1
|
Akhigbe R, Oyedokun P, Akhigbe T, Hamed M, Fidelis F, Omole A, Adeogun A, Akangbe M, Oladipo A. The consequences of climate change and male reproductive health: A review of the possible impact and mechanisms. Biochem Biophys Rep 2025; 41:101889. [PMID: 39717849 PMCID: PMC11664087 DOI: 10.1016/j.bbrep.2024.101889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/20/2024] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
A global decline in male fertility has been reported, and climate change is considered a major cause of this. Climate change refers to long-term shifts in temperatures and weather patterns, and results from greenhouse gas emissions like carbon dioxide and methane that act as a blanket wrapped around the earth, trapping heat and elevating temperatures. Sad to say, the consequences of climatic variation are beyond the dramatic elevated temperature, they include cold stress, increased malnutrition, air pollution, cardiovascular diseases respiratory tract infections, cancer, sexually transmitted infections, mental stress, and heat waves. These negative effects of climate change impair male reproductive function through multiple pathways, like ROS-sensitive signaling, suppression of steroidogenic markers, and direct damage to testicular cells. The present study aimed to describe the impact of the consequences of climate change on male reproductive health with details of the various mechanisms involved. This will provide an in-depth understanding of the pathophysiological and molecular basis of the possible climatic variation-induced decline in male fertility, which will aid in the development of preventive measures to abate the negative effects of climate change on male reproductive function.
Collapse
Affiliation(s)
- R.E. Akhigbe
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - P.A. Oyedokun
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - T.M. Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Department of Agronomy, Osun State Univeristy (Ejigbo Campus), Osogbo, Nigeria
| | - M.A. Hamed
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- The Brainwill Laboratory, Osogbo, Osun State, Nigeria
- Department of Medical Laboratory Science, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - F.B. Fidelis
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Department of Biochemistry, Faculty of Life Science, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - A.I. Omole
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Department of Health and Human Physiology, College of Liberal Arts and Sciences, University of Iowa, Iowa, USA
| | - A.E. Adeogun
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - M.D. Akangbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Department of Nursing, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - A.A. Oladipo
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| |
Collapse
|
2
|
Zhou X, Zhang X, Bai G, Dong G, Li X, Chen R, Chen S, Zheng R, Wang C, Wei H, Cao B, Liang Y, Yao H, Su Z, Maimaiti M, Luo F, Li P, Zhu M, Du H, Yang Y, Cui L, Wang J, Yuan J, Liu Z, Wu W, Zhao Q, Fu J. Long-Term Exposure to Fine Particulate Matter (PM 2.5) Components and Precocious Puberty Among School-Aged Children: Cross-Sectional Study. JMIR Public Health Surveill 2025; 11:e62861. [PMID: 39924303 PMCID: PMC11830487 DOI: 10.2196/62861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 02/11/2025] Open
Abstract
Background The increasing incidence of precocious puberty is a major health challenge for Chinese children, while related risk factors remain less well explored. Exposure to ambient fine particulate matter (PM2.5) is a leading environmental hazard in China. Although certain components of PM2.5 have been reported to be endocrine disruptors for sex hormones, population-based evidence is still lacking on the association between PM2.5 exposure and precocious puberty in China. Objective Based on a cross-sectional survey covering 30 cities in 2017 to 2019, this study was designed to explore the association between long-term exposure to PM2.5 and its 5 major components with precocious puberty in China and to check the potential modifying effects of family-related and personal factors. Methods We included 34,105 children aged 6 to 9 years. We collected the 5-year average concentrations of PM2.5 and its 5 major components (sulfate, nitrate, ammonium, organic matter, and black carbon) in the area (at a spatial resolution of 0.1° × 0.1°) where each school was located. We used mixed effect logistic regression to estimate the effect sizes of the total mass of PM2.5 and each of its components on precocious puberty, and we examined the modifying effects of family-related and personal factors using an additional interactive term. A weighted quantile sum (WQS) regression model was applied to identify the weights of each component in explaining the effect size of the total mass of PM2.5. Results We found that the odds ratio (OR) for precocious puberty per IQR increase in the concentration of total PM2.5 mass was 1.27 (95% CI 0.92-1.75) for the whole population, 2.12 (95% CI 1.27-3.55) for girls, and 0.90 (95% CI 0.62-1.30) for boys. Similarly, the effect sizes of the 5 major components were all substantial for girls but minimal for boys. Results of the WQS analysis showed that organic matter could explain the highest proportion of the effect of PM2.5, with the weight of its contribution being 0.71. Modification effects of family income and dietary habits were only observed in certain population subgroups. Conclusions Long-term exposure to total PM2.5 mass was significantly associated with precocious puberty in girls, with organic matter identified as the major effect contributor. The results add evidence on the detrimental effects of PM2.5 on children's development and growth.
Collapse
Affiliation(s)
- Xuelian Zhou
- Department of Endocrinology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, 3333 Binsheng Road, Hangzhou, 310051, China, 86 0571-86670013
| | - Xiaochi Zhang
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong University Climate Change and Health Center, Shandong University, Jinan, China
| | - Guannan Bai
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Guanping Dong
- Department of Endocrinology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, 3333 Binsheng Road, Hangzhou, 310051, China, 86 0571-86670013
| | - Xinyi Li
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong University Climate Change and Health Center, Shandong University, Jinan, China
| | - Ruimin Chen
- Department of Endocrinology, Children’s Hospital of Fuzhou, Fujian Province, Fuzhou, China
| | - Shaoke Chen
- Department of Pediatrics, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Rongxiu Zheng
- Department of Pediatrics, Tianjin Medical University Central Hospital, Tianjin, China
| | - Chunlin Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Haiyan Wei
- Department of Endocrinology, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Bingyan Cao
- Department of Endocrinology, Beijing Children’s Hospital, Capital Medical University, National Medical Center for Children’s Health, Beijing, China
| | - Yan Liang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Yao
- Department of Pediatrics, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Zhe Su
- Department of Endocrinology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Mireguli Maimaiti
- Department of Pediatrics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Feihong Luo
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children’s Hospital of Fudan University, Shanghai, China
| | - Pin Li
- Department of Endocrinology, Children’s Hospital of Shanghai Jiaotong University, Shanghai, China
| | - Min Zhu
- Department of Endocrinology, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Hongwei Du
- Department of Pediatric Endocrinology, The First Bethune Hospital of Jilin University, Changchun, China
| | - Yu Yang
- Department of Endocrinology, Jiangxi Provincial Children’s Hospital, Nanchang, China
| | - Lanwei Cui
- Department of Pediatrics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jinling Wang
- Department of Endocrinology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, 3333 Binsheng Road, Hangzhou, 310051, China, 86 0571-86670013
| | - Jinna Yuan
- Department of Endocrinology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, 3333 Binsheng Road, Hangzhou, 310051, China, 86 0571-86670013
| | - Zhuang Liu
- Department of Reproductive Medicine, Hospital of Jining Medical University, Jining, China
| | - Wei Wu
- Department of Endocrinology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, 3333 Binsheng Road, Hangzhou, 310051, China, 86 0571-86670013
| | - Qi Zhao
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong University Climate Change and Health Center, Shandong University, Jinan, China
- Faculty of Health, Deakin University, Melbourne, Australia
| | - Junfen Fu
- Department of Endocrinology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, 3333 Binsheng Road, Hangzhou, 310051, China, 86 0571-86670013
| |
Collapse
|
3
|
Oh J, Choi JE, Lee R, Mun E, Kim KH, Lee JH, Lee J, Kim S, Kim HS, Ha E. Long-term exposure to air pollution and precocious puberty in South Korea. ENVIRONMENTAL RESEARCH 2024; 252:118916. [PMID: 38614201 DOI: 10.1016/j.envres.2024.118916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND AND AIM The increasing prevalence of precocious puberty (PP) has emerged as a significant medical and social problem worldwide. However, research on the relationship between long-term air pollution exposure and PP has been relatively limited. We thus investigated the association between long-term air pollution exposure and the onset of PP in South Korea. METHODS We investigated a retrospective cohort using the Korea National Health Insurance Database. Six-year-old children born from 2007 to 2009 were examined (2013-2015). We included boys ≤10 years and girls aged ≤9 years who visited hospitals for early pubertal development, were diagnosed with PP per the ICD-10 (E228, E301, and E309), and received gonadotropin-releasing hormone agonist treatment. We analyzed data for boys up until 10 years old (60-month follow-up) and for girls up to 9 years old (48-month follow-up). We assessed the association between long-term air pollution exposure and the onset of PP using a Cox proportional hazard model. We estimated hazard ratios (HRs) and 95% confidence intervals (CIs) per 1 μg/m3 increase in fine particulate matter (PM2.5) and particulate matter (PM10) and per 1 ppb increase in sulfur dioxide (SO2), nitrogen dioxide (NO2), and ozone (O3). RESULTS This study included 1,205,784 children aged six years old between 2013 and 2015. A positive association was found between the 48-month moving average PM2.5 (HR: 1.019; 95% CI: 1.012, 1.027), PM10 (HR: 1.009; 95% CI: 1.006, 1.013), SO2 (HR: 1.037; 95% CI: 1.018, 1.055), and O3 (HR: 1.006; 95% CI: 1.001, 1.010) exposure and PP in girls but not boys. CONCLUSIONS This study provides valuable insights into the harmful effects of air pollution during childhood and adolescence, emphasizing that air pollution is a risk factor that should be managed and reduced.
Collapse
Affiliation(s)
- Jongmin Oh
- Department of Environmental Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea; Institute of Ewha-SCL for Environmental Health (IESEH), College of Medicine, Ewha Womans University, Seoul, Republic of Korea; Department of Human Systems Medicine, College of Medicine, Seoul National University, Seoul, Republic of Korea; Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Republic of Korea
| | - Jung Eun Choi
- Department of Pediatrics, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Rosie Lee
- Department of Pediatrics, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Eunji Mun
- Department of Pediatrics, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Kyung Hee Kim
- Department of Pediatrics, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Ji Hyen Lee
- Institute of Ewha-SCL for Environmental Health (IESEH), College of Medicine, Ewha Womans University, Seoul, Republic of Korea; Department of Pediatrics, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Jungsil Lee
- Department of Environmental Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea; Institute of Ewha-SCL for Environmental Health (IESEH), College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Soontae Kim
- Department of Environmental and Safety Engineering, Ajou University, Suwon, Republic of Korea
| | - Hae Soon Kim
- Institute of Ewha-SCL for Environmental Health (IESEH), College of Medicine, Ewha Womans University, Seoul, Republic of Korea; Department of Pediatrics, Ewha Womans University College of Medicine, Seoul, Republic of Korea.
| | - Eunhee Ha
- Department of Environmental Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea; Institute of Ewha-SCL for Environmental Health (IESEH), College of Medicine, Ewha Womans University, Seoul, Republic of Korea; System Health & Engineering Major in Graduate School (BK21 Plus Program), Ewha Womans University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Li D, Xiong J, Cheng G. Long-term exposure to ambient PM 2.5 and its components on menarche timing among Chinese adolescents: evidence from a representative nationwide cohort. BMC Public Health 2024; 24:707. [PMID: 38443853 PMCID: PMC10916212 DOI: 10.1186/s12889-024-18209-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/25/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Ambient air pollutants have been suggested to affect pubertal development. Nevertheless, current studies indicate inconsistent effects of these pollutants, causing precocious or delayed puberty onset. This study aimed to explore the associations between long-term exposure to particulate matter with aerodynamic diameters ≤ 2.5 μm (PM2.5) along with its components and menarche timing among Chinese girls. METHOD Self-reported age at menarche was collected among 855 girls from China Health and Nutrition Survey 2004 to 2015. The pre-menarche annual average concentrations of PM2.5 and its components were calculated on the basis of a long-term (2000-2014) high-resolution PM2.5 components dataset. Generalized linear models (GLM) and logistic regression models were used to analyze the associations of exposure to a single pollutant (PM2.5, sulfate, nitrate, ammonium, black carbon and organic matter) with age at menarche and early menarche (< 12 years), respectively. Weighted quantile sum methods were applied to examine the impacts of joint exposure on menarche timing. RESULTS In the adjusted GLM, per 1 µg/m3 increase of annual average concentrations of nitrate and ammonium decreased age at menarche by 0.098 years and 0.127 years, respectively (all P < 0.05). Every 1 µg/m3 increase of annual average concentrations of PM2.5 (OR: 1.04, 95% CI: 1.00-1.08), sulfate (OR: 1.23, 95% CI: 1.01-1.50), nitrate (OR: 1.23, 95% CI: 1.06-1.43) and ammonium (OR: 1.32, 95% CI: 1.06-1.66) were significantly positively associated with early menarche. Higher level of joint exposure to PM2.5 and its components was associated with 11% higher odds of early menarche (P = 0.04). Additionally, the estimated weight of sulfate was the largest among the mixed pollutants. CONCLUSIONS Long-term exposure to PM2.5 and its components could increase the risk of early menarche among Chinese girls. Moreover, sulfate might be the most critical components responsible for this relationship. Our study provides foundation for targeted prevention of PM2.5 components.
Collapse
Affiliation(s)
- Danting Li
- Department of Nutrition and Food Safety, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Maternal & Child Nutrition Center, West China Second University Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Jingyuan Xiong
- Healthy Food Evaluation Research Center, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Guo Cheng
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Maternal & Child Nutrition Center, West China Second University Hospital, Sichuan University, 610041, Chengdu, Sichuan, China.
| |
Collapse
|
5
|
Saleem A, Awan T, Akhtar MF. A comprehensive review on endocrine toxicity of gaseous components and particulate matter in smog. Front Endocrinol (Lausanne) 2024; 15:1294205. [PMID: 38352708 PMCID: PMC10863453 DOI: 10.3389/fendo.2024.1294205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
Smog is a form of extreme air pollution which comprises of gases such as ozone, sulfur dioxide, nitrogen and carbon oxides, and solid particles including particulate matter (PM2.5 and PM10). Different types of smog include acidic, photochemical, and Polish. Smog and its constituents are hazardaous to human, animals, and plants. Smog leads to plethora of morbidities such as cancer, endocrine disruption, and respiratory and cardiovascular disorders. Smog components alter the activity of various hormones including thyroid, pituitary, gonads and adrenal hormones by altering regulatory genes, oxidation status and the hypothalamus-pituitary axis. Furthermore, these toxicants are responsible for the development of metabolic disorders, teratogenicity, insulin resistance, infertility, and carcinogenicity of endocrine glands. Avoiding fossil fuel, using renewable sources of energy, and limiting gaseous discharge from industries can be helpful to avoid endocrine disruption and other toxicities of smog. This review focuses on the toxic implications of smog and its constituents on endocrine system, their toxicodynamics and preventive measures to avoid hazardous health effects.
Collapse
Affiliation(s)
- Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Tanzeela Awan
- Department of Pharmacy, The Women University Multan, Multan, Pakistan
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| |
Collapse
|
6
|
Zhao T, Markevych I, Fuertes E, de Hoogh K, Accordini S, Boudier A, Casas L, Forsberg B, Garcia Aymerich J, Gnesi M, Holm M, Janson C, Jarvis D, Johannessen A, Jörres RA, Karrasch S, Leynaert B, Maldonado Perez JA, Malinovschi A, Martínez-Moratalla J, Modig L, Nowak D, Potts J, Probst-Hensch N, Sánchez-Ramos JL, Siroux V, Urrutia Landa I, Vienneau D, Villani S, Jacquemin B, Heinrich J. Impact of long-term exposure to ambient ozone on lung function over a course of 20 years (The ECRHS study): a prospective cohort study in adults. THE LANCET REGIONAL HEALTH. EUROPE 2023; 34:100729. [PMID: 37691742 PMCID: PMC10482740 DOI: 10.1016/j.lanepe.2023.100729] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023]
Abstract
Background While the adverse effects of short-term ambient ozone exposure on lung function are well-documented, the impact of long-term exposure remains poorly understood, especially in adults. Methods We aimed to investigate the association between long-term ozone exposure and lung function decline. The 3014 participants were drawn from 17 centers across eight countries, all of which were from the European Community Respiratory Health Survey (ECRHS). Spirometry was conducted to measure pre-bronchodilation forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC) at approximately 35, 44, and 55 years of age. We assigned annual mean values of daily maximum running 8-h average ozone concentrations to individual residential addresses. Adjustments were made for PM2.5, NO2, and greenness. To capture the ozone-related change in spirometric parameters, our linear mixed effects regression models included an interaction term between long-term ozone exposure and age. Findings Mean ambient ozone concentrations were approximately 65 μg/m³. A one interquartile range increase of 7 μg/m³ in ozone was associated with a faster decline in FEV1 of -2.08 mL/year (95% confidence interval: -2.79, -1.36) and in FVC of -2.86 mL/year (-3.73, -1.99) mL/year over the study period. Associations were robust after adjusting for PM2.5, NO2, and greenness. The associations were more pronounced in residents of northern Europe and individuals who were older at baseline. No consistent associations were detected with the FEV1/FVC ratio. Interpretation Long-term exposure to elevated ambient ozone concentrations was associated with a faster decline of spirometric lung function among middle-aged European adults over a 20-year period. Funding German Research Foundation.
Collapse
Affiliation(s)
- Tianyu Zhao
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Pneumology Center Munich (CPC-M), German Center for Lung Research (DZL), Munich, Germany
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Iana Markevych
- Institute of Psychology, Jagiellonian University, Krakow, Poland
- “Health and Quality of Life in a Green and Sustainable Environment”, SRIPD, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Elaine Fuertes
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- MRC Centre for Environment & Health, London, UK
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Simone Accordini
- Unit of Epidemiology and Medical Statistics, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Anne Boudier
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
- Pediatric Department, CHU Grenoble Alpes, Grenoble, France
| | - Lidia Casas
- Social Epidemiology and Health Policy, Department of Family Medicine and Population Health, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Institute for Environment and Sustainable Development (IMDO), University of Antwerp, Belgium
| | - Bertil Forsberg
- Section of Sustainable Health, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Judith Garcia Aymerich
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Marco Gnesi
- Unit of Biostatistics and Clinical Epidemiology, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Mathias Holm
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Christer Janson
- Department of Medical Sciences, Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden
| | - Deborah Jarvis
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- MRC Centre for Environment & Health, London, UK
| | - Ane Johannessen
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Rudolf A. Jörres
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Pneumology Center Munich (CPC-M), German Center for Lung Research (DZL), Munich, Germany
| | - Stefan Karrasch
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Pneumology Center Munich (CPC-M), German Center for Lung Research (DZL), Munich, Germany
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Benedicte Leynaert
- Université Paris-Saclay, UVSQ, University Paris-Sud, Inserm, Center for Epidemiology and Population Health (CESP) - Integrative Respiratory Epidemiology Team, 94807, Villejuif, France
| | | | - Andrei Malinovschi
- Department of Medical Sciences, Clinical Physiology, Uppsala University, Uppsala, Sweden
| | | | - Lars Modig
- Section of Sustainable Health, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Dennis Nowak
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Pneumology Center Munich (CPC-M), German Center for Lung Research (DZL), Munich, Germany
| | - James Potts
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Nicole Probst-Hensch
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | | | - Valerie Siroux
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | | | - Danielle Vienneau
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Simona Villani
- Unit of Biostatistics and Clinical Epidemiology, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Bénédicte Jacquemin
- University Rennes, Inserm, EHESP, Irset (Institut de recherche en Santé, Environnement et travail), UMR_S 1085, F-35000 Rennes, France
| | - Joachim Heinrich
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Pneumology Center Munich (CPC-M), German Center for Lung Research (DZL), Munich, Germany
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| |
Collapse
|
7
|
Plusquin M, Wang C, Cosemans C, Roels HA, Vangeneugden M, Lapauw B, Fiers T, T'Sjoen G, Nawrot TS. The association between newborn cord blood steroids and ambient prenatal exposure to air pollution: findings from the ENVIRONAGE birth cohort. Environ Health 2023; 22:63. [PMID: 37674219 PMCID: PMC10483875 DOI: 10.1186/s12940-023-01010-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/16/2023] [Indexed: 09/08/2023]
Abstract
Knowledge of whether prenatal exposure to ambient air pollution disrupts steroidogenesis is currently lacking. We investigated the association between prenatal ambient air pollution and highly accurate measurements of cord blood steroid hormones from the androgenic pathway.This study included 397 newborns born between the years 2010 and 2015 from the ENVIRONAGE cohort in Belgium of whom six cord blood steroid levels were measured: 17α-hydroxypregnenolone, 17α-hydroxyprogesterone, dehydroepiandrosterone, pregnenolone, androstenedione, and testosterone. Maternal ambient exposure to PM2.5 (particles with aerodynamic diameter ≤ 2.5 μm), NO2, and black carbon (BC) were estimated daily during the entire pregnancy using a high-resolution spatiotemporal model. The associations between the cord blood steroids and the air pollutants were tested and estimated by first fitting linear regression models and followed by fitting weekly prenatal exposures to distributed lag models (DLM). These analyses accounted for possible confounders, coexposures, and an interaction effect between sex and the exposure. We examined mixture effects and critical exposure windows of PM2.5, NO2 and BC on cord blood steroids via the Bayesian kernel machine regression distributed lag model (BKMR-DLM).An interquartile range (IQR) increment of 7.96 µg/m3 in PM2.5 exposure during pregnancy trimester 3 was associated with an increase of 23.01% (99% confidence interval: 3.26-46.54%) in cord blood levels of 17α-hydroxypregnenolone, and an IQR increment of 0.58 µg/m³ in BC exposure during trimester 1 was associated with a decrease of 11.00% (99% CI: -19.86 to -0.012%) in cord blood levels of androstenedione. For these two models, the DLM statistics identified sensitive gestational time windows for cord blood steroids and ambient air pollution exposures, in particular for 17α-hydroxypregnenolone and PM2.5 exposure during trimester 3 (weeks 28-36) and for androsterone and BC exposure during early pregnancy (weeks 2-13) as well as during mid-pregnancy (weeks 18-26). We identified interaction effects between pollutants, which has been suggested especially for NO2.Our results suggest that prenatal exposure to ambient air pollutants during pregnancy interferes with steroid levels in cord blood. Further studies should investigate potential early-life action mechanisms and possible later-in-life adverse effects of hormonal disturbances due to air pollution exposure.
Collapse
Affiliation(s)
| | - Congrong Wang
- Centre for Environmental Sciences, UHasselt, Diepenbeek, Belgium
| | | | - Harry A Roels
- Centre for Environmental Sciences, UHasselt, Diepenbeek, Belgium
| | | | - Bruno Lapauw
- Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
| | - Tom Fiers
- Department of Clinical Pathology, Ghent University Hospital, Ghent, Belgium
| | - Guy T'Sjoen
- Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, UHasselt, Diepenbeek, Belgium
- Department of Public Health & Primary Care, Leuven University, Leuven, Belgium
| |
Collapse
|
8
|
Yang H, Ge A, Xie H, Li W, Qin Y, Yang W, Wang D, Gu W, Wang X. Effects of Ambient Air Pollution on Precocious Puberty: A Case-Crossover Analysis in Nanjing, China. J Clin Med 2022; 12:282. [PMID: 36615082 PMCID: PMC9821251 DOI: 10.3390/jcm12010282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/25/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Ambient air pollution is closely related to a variety of health outcomes. Few studies have focused on the correlations between air pollution exposure and children's sexual development. In this study, we investigated the potential effects of exposure to air pollution on precocious puberty among children using real-world evidence. METHODS We conducted a case-crossover study (n = 2201) to investigate the effect of ambient air pollution exposure on precocious puberty from January 2016 to December 2021. Average exposure levels of PM2.5, PM10, SO2, NO2, CO, and O3 before diagnosis were calculated by using the inverse distance weighting (IDW) method. Distributed lag nonlinear model (DLNM) was used to assess the effect of air pollutants exposure on precocious puberty. RESULTS The mean age of the children who were diagnosed with precocious puberty was 7.47 ± 1.24 years. The average concentration of PM2.5 and PM10 were 38.81 ± 26.36 μg/m3 and 69.77 ± 41.07 μg/m3, respectively. We found that exposure to high concentrations of PM2.5 and PM10 might increase the risk of precocious puberty using the DLNM model adjusted for the age, SO2, NO2, CO, and O3 levels. The strongest effects of the PM2.5 and PM10 on precocious puberty were observed in lag 27 (OR = 1.72, 95% CI: 1.01-2.92) and lag 16 (OR = 1.95, 95% CI: 1.33-2.85), respectively. CONCLUSION Our findings supported that short-term exposure to air pollution was the risk factor for precocious puberty. Every effort should be made to protect children from air pollution.
Collapse
Affiliation(s)
- Haibo Yang
- Department of Emergency, Pediatric Intensive Care Unit, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Aichen Ge
- Department of Science and Technology, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Hang Xie
- Department of Clinical Research, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Wei Li
- Department of Clinical Research, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
- Department of Quality Management, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Yizhou Qin
- School of Biomedical Engineering and Information, Nanjing Medical University, Nanjing 211166, China
| | - Wentao Yang
- Department of Clinical Research, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Dandan Wang
- Department of Endocrinology, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Wei Gu
- Department of Clinical Research, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
- Department of Quality Management, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Xu Wang
- Department of Clinical Research, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
- Department of Endocrinology, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
| |
Collapse
|
9
|
Zhao T, Markevych I, Standl M, Lyu Z, Schikowski T, Berdel D, Koletzko S, von Berg A, Heinrich J. Ambient ozone exposure and bone turnover markers in children: Results from the GINIplus and LISA birth cohorts. ENVIRONMENTAL RESEARCH 2022; 214:113784. [PMID: 35780852 DOI: 10.1016/j.envres.2022.113784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Multiple environmental factors can regulate bone metabolism, and it is hypothesized that air pollution may be deleteriously involved in this regulation. However, only a few studies considered bone turnover markers (BTMs) - sensitive and specific markers of bone metabolism - as outcomes, and no study investigated the exposure to ambient ozone. Here, we intended to explore the associations between long-term exposure to ambient ozone and concentrations of two BTMs, osteocalcin and β-isomer of C-terminal telopeptide of type I collagen (CTx), amongst 10-year-old children. METHODS Based on the GINIplus and LISA birth cohorts, our cross-sectional analysis included 1848 children aged 10 years from Munich and Wesel. Serum osteocalcin and CTx concentrations were measured. We estimated ozone exposures by optimal interpolation, assessed nitrogen dioxide and particulate matter with an aerodynamic diameter <10 μm concentrations by land use regression models, and assigned the exposures to home addresses. Linear regression models were built and adjusted for covariates as well as co-pollutants. RESULTS The mean concentrations were 93.09 ng/mL and 663.66 ng/L for osteocalcin and CTx, respectively. In general, higher levels of ozone were associated with decreased concentrations of both BTMs. This held true for the two areas and different exposure metrics. The number of days per year with a maximum 8-h average concentration exceeding 120 μg/m³ showed consistent results across different models. Specifically, models adjusted for co-pollutants illustrated that the beta estimates and 95% confidence intervals on osteocalcin and CTx were -2.51 (-3.78, -1.14) and -44.53 (-57.12, -31.93), respectively, for an increase of 10 days. CONCLUSIONS We found that long-term exposure to ambient ozone was associated with decreased concentrations of BTMs in German children. This association might potentially affect bone metabolism. Nevertheless, unless other prospective studies confirm our results, the detrimental effects of ambient ozone on bone development in children should be interpreted cautiously.
Collapse
Affiliation(s)
- Tianyu Zhao
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany; Comprehensive Pneumology Center Munich (CPC-M), German Center for Lung Research (DZL), Munich, Germany; Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.
| | - Iana Markevych
- Institute of Psychology, Jagiellonian University, Krakow, Poland
| | - Marie Standl
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Zhonglin Lyu
- Department of Hematology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Tamara Schikowski
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Dietrich Berdel
- Research Institute, Department of Pediatrics, Marien-Hospital Wesel, Wesel, Germany
| | - Sibylle Koletzko
- Department of Pediatrics, Dr. von Hauner Children's Hospital Munich, University Hospital, LMU Munich, Munich, Germany; Department of Pediatrics, Gastroenterology and Nutrition, School of Medicine Collegium Medicum University of Warmia and Mazury, Olsztyn, Poland
| | - Andrea von Berg
- Research Institute, Department of Pediatrics, Marien-Hospital Wesel, Wesel, Germany
| | - Joachim Heinrich
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany; Comprehensive Pneumology Center Munich (CPC-M), German Center for Lung Research (DZL), Munich, Germany; Allergy and Lung Health Unit, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
10
|
Wang L, Chen G, Hou J, Wei D, Liu P, Nie L, Fan K, Wang J, Xu Q, Song Y, Wang M, Huo W, Jing T, Li W, Guo Y, Wang C, Mao Z. Ambient ozone exposure combined with residential greenness in relation to serum sex hormone levels in Chinese rural adults. ENVIRONMENTAL RESEARCH 2022; 210:112845. [PMID: 35134378 DOI: 10.1016/j.envres.2022.112845] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Long-term exposure to ambient ozone (O3) and residential greenness independently relate to altered hormones levels in urban settings and developed countries. However, independent and their joint associations with progestogen and androgen were sparsely studied in rural regions. MATERIALS AND METHODS A total of 6211 individuals were recruited in this study. Random forest model was applied to predict the daily average concentrations of O3 using the satellites data. Residential greenness was reflected by the normalized difference vegetation index (NDVI). Liquid chromatography-tandem mass spectrometry was used to measure serum progestogen and androgen concentrations. Gender and menopausal status modified associations of long-term exposure to O3 and residential greenness with hormones levels were analyzed by generalized linear models. RESULTS Long-term exposure to O3 was negatively related to 17-hydroxyprogesterone, testosterone, and androstenedione in both men and women (premenopausal and postmenopausal); the estimated β and 95% CI of ln-progesterone in response to per 10 μg/m3 increment in O3 concentration was -0.560 (-0.965, -0.155) in postmenopausal women. Association of long-term exposure to O3 with serum androgen levels in premenopausal and postmenopausal women were alleviated by residing in places with higher greenness. Additionally, a prominent effect of long-term exposure to O3 related to decreased serum progestogen and androgen levels was found in participants with middle- or high-level of physical activity or lower education level. CONCLUSIONS The results suggested that long-term exposure to high levels of O3 related to decreased serum androgen levels was attenuated by living in high greenness places in women regardless of menopause status. Future studies are needed to confirm the positive health effects of residential greenness on the potential detrimental effects due to exposure to O3.
Collapse
Affiliation(s)
- Lulu Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Gongbo Chen
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, PR China
| | - Jian Hou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Dandan Wei
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Pengling Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Luting Nie
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Keliang Fan
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Juan Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Qingqing Xu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yu Song
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Mian Wang
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Wenqian Huo
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Tao Jing
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Wenjie Li
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yuming Guo
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Zhenxing Mao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China.
| |
Collapse
|
11
|
Heo YJ, Kim HS. Ambient air pollution and endocrinologic disorders in childhood. Ann Pediatr Endocrinol Metab 2021; 26:158-170. [PMID: 34610703 PMCID: PMC8505042 DOI: 10.6065/apem.2142132.066] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/23/2021] [Indexed: 02/01/2023] Open
Abstract
Ambient air pollution has been proposed as an important environmental risk factor that increases global mortality and morbidity. Over the past decade, several human and animal studies have reported an association between exposure to air pollution and altered metabolic and endocrine systems in children. However, the results for these studies were mixed and inconclusive and did not demonstrate causality because different outcomes were observed due to different study designs, exposure periods, and methodologies for exposure measurements. Current proposed mechanisms include altered immune response, oxidative stress, neuroinflammation, inadequate placental development, and epigenetic modulation. In this review, we summarized the results of previous pediatric studies that reported effects of prenatal and postnatal air pollution exposure on childhood type 1 diabetes mellitus, obesity, insulin resistance, thyroid dysfunction, and timing of pubertal onset, along with underlying related mechanisms.
Collapse
Affiliation(s)
- You Joung Heo
- Department of Pediatrics, Ewha Women’s University College of Medicine, Seoul, Korea
| | - Hae Soon Kim
- Department of Pediatrics, Ewha Women’s University College of Medicine, Seoul, Korea,Address for correspondence: Hae Soon Kim Department of Pediatrics, Ewha Women’s University College of Medicine, 260, Gonghang-daero, Gangseo-gu, Seoul 07804, Korea
| |
Collapse
|