health, School of Public Health, Boston University, 715 Albany St, Boston, MA, 02118, USA
| | | | - Jonathan I Levy
- Department of Environmental Health, School of Public Health, Boston University, 715 Albany St, Boston, MA, 02118, USA
| | - Patrick L Kinney
- Department of Environmental Health, School of Public Health, Boston University, 715 Albany St, Boston, MA, 02118, USA
| | - Madeleine K Scammell
- Department of Environmental Health, School of Public Health, Boston University, 715 Albany St, Boston, MA, 02118, USA
| | - M Patricia Fabian
- Department of Environmental Health, School of Public Health, Boston University, 715 Albany St, Boston, MA, 02118, USA
- Institute for Global Sustainability, Boston University, Boston, 02118, USA
| |
Collapse
|
13
|
Mukhopadhyay B, Weitz CA. Heat Exposure, Heat-Related Symptoms and Coping Strategies among Elderly Residents of Urban Slums and Rural Vilages in West Bengal, India. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12446. [PMID: 36231746 PMCID: PMC9564637 DOI: 10.3390/ijerph191912446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
The impact of heat stress among the elderly in India-particularly the elderly poor-has received little or no attention. Consequently, their susceptibility to heat-related illnesses is virtually unknown, as are the strategies they use to avoid, or deal with, the heat. This study examined perceptions of comfort, heat-related symptoms, and coping behaviors of 130 elderly residents of Kolkata slums and 180 elderly residents of rural villages south of Kolkata during a 90-day period when the average 24-h heat indexes were between 38.6 °C and 41.8 °C. Elderly participants in this study reported being comfortable under relatively warm conditions-probably explained by acclimatization to the high level of experienced heat stress. The prevalence of most heat-related symptoms was significantly greater among elderly women, who also were more likely to report multiple symptoms and more severe symptoms. Elderly women in the rural villages were exposed to significantly hotter conditions during the day than elderly men, making it likely that gender differences in symptom frequency, number and severity were related to gender differences in heat stress. Elderly men and elderly village residents made use of a greater array of heat-coping behaviors and exhibited fewer heat-related symptoms than elderly women and elderly slum residents. Overall, heat measurements and heat-related symptoms were less likely to be significant predictors of most coping strategies than personal characteristics, building structures and location. This suggests that heat-coping behaviors during hot weather were the result of complex, culturally influenced decisions based on many different considerations besides just heat stress.
Collapse
Affiliation(s)
- Barun Mukhopadhyay
- Biological Anthropology Unit, Indian Statistical Institute, Kolkata 700 108, India
- Indian Anthropological Society, Kolkata 700 019, India
| | - Charles A. Weitz
- Department of Anthropology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
14
|
Koch M, Matzke I, Huhn S, Gunga HC, Maggioni MA, Munga S, Obor D, Sié A, Boudo V, Bunker A, Dambach P, Bärnighausen T, Barteit S. Wearables for Measuring Health Effects of Climate Change-Induced Weather Extremes: Scoping Review. JMIR Mhealth Uhealth 2022; 10:e39532. [PMID: 36083624 PMCID: PMC9508665 DOI: 10.2196/39532] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Although climate change is one of the biggest global health threats, individual-level and short-term data on direct exposure and health impacts are still scarce. Wearable electronic devices (wearables) present a potential solution to this research gap. Wearables have become widely accepted in various areas of health research for ecological momentary assessment, and some studies have used wearables in the field of climate change and health. However, these studies vary in study design, demographics, and outcome variables, and existing research has not been mapped. OBJECTIVE In this review, we aimed to map existing research on wearables used to detect direct health impacts and individual exposure during climate change-induced weather extremes, such as heat waves or wildfires. METHODS We conducted a scoping review according to the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) framework and systematically searched 6 databases (PubMed [MEDLINE], IEEE Xplore, CINAHL [EBSCOhost], WoS, Scopus, Ovid [MEDLINE], and Google Scholar). The search yielded 1871 results. Abstracts and full texts were screened by 2 reviewers (MK and IM) independently using the inclusion and exclusion criteria. The inclusion criteria comprised studies published since 2010 that used off-the-shelf wearables that were neither invasive nor obtrusive to the user in the setting of climate change-related weather extremes. Data were charted using a structured form, and the study outcomes were narratively synthesized. RESULTS The review included 55,284 study participants using wearables in 53 studies. Most studies were conducted in upper-middle-income and high-income countries (50/53, 94%) in urban environments (25/53, 47%) or in a climatic chamber (19/53, 36%) and assessed the health effects of heat exposure (52/53, 98%). The majority reported adverse health effects of heat exposure on sleep, physical activity, and heart rate. The remaining studies assessed occupational heat stress or compared individual- and area-level heat exposure. In total, 26% (14/53) of studies determined that all examined wearables were valid and reliable for measuring health parameters during heat exposure when compared with standard methods. CONCLUSIONS Wearables have been used successfully in large-scale research to measure the health implications of climate change-related weather extremes. More research is needed in low-income countries and vulnerable populations with pre-existing conditions. In addition, further research could focus on the health impacts of other climate change-related conditions and the effectiveness of adaptation measures at the individual level to such weather extremes.
Collapse
Affiliation(s)
- Mara Koch
- Heidelberg Institute of Global Health, Faculty of Medicine and University Hospital, Heidelberg University, Heidelberg, Germany
| | - Ina Matzke
- Heidelberg Institute of Global Health, Faculty of Medicine and University Hospital, Heidelberg University, Heidelberg, Germany
| | - Sophie Huhn
- Heidelberg Institute of Global Health, Faculty of Medicine and University Hospital, Heidelberg University, Heidelberg, Germany
| | - Hanns-Christian Gunga
- Charité - Universitätsmedizin Berlin, Institute of Physiology, Center for Space Medicine and Extreme Environment Berlin, Berlin, Germany
| | - Martina Anna Maggioni
- Charité - Universitätsmedizin Berlin, Institute of Physiology, Center for Space Medicine and Extreme Environment Berlin, Berlin, Germany
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | | | - David Obor
- Kenya Medical Research Institute, Kisumu, Kenya
| | - Ali Sié
- Heidelberg Institute of Global Health, Faculty of Medicine and University Hospital, Heidelberg University, Heidelberg, Germany
- Centre de Recherche en Santé, Nouna, Burkina Faso
| | | | - Aditi Bunker
- Heidelberg Institute of Global Health, Faculty of Medicine and University Hospital, Heidelberg University, Heidelberg, Germany
- Center for Climate, Health, and the Global Environment, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Peter Dambach
- Heidelberg Institute of Global Health, Faculty of Medicine and University Hospital, Heidelberg University, Heidelberg, Germany
| | - Till Bärnighausen
- Heidelberg Institute of Global Health, Faculty of Medicine and University Hospital, Heidelberg University, Heidelberg, Germany
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Africa Health Research Institute, KwaZulu-Natal, South Africa
| | - Sandra Barteit
- Heidelberg Institute of Global Health, Faculty of Medicine and University Hospital, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
15
|
Wang Y, Huang Y, Shen F, Zhang T, Hu J, Chen H, Huang L. Exploring a more reasonable temperature exposure calculation method based on individual exposure survey and city-scale heat exposure impact assessment. ENVIRONMENTAL RESEARCH 2022; 212:113317. [PMID: 35513062 DOI: 10.1016/j.envres.2022.113317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
The inability to quantify the difference between ambient temperature (AT) and personal exposure temperature (PET) is a common limitation in environmental health research. The actual exposure variability is underestimated when we used measurements from fixed monitoring stations to estimate PET. The study aims to explore a more reasonable temperature exposure calculation method to relate PET to AT and links heat exposure to adverse health events. We measured hourly PET of 129 participants from July 8th to July 13th, 2021 in Xinyi City, China. The linear mixed-effects model was used to build the relationship between hourly PET and AT in rural and town. Several calculation methods that can capture the intensity, frequency and duration of daily exposure were used to calculate the daily PET and AT and establish the relationship between the two factors. A generalized linear model was used to establish the relationship between city-scale AT indicators and health endpoints from January 1st, 2013 to December 31st, 2015 in Shanghai, China. The result showed that the hourly PET was significantly related to AT, wind speed, air pressure, precipitation, outside time, and air-conditioning use. Among several daily temperature indicators, we found that ATDHAT (Degree Hours Above Threshold (27.4 °C)) was tight with the PETDHAT in different regions (R2 > 0.99). DHAT strengthened the relationship between daily AT and health endpoint in the urban-scale heat-related health impact study, especially in respiratory diseases. The method proposed in this study can improve the accuracy of future epidemiological studies on the effects of heat exposure.
Collapse
Affiliation(s)
- Yiyi Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yujia Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Fuzhen Shen
- Department of Meteorology, University of Reading, Reading, RG6 6BX, UK
| | - Ting Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Jianlin Hu
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Hao Chen
- Jiangsu Meteorological Observatory, Nanjing, 210008, China
| | - Lei Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
16
|
Sugg MM, Runkle JD, Dow K, Barnes J, Stevens S, Pearce J, Bossak B, Curtis S. Individually experienced heat index in a coastal Southeastern US city among an occupationally exposed population. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2022; 66:1665-1681. [PMID: 35759147 DOI: 10.1007/s00484-022-02309-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/13/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Recent studies have characterized individually experienced temperatures or individually experienced heat indices, including new exposure metrics that capture dimensions of exposure intensity, frequency, and duration. Yet, few studies have examined the personal thermal exposure in underrepresented groups, like outdoor workers, and even fewer have assessed corresponding changes in physiologic heat strain. The objective of this paper is to examine a cohort of occupationally exposed grounds and public safety workers (n = 25) to characterize their heat exposure and resulting heat strain. In addition, a secondary aim of this work is to compare individually heat index exposure (IHIE) across exposure metrics, fixed-site in situ weather stations, and raster-derived urban heat island (UHI) measurements in Charleston, SC, a humid coastal climate in the Southeastern USA. A Bland-Altman (BA) analysis was used to assess the level of agreement between the personal IHIE measurements and weather-station heat index (HI) and Urban Heat Island (UHI) measurements. Linear mixed-effect models were used to determine the association between individual risk factors and in situ weather station measurements significantly associated with IHIE measurements. Multivariable stepwise Cox proportional hazard modeling was used to identify the individual and workplace factors associated with time to heat strain in workers. We also examined the non-linear association between heat strain and exposure metrics using generalized additive models. We found significant heterogeneity in IHIE measurements across participants. We observed that time to heat strain was positively associated with a higher IHIE, older age, being male, and among Caucasian workers. Important nonlinear associations between heat strain occurrence and the intensity, frequency, and duration of personal heat metrics were observed. Lastly, our analysis found that IHIE measures were significantly similar for weather station HI, although differences were more pronounced for temperature and relative humidity measurements. Conversely, our IHIE findings were much lower than raster-derived UHI measurements. Real-time monitoring can offer important insights about unfolding temperature-health trends and emerging behaviors during thermal extreme events, which have significant potential to provide situational awareness.
Collapse
Affiliation(s)
- Margaret M Sugg
- Department of Geography and Planning, Appalachian State University, Boone, NC, USA.
| | - Jennifer D Runkle
- North Carolina Institute for Climate Studies, North Carolina State University, Asheville, NC, USA
| | - Kirstin Dow
- Department of Geography, University of South Carolina at Columbia, Columbia, SC, USA
| | | | - Scott Stevens
- North Carolina Institute for Climate Studies, North Carolina State University, Asheville, NC, USA
| | - John Pearce
- Department of Public Health Services, Medical University of South Carolina, Charleston, SC, USA
| | - Brian Bossak
- Department of Health and Human Performance, College of Charleston, Charleston, SC, USA
| | - Scott Curtis
- Department of Physics and Lt. Col. James B. Near, Jr., USAF, '77 Center for Climate Studies, The Citadel, Charleston, SC, USA
| |
Collapse
|
17
|
Hess HW, Stooks JJ, Baker TB, Chapman CL, Johnson BD, Pryor RR, Basile DP, Monroe JC, Hostler D, Schlader ZJ. Kidney injury risk during prolonged exposure to current and projected wet bulb temperatures occurring during extreme heat events in healthy young men. J Appl Physiol (1985) 2022; 133:27-40. [PMID: 35616302 PMCID: PMC9236880 DOI: 10.1152/japplphysiol.00601.2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/22/2022] Open
Abstract
Wet bulb temperatures (Twet) during extreme heat events are commonly 31°C. Recent predictions indicate that Twet will approach or exceed 34°C. Epidemiological data indicate that exposure to extreme heat events increases kidney injury risk. We tested the hypothesis that kidney injury risk is elevated to a greater extent during prolonged exposure to Twet = 34°C compared with Twet = 31°C. Fifteen healthy men rested for 8 h in Twet = 31 (0)°C and Twet = 34 (0)°C. Insulin-like growth factor-binding protein 7 (IGFBP7), tissue inhibitor of metalloproteinase 2 (TIMP-2), and thioredoxin 1 (TRX-1) were measured from urine samples. The primary outcome was the product of IGFBP7 and TIMP-2 ([IGFBP7·TIMP-2]), which provided an index of kidney injury risk. Plasma interleukin-17a (IL-17a) was also measured. Data are presented at preexposure and after 8 h of exposure and as mean (SD) change from preexposure. The increase in [IGFBP7·TIMP-2] was markedly greater at 8 h in the 34°C [+26.9 (27.1) (ng/mL)2/1,000) compared with the 31°C [+6.2 (6.5) (ng/mL)2/1,000] trial (P < 0.01). Urine TRX-1, a marker of renal oxidative stress, was higher at 8 h in the 34°C [+77.6 (47.5) ng/min] compared with the 31°C [+16.2 (25.1) ng/min] trial (P < 0.01). Plasma IL-17a, an inflammatory marker, was elevated at 8 h in the 34°C [+199.3 (90.0) fg/dL; P < 0.01] compared with the 31°C [+9.0 (95.7) fg/dL] trial. Kidney injury risk is exacerbated during prolonged resting exposures to Twet experienced during future extreme heat events (34°C) compared with that experienced currently (31°C), likely because of oxidative stress and inflammatory processes.NEW AND NOTEWORTHY We have demonstrated that kidney injury risk is increased when men are exposed over an 8-h period to a wet bulb temperature of 31°C and exacerbated at a wet bulb temperature of 34°C. Importantly, these heat stress conditions parallel those that are encountered during current (31°C) and future (34°C) extreme heat events. The kidney injury biomarker analyses indicate both the proximal and distal tubules as the locations of potential renal injury and that the injury is likely due to oxidative stress and inflammation.
Collapse
Affiliation(s)
- Hayden W Hess
- Department of Kinesiology, School of Public Health, Indiana University, Bloomington, Indiana
| | - Jocelyn J Stooks
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York
| | - Tyler B Baker
- Department of Kinesiology, School of Public Health, Indiana University, Bloomington, Indiana
| | | | - Blair D Johnson
- Department of Kinesiology, School of Public Health, Indiana University, Bloomington, Indiana
| | - Riana R Pryor
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York
| | - David P Basile
- School of Medicine, Indiana University, Indianapolis, Indiana
| | - Jacob C Monroe
- School of Medicine, Indiana University, Indianapolis, Indiana
| | - David Hostler
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York
| | - Zachary J Schlader
- Department of Kinesiology, School of Public Health, Indiana University, Bloomington, Indiana
| |
Collapse
|
18
|
Hass AL, McCanless K, Cooper W, Ellis K, Fuhrmann C, Kintziger KW, Sugg M, Runkle J. Heat exposure misclassification: Do current methods of classifying diurnal range in individually experienced temperatures and heat indices accurately reflect personal exposure? INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2022; 66:1339-1348. [PMID: 35378617 DOI: 10.1007/s00484-022-02280-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Wearable sensors have been used to collect information on individual exposure to excessive heat and humidity. To date, no consistent diurnal classification method has been established, potentially resulting in missed opportunities to understand personal diurnal patterns in heat exposure. Using individually experienced temperatures (IET) and heat indices (IEHI) collected in the southeastern United States, this work aims to determine whether current methods of classifying IETs and IEHIs accurately characterize "day," which is typically the warmest conditions, and "night," which is typically the coolest conditions. IET and IEHI data from four locations were compared with the closest hourly weather station. Different day/night classifications were compared to determine efficacy. Results indicate that diurnal IET and IEHI ranges are higher than fixed-site ranges. Maximum IETs and IEHIs are warmer and occur later in the day than ambient conditions. Minimum IETs are lower and occur earlier in the day than at weather stations, which conflicts with previous assumptions that minimum temperatures occur at night. When compared to commonly used classification methods, a method of classifying day and night based on sunrise and sunset times best captured the occurrence of maximum IETs and IEHIs. Maximum IETs and IEHIs are often identified later in the evening, while minimum IETs and IEHIs occur throughout the day. These findings support future research focusing on nighttime heat exposure, which can exacerbate heat-related health issues, and diurnal patterns of personal exposure throughout the entire day as individual patterns do not necessarily follow the diurnal pattern seen in ambient conditions.
Collapse
Affiliation(s)
- Alisa L Hass
- Department of Geosciences, Middle Tennessee State University, P.O. Box 9, Murfreesboro, TN, 37132, USA.
| | - Kathryn McCanless
- Department of Geosciences, Middle Tennessee State University, P.O. Box 9, Murfreesboro, TN, 37132, USA
| | - Winton Cooper
- Department of Geosciences, Middle Tennessee State University, P.O. Box 9, Murfreesboro, TN, 37132, USA
| | - Kelsey Ellis
- Department of Geography, University of Tennessee, Knoxville, Knoxville, TN, USA
| | | | - Kristina W Kintziger
- Department of Public Health, University of Tennessee, Knoxville, Knoxville, TN, USA
| | - Margaret Sugg
- Department of Geography and Planning, Appalachian State University, Boone, NC, USA
| | - Jennifer Runkle
- North Carolina Institute for Climate Studies, North Carolina State University, Asheville, NC, USA
| |
Collapse
|
19
|
Weitz CA, Mukhopadhyay B, Das K. Individually experienced heat stress among elderly residents of an urban slum and rural village in India. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2022; 66:1145-1162. [PMID: 35359160 DOI: 10.1007/s00484-022-02264-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 01/10/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
The elderly are one of the most vulnerable groups to heat-related illnesses and mortality. In tropical countries like India, where heat waves have increased in frequency and severity, few studies have focused on the level of stress experienced by the elderly. The study presented here included 130 elderly residents of Kolkata slums and 180 elderly residents of rural villages about 75 km south of Kolkata. It used miniature monitoring devices to continuously measure temperature, humidity, and heat index experienced during everyday activities over 24-h study periods, during hot summer months. In the Kolkata slum, construction materials and the urban heat island effect combined to create hotter indoor than outdoor conditions throughout the day, and particularly at night. As a result, elderly slum residents were 4.3 times more likely to experience dangerous heat index levels (≥ 45°C) compared to rural village elderly. In both locations, the median 24-h heat indexes of active elderly were up to 2°C higher than inactive/sedentary elderly (F = 25.479, p < 0.001). Among Kolkata slums residents, there were no significant gender differences in heat exposure during the day or night, but in the rural village, elderly women were 4 times more likely to experience dangerous heat index levels during the hottest times of the day compared to elderly men. Given the decline in thermoregulatory capacity associated with aging and the increasing severity of extreme summer heat in India, these results forecast a growing public health challenge that will require both scientific and government attention.
Collapse
Affiliation(s)
- Charles A Weitz
- Department of Anthropology, Temple University, 214 Gladfelter Hall, Philadelphia, PA, USA.
| | - Barun Mukhopadhyay
- Formerly, Biological Anthropology Unit, Indian Statistical Institute, Kolkata, 700 108, India
- Indian Anthropological Society, Kolkata, 700 019, India
| | - Ketaki Das
- West Bengal Voluntary Health Association, Kolkata, 700107, India
| |
Collapse
|
20
|
Wang Q, Zhang Y, Ban J, Zhu H, Xu H, Li T. The relationship between population heat vulnerability and urbanization levels: A county-level modeling study across China. ENVIRONMENT INTERNATIONAL 2021; 156:106742. [PMID: 34224997 DOI: 10.1016/j.envint.2021.106742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
The purpose of this work was to assess population vulnerability to heat-related health risks and its relationship with urbanization levels to provide essential information for the future development and policy-making for climate change adaptation. We constructed a heat vulnerability index (HVI), quantified the population heat vulnerability in each county across China by a principal component analysis (PCA) of multiple factors, and assessed urbanization levels in each county using multisource data. Then, the HVI was validated using the heat-attributable fraction (heat-AF) of nonaccidental mortality based on death monitoring data and meteorological data from 95 counties across China. The results showed that our HVI was significantly positively associated with the heat AF of nonaccidental mortality. A negative correlation was observed between the urbanization level and the HVI. The HVI was generally higher in less urbanized western China and lower in the more urbanized eastern regions. The baseline mortality occupies the top position in the importance ranking of the heat-vulnerability indicators at all three urbanization levels, but the other indicators, including the aging rate, agricultural population rate, education, ethnic structure, economic status, air conditioner ownership rate, and number of hospitals, ranked differently among different urbanization levels. This finding indicates that to reduce population heat vulnerability, the most important approach is to improve the health status of the whole population and reduce baseline mortality; additionally, regional-specific measures and emphasis should be adjusted reasonably along with the process of urbanization according to the characteristics and key factors of local heat vulnerability.
Collapse
Affiliation(s)
- Qing Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yayi Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; School of Geomatics and Marine Information, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jie Ban
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Huanhuan Zhu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Huaiyue Xu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Tiantian Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China.
| |
Collapse
|