1
|
Li L, Coull BA, Zilli Vieira CL, Koutrakis P. High-resolution national radon maps based on massive indoor measurements in the United States. Proc Natl Acad Sci U S A 2025; 122:e2408084121. [PMID: 39808659 PMCID: PMC11759897 DOI: 10.1073/pnas.2408084121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025] Open
Abstract
Radon, a common radioactive indoor air pollutant, is the second leading cause of lung cancer in the United States. Knowledge about its distribution is essential for risk assessment and designing efficient protective regulations. However, the three current radon maps for the United States are unable to provide the up-to-date, high-resolution, and time-varying radon concentrations. Tens of millions of radon measurements have been conducted as parts of property inspections in the past two decades, making it possible for us to improve the national radon map. We compiled a national database of over 6 million radon measurements conducted by independent laboratories during 2001 to 2021. A random forest model was built to predict monthly community-level radon concentrations based on nearly 200 geological, meteorological, architectural, and socioeconomical factors. Our radon map can accurately show the distribution of radon at higher spatial and temporal resolutions. We observed slight decreases in average radon concentrations in high-radon regions during the study period. But over 83 million people are living in residences with radon concentrations at screening floor over 148 Bq/m3 (the recommended action level). Most of these residences are in low-radon zones, highlighting the need for comprehensive radon surveys. The high-resolution radon maps can be used by federal and local governments to design, update, and improve the regulations. Furthermore, the model can be used to assess residential exposure to radon, thus facilitating studies to expand our understanding of radon's health effects.
Collapse
Affiliation(s)
- Longxiang Li
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA02114
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA30322
| | - Brent A. Coull
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA02114
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA02114
| | | | - Petros Koutrakis
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA02114
| |
Collapse
|
2
|
Lee MSS, Eum KD, Li L, Iafrate J, Lanuti M, Koutrakis P, Christiani DC. Ambient beta particle radioactivity and lung cancer survival: Results from the Boston Lung Cancer Study. ENVIRONMENTAL RESEARCH 2025; 264:120307. [PMID: 39510229 PMCID: PMC11631657 DOI: 10.1016/j.envres.2024.120307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND Exposure to ionizing radiation is known to increase the risk of lung cancer. However, studies on the effect of environmental radiation associated with ambient particle air pollution on lung cancer survival are limited. We investigated the association between ambient beta particle radioactivity (PR-β) after a diagnosis and lung cancer survivals. METHODS The Boston Lung Cancer Survival (BLCS) cohort consisted of histologically confirmed patients enrolled at Massachusetts General Hospital (MGH) and the Dana-Farber Cancer Institute (DFCI) in Boston, U.S. The primary outcomes included overall survival, 5-year survival, and 3-year survival probability. We estimated ambient PR-β exposure at the ZIP code of residence from 2001 through 2017. Cox-proportional hazards models were constructed to estimate hazard ratios (HRs) for the associations between ambient PR-β and survival outcomes while controlling for covariates. RESULTS The analysis included 2795 patients with complete information, with 97,330 person-months of follow-up. The interquartile range (IQR) increase in PR-β was significantly associated with worse overall survival (HR:1.63, 95% CI:1.52, 1.76), 5-year survival (HR:1.33, 95% CI:1.23, 1.44), and 3-year survival (HR:1.22, 95% CI:1.12, 1.33) while adjusting for covariates, including age at diagnosis, sex, race, smoking, stage, histology, and adjusted gross income. Similar associations were found while additionally adjusting for the estimated residential radon exposure. In addition, the survival associated with PR-β exposure was significantly worse for patients in the early stages (HR:2.16, 95% CI:1.84, 2.52). CONCLUSION The findings from this study provide new evidence suggesting that environmental exposure to radioactive particles after lung cancer diagnosis may have a pronounced effect on survival, particularly in patients with early stages.
Collapse
Affiliation(s)
- Mi-Sun S Lee
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ki-Do Eum
- Department of Civil and Environmental Engineering, School of Engineering, Tufts University, Medford, MA, USA; Ariadne Labs at Brigham and Women's Hospital and the Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Longxiang Li
- Exposure, Epidemiology and Risk Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - John Iafrate
- Division of Thoracic Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Michael Lanuti
- Division of Thoracic Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Petros Koutrakis
- Exposure, Epidemiology and Risk Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - David C Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Achilleos S, Henderson C, Kouis P, Achilleos A, Argyrou A, Caballero A, Prokopiou E, Kokkinofta R, Savvides C, Vasiliadou E, Tzortzis M, Sisou A, Koutrakis P, Yiallouros PK, Quattrocchi A. Airborne particle radioactivity during desert dust days in Cyprus. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2024; 278:107467. [PMID: 38852499 DOI: 10.1016/j.jenvrad.2024.107467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/11/2024]
Abstract
Mediterranean countries are often affected by desert dust storms, which have significant effects on the environment and public health. We compared airborne particle radioactivity levels during desert dust and non-dust days in Cyprus. Gross α- and β-radioactivity from Total Suspended Particle (TSP) samples, collected at two urban routine monitoring stations in Limassol and Nicosia, were available for the period 2017-2020 and 2008-2020, respectively. Radionuclides 137Cs and 40K, from TSP samples, were also available from a semi-industrial monitoring station in Nicosia during 2008-2020. Information on desert dust presence, dust origin, particulate matter (PM) levels, and solar activity (KP index and solar sunspot numbers - SSN) were also obtained. We used linear regression models adjusting for seasonality and long-term trends, and solar activity to assess the effect of dust storms on TSP gross α- and β-, and 137Cs and 40K radioactivity levels. Gross α- and β-radioactivity, and 137Cs and 40K radioactivity levels were significantly higher on days with desert dust compared to days characterized with no influence of desert dust. Levels of gross α- and β-radioactivity during dust days were higher when dust originated from the Middle East deserts than from the Sahara Desert. The same trend was observed for the ratios 137Cs to 40K and 137Cs to PM10. Conversely, ratios of TSP gross α- and β-radioactivity to PM10 were significantly lower during desert dust days in comparison to days without dust influence. This study suggests that desert dust increase both TSP gross α- and β-radioactivity, as well as 137Cs and 40K radioactivity levels. Further studies should clarify the contribution of anthropogenic and other natural sources to the emission or transportation of particles radioactivity, to better mitigate future exposures.
Collapse
Affiliation(s)
- Souzana Achilleos
- Department of Primary Care and Population Health, University of Nicosia Medical School, 21 Ilia Papakyriakou, 2414, Engomi, Nicosia, Cyprus.
| | - Connor Henderson
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, 655 Huntington Ave, Boston, MA, 02115, USA.
| | - Panayiotis Kouis
- Respiratory Physiology Laboratory, Medical School, University of Cyprus, 215/6 Nicosia - Limassol Old Road, 2115, Aglantzia, Nicosia, Cyprus.
| | - Antigoni Achilleos
- Radioactivity Lab of Food and Environmental Samples, State General Laboratory, Ministry of Health, 44 Kimonos Street, Acropolis, 1451, Nicosia, Cyprus.
| | - Argyris Argyrou
- Radioactivity Lab of Food and Environmental Samples, State General Laboratory, Ministry of Health, 44 Kimonos Street, Acropolis, 1451, Nicosia, Cyprus.
| | - Anastasia Caballero
- Radioactivity Lab of Food and Environmental Samples, State General Laboratory, Ministry of Health, 44 Kimonos Street, Acropolis, 1451, Nicosia, Cyprus.
| | - Eleni Prokopiou
- Radioactivity Lab of Food and Environmental Samples, State General Laboratory, Ministry of Health, 44 Kimonos Street, Acropolis, 1451, Nicosia, Cyprus.
| | - Rebecca Kokkinofta
- Radioactivity Lab of Food and Environmental Samples, State General Laboratory, Ministry of Health, 44 Kimonos Street, Acropolis, 1451, Nicosia, Cyprus.
| | - Chrysanthos Savvides
- Air Quality and Strategic Planning Section, Department of Labour Inspection, Ministry of Labour and Social Insurance, P.O. Box 24855, 1304, Nicosia, Cyprus.
| | - Emily Vasiliadou
- Air Quality and Strategic Planning Section, Department of Labour Inspection, Ministry of Labour and Social Insurance, P.O. Box 24855, 1304, Nicosia, Cyprus.
| | - Michael Tzortzis
- Radiation Inspection and Control Service, Department of Labour Inspection, Ministry of Labour and Social Insurance, P.O. Box 24855, 1304, Nicosia, Cyprus.
| | - Anastasia Sisou
- Radiation Inspection and Control Service, Department of Labour Inspection, Ministry of Labour and Social Insurance, P.O. Box 24855, 1304, Nicosia, Cyprus.
| | - Petros Koutrakis
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, 655 Huntington Ave, Boston, MA, 02115, USA.
| | - Panayiotis K Yiallouros
- Respiratory Physiology Laboratory, Medical School, University of Cyprus, 215/6 Nicosia - Limassol Old Road, 2115, Aglantzia, Nicosia, Cyprus.
| | - Annalisa Quattrocchi
- Department of Primary Care and Population Health, University of Nicosia Medical School, 21 Ilia Papakyriakou, 2414, Engomi, Nicosia, Cyprus.
| |
Collapse
|
4
|
Li L, Stern RA, Garshick E, Zilli Vieira CL, Coull B, Koutrakis P. Predicting Monthly Community-Level Radon Concentrations with Spatial Random Forest in the Northeastern and Midwestern United States. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18001-18012. [PMID: 37839072 PMCID: PMC11438503 DOI: 10.1021/acs.est.2c08840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
In 1987, the United States Environmental Protection Agency recommended installing a mitigation system when the indoor concentration of radon, a well-known carcinogenic radioactive gas, is at or above 148 Bq/m3. In response, tens of millions of short-term radon measurements have been conducted in residential buildings over the past three decades either for disclosure or to initially evaluate the need for mitigation. These measurements, however, are currently underutilized to assess population radon exposure in epidemiological studies. Based on two relatively small radon surveys, Lawrence Berkeley National Laboratory developed a state-of-the-art national radon model. However, this model only provides coarse and invariant radon estimations, which limits the ability of epidemiological studies to accurately investigate the health effects of radon, particularly the effects of acute exposure. This study involved obtaining over 2.8 million historical short-term radon measurements from independent laboratories. With the use of these measurements, an innovative spatial random forest (SRF) model was developed based on geological, architectural, socioeconomical, and meteorological predictors. The model was used to estimate monthly community-level radon concentrations for ZIP Code Tabulation Areas (ZCTAs) in the northeastern and midwestern regions of the United States from 2001 to 2020. Via cross-validation, we found that our ZCTA-level predictions were highly correlated with observations. The prediction errors declined quickly as the number of radon measurements in a ZCTA increased. When ≥15 measurements existed, the mean absolute error was 24.6 Bq/m3, or 26.5% of the observed concentrations (R2 = 0.70). Our study demonstrates the potential of the large amount of historical short-term radon measurements that have been obtained to accurately estimate longitudinal ZCTA-level radon exposures at unprecedented levels of resolutions and accuracy.
Collapse
Affiliation(s)
- Longxiang Li
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 401 Park Drive, Boston, Massachusetts 02114, United States
| | - Rebeca Ariel Stern
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 401 Park Drive, Boston, Massachusetts 02114, United States
| | - Eric Garshick
- Pulmonary, Allergy, Sleep, and Critical Care Medicine Section, VA Boston Healthcare System, 1400 VFW Parkway, West Roxbury, Boston, Massachusetts 02132, United States
- Channing Division of Network Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, Massachusetts 02115, United States
- Harvard Medical School, 25 Shattuck Street, Boston, Massachusetts 02115, United States
| | - Carolina L Zilli Vieira
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 401 Park Drive, Boston, Massachusetts 02114, United States
| | - Brent Coull
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 401 Park Drive, Boston, Massachusetts 02114, United States
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Petros Koutrakis
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 401 Park Drive, Boston, Massachusetts 02114, United States
| |
Collapse
|
5
|
Liu CS, Wei Y, Danesh Yazdi M, Qiu X, Castro E, Zhu Q, Li L, Koutrakis P, Ekenga CC, Shi L, Schwartz JD. Long-term association of air pollution and incidence of lung cancer among older Americans: A national study in the Medicare cohort. ENVIRONMENT INTERNATIONAL 2023; 181:108266. [PMID: 37847981 PMCID: PMC10691920 DOI: 10.1016/j.envint.2023.108266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/03/2023] [Accepted: 10/12/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND Despite strong evidence of the association of fine particulate matter (PM2.5) exposure with an increased risk of lung cancer mortality, few studies had investigated associations of multiple pollutants simultaneously, or with incidence, or using causal methods. Disparities were also understudied. OBJECTIVES We investigated long-term effects of PM2.5, nitrogen dioxide (NO2), warm-season ozone, and particle radioactivity (PR) exposures on lung cancer incidence in a nationwide cohort. METHODS We conducted a cohort study with Medicare beneficiaries (aged ≥ 65 years) continuously enrolled in the fee-for-service program in the contiguous US from 2001 to 2016. Air pollution exposure was averaged across three years and assigned based on ZIP code of residence. We fitted Cox proportional hazards models to estimate the hazard ratio (HR) for lung cancer incidence, adjusted for individual- and neighborhood-level confounders. As a sensitivity analysis, we evaluated the causal relationships using inverse probability weights. We further assessed effect modifications by individual- and neighborhood-level covariates. RESULTS We identified 166,860 lung cancer cases of 12,429,951 studied beneficiaries. In the multi-pollutant model, PM2.5 and NO2 exposures were statistically significantly associated with increased lung cancer incidence, while PR was marginally significantly associated. Specifically, the HR was 1.008 (95% confidence interval [CI]: 1.005, 1.011) per 1-μg/m3 increase in PM2.5, 1.013 (95% CI: 1.012, 1.013) per 1-ppb increase in NO2, and 1.005 (0.999, 1.012) per 1-mBq/m3 increase in PR. At low exposure levels, all pollutants were associated with increased lung cancer incidence. Men, older individuals, Blacks, and residents of low-income neighborhoods experienced larger effects of PM2.5 and PR. DISCUSSION Long-term PM2.5, NO2, and PR exposures were independently associated with increased lung cancer incidence among the national elderly population. Low-exposure analysis indicated that current national standards for PM2.5 and NO2 were not restrictive enough to protect public health, underscoring the need for more stringent air quality regulations.
Collapse
Affiliation(s)
- Cristina Su Liu
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 655 Huntington Ave, Boston, MA 02115, USA
| | - Yaguang Wei
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 655 Huntington Ave, Boston, MA 02115, USA.
| | - Mahdieh Danesh Yazdi
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 655 Huntington Ave, Boston, MA 02115, USA; Program in Public Health, Department of Family, Population and Preventive Medicine, Stony Brook University, 101 Nicolls Road Health Sciences Center, Stony Brook, NY 11794, USA
| | - Xinye Qiu
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 655 Huntington Ave, Boston, MA 02115, USA
| | - Edgar Castro
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 655 Huntington Ave, Boston, MA 02115, USA
| | - Qiao Zhu
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Rd. NE, Atlanta, GA 30322, USA
| | - Longxiang Li
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 655 Huntington Ave, Boston, MA 02115, USA
| | - Petros Koutrakis
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 655 Huntington Ave, Boston, MA 02115, USA
| | - Christine C Ekenga
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Rd. NE, Atlanta, GA 30322, USA
| | - Liuhua Shi
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Rd. NE, Atlanta, GA 30322, USA
| | - Joel D Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 655 Huntington Ave, Boston, MA 02115, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, 655 Huntington Ave, Boston, MA 02115, USA
| |
Collapse
|
6
|
Wang VA, Leung M, Modest AM, Zilli Vieira CL, Hacker MR, Schwartz J, Coull BA, Koutrakis P, Papatheodorou S. Associations of solar activity and related exposures with fetal growth. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 885:163862. [PMID: 37142041 PMCID: PMC10330664 DOI: 10.1016/j.scitotenv.2023.163862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/14/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023]
Abstract
BACKGROUND Solar and geomagnetic activity have been shown to suppress melatonin and to degrade folate levels, important hormones for fetal development. We examined whether solar and geomagnetic activity were associated with fetal growth. METHODS We included 9573 singleton births with 26,879 routine ultrasounds at an academic medical center in Eastern Massachusetts from 2011 through 2016. Sunspot number and Kp index were obtained from the NASA Goddard Space Flight Center. Three exposure windows were considered, including the first 16 weeks of pregnancy, one month prior to fetal growth measurement, and conception until fetal growth measurement (cumulative). Ultrasound scans from which we extracted biparietal diameter, head circumference, femur length, and abdominal circumference measurements were categorized as anatomic (<24 weeks' gestation) or growth scans (≥24 weeks' gestation) based on clinical practice. Ultrasound parameters and birth weight were standardized, and linear mixed models adjusted for long-term trends were fitted. RESULTS Prenatal exposures were positively associated with larger head parameters measured <24 weeks' gestation, negatively associated with smaller fetal parameters measured ≥24 weeks' gestation, and not associated with birth weight. The strongest associations were observed for cumulative exposure in growth scans, where an interquartile range increase in sunspot number (32.87 sunspots) was associated with a -0.17 (95 % CI: -0.26, -0.08), -0.25 (-0.36, -0.15), and -0.13 (95 % CI: -0.23, -0.03) difference in mean biparietal diameter, head circumference, and femur length z-score, respectively. An interquartile range increase in cumulative Kp index (0.49) was associated with a -0.11 (95 % CI: -0.22, -0.01) and -0.11 (95 % CI: -0.20, -0.02) difference in mean head circumference and abdominal circumference z-score, respectively, in growth scans. CONCLUSIONS Solar and geomagnetic activity were associated with fetal growth. Future studies are needed to better understand the impact of these natural phenomena on clinical endpoints.
Collapse
Affiliation(s)
- Veronica A Wang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Michael Leung
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Anna M Modest
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Carolina L Zilli Vieira
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Michele R Hacker
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Brent A Coull
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Petros Koutrakis
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | |
Collapse
|
7
|
Wang VA, Leung M, Li L, Modest AM, Schwartz J, Coull BA, Hacker MR, Wylie BJ, Koutrakis P, Papatheodorou S. Prenatal Exposure to Ambient Particle Radioactivity and Fetal Growth in Eastern Massachusetts. AIR QUALITY, ATMOSPHERE, & HEALTH 2023; 16:805-815. [PMID: 40291789 PMCID: PMC12029881 DOI: 10.1007/s11869-023-01311-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/17/2023] [Indexed: 04/30/2025]
Abstract
Background The radioactive component of particulate matter (PM), particle radioactivity (PR), can continue to emit radiation after inhalation. While PR has been associated with other adverse pregnancy outcomes, no studies have examined the association with fetal growth. Methods Our retrospective cohort included singleton pregnancies that underwent obstetric ultrasounds at an academic medical center in Massachusetts from 2011 through 2016. PR was represented by particle gross β-activity estimated from an ensemble model and was assigned based on residential zip-code. We considered the cumulative (conception until date of fetal growth measurement) and first 16 weeks of gestation PR exposure windows. Standardized z-scores were constructed for biparietal diameter (BPD), head circumference, femur length (FL), abdominal circumference (AC), and birth weight. We used linear mixed regression models adjusted for PM ≤2.5 μm exposure, maternal sociodemographic factors, meteorological variables, and long-term trends. Results Among 9,404 pregnancies, an interquartile range increase in cumulative PR exposure was associated with reduced BPD (-0.06 [95% CI: -0.12, -0.01] z-score) and FL (-0.06 [95% CI: -0.12, -0.01] z-score) in scans conducted before 24 weeks' gestation, with increased AC (0.05 [95% CI: 0.01, 0.09]) in scans conducted on or after 24 weeks' gestation, and with lower birth weight (-0.05 [95% CI: -0.11, -0.001] z-score). The first 16 weeks of gestation was not a critical exposure window. Conclusions Prenatal PR was associated with fetal growth, with associations generally negative before 24 weeks' gestation and positive later in pregnancy. Our findings bring awareness to a novel environmental exposure.
Collapse
Affiliation(s)
- Veronica A. Wang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Michael Leung
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Longxiang Li
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Anna M. Modest
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Brent A. Coull
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Michele R. Hacker
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Blair J. Wylie
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Petros Koutrakis
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | |
Collapse
|
8
|
Ou JY, Ramsay JM, Lee G, VanDerslice JA, Taddie M, Kirchhoff AC, Divver E, Akerley W, Kepka D, Hanson HA. Patterns of indoor radon concentrations, radon-hazard potential, and radon testing on a small geographic scale in Utah. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2023; 256:107046. [PMID: 36327525 DOI: 10.1016/j.jenvrad.2022.107046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/04/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
INTRODUCTION Currently, there are no publicly-available estimates of indoor radon concentration at scales smaller than the county. Radon-hazard potential soil maps that reflect underlying geologic factors can be created at small geographic scale and linked to residential and census data. We determined the association between residential radon tests and high radon-hazard potential soil at the residential and block group levels using a large Utah-based dataset. We also identified characteristics of block groups with limited tests in the dataset. METHODS We geocoded a dataset of residential radon tests obtained from 2001 to 2017 by a statewide educational program. We linked each location to maps of radon-hazard potential soil, the Environmental Protection Agency's (EPA) county radon zones. We also calculated the number of tests conducted in each block group and linked block groups to demographic data from the 2020 United States census. Log-linear and logistic models identified the association between residential home test results and 1) radon-hazard potential soil of each residence, 2) percent of residences on high radon-hazard potential soils in block groups, and 3) EPA's radon zones. We compared demographic characteristics among block groups with ≥5 or <5 residential tests in our dataset. RESULTS Approximately 42% of homes in the dataset tested ≥4 pCi/L. We found significant positive associations for residential radon test results with 1) residential location on high radon-hazard potential soil and 2) block groups with >0% of residences on high radon-hazard potential soil. EPA radon zones were not associated with residential test results. Block groups with <5 tests had higher than the statewide median percentage of Hispanic residents (OR = 2.46, 95% CI = 1.89-3.21) and were located in rural counties. DISCUSSION Radon-hazard potential soil has a significant association with residential home radon tests. More efforts are needed to improve radon testing in block groups that are rural and have greater percentages of racial minorities.
Collapse
Affiliation(s)
- Judy Y Ou
- Cancer Control and Population Sciences, Huntsman Cancer Institute, Salt Lake City, UT, USA; Cancer Biostatistics Shared Resource, Huntsman Cancer Institute, Salt Lake City, UT, USA.
| | - Joemy M Ramsay
- Cancer Control and Population Sciences, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Greg Lee
- Cancer Control and Population Sciences, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - James A VanDerslice
- Department of Family and Preventive Medicine, University of Utah, Salt Lake City, UT, USA
| | - Marissa Taddie
- Department of Family and Preventive Medicine, University of Utah, Salt Lake City, UT, USA
| | - Anne C Kirchhoff
- Cancer Control and Population Sciences, Huntsman Cancer Institute, Salt Lake City, UT, USA; Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Eleanor Divver
- Radon Program, Utah Department of Environmental Quality, Salt Lake City, UT, USA
| | - Wallace Akerley
- Cancer Control and Population Sciences, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Deanna Kepka
- Cancer Control and Population Sciences, Huntsman Cancer Institute, Salt Lake City, UT, USA; College of Nursing, University of Utah, 10 S 2000 E, Salt Lake City, UT, USA
| | - Heidi A Hanson
- Computer Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| |
Collapse
|
9
|
Dong S, Koutrakis P, Li L, Coull BA, Schwartz J, Kosheleva A, Zanobetti A. Synergistic Effects of Particle Radioactivity (Gross β Activity) and Particulate Matter ≤2.5 μm Aerodynamic Diameter on Cardiovascular Disease Mortality. J Am Heart Assoc 2022; 11:e025470. [PMID: 36197036 PMCID: PMC9673676 DOI: 10.1161/jaha.121.025470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022]
Abstract
Background Although the effects of fine particulate matter (particulate matter ≤2.5 μm aerodynamic diameter [PM2.5]) on cardiovascular disease (CVD) morbidity and mortality are well established, little is known about the CVD health effects of particle radioactivity. In addition, there are still questions about which of the PM2.5 physical, chemical, or biological properties are mostly responsible for its toxicity. Methods and Results We investigated the association between particle radioactivity, measured as gross β activity from highly resolved spatiotemporal predictions, and mortality for CVD, myocardial infarction, stroke, and all-cause nonaccidental mortality in Massachusetts (2001-2015). Within both difference-in-differences model and generalized linear mixed model frameworks, we fit both single-exposure and 2-exposure models adjusting for PM2.5 and examined the interaction between PM2.5 and gross β activity. We found significant associations between gross β activity and PM2.5 and each mortality cause. Using difference-in-differences and adjusting for PM2.5, we found the highest associations with myocardial infarction (rate ratio, 1.16 [95% CI, 1.08-1.24]) and stroke (rate ratio, 1.11 [95% CI, 1.04-1.18]) for an interquartile range increase (0.055 millibecquerels per cubic meter) in gross β activity. We found a significant positive interaction between PM2.5 and gross β activity, with higher associations between PM2.5 and mortality at a higher level of gross β activity. We also observed that the associations varied across age groups. The results were comparable between the 2 statistical methods also with and without adjusting for PM2.5. Conclusions This is the first study that, using highly spatiotemporal predictions of gross β-activity, provides evidence that particle radioactivity increases CVD mortality and enhances PM2.5 CVD mortality. Therefore, particle radioactivity can be an important property of PM2.5 that must be further investigated. Addressing this important question can lead to cost-effective air-quality regulations.
Collapse
Affiliation(s)
- Shuxin Dong
- Department of Environmental Health, T.H. Chan School of Public HealthHarvard UniversityBostonMA
| | - Petros Koutrakis
- Department of Environmental Health, T.H. Chan School of Public HealthHarvard UniversityBostonMA
| | - Longxiang Li
- Department of Environmental Health, T.H. Chan School of Public HealthHarvard UniversityBostonMA
| | - Brent A. Coull
- Department of Biostatistics, T.H. Chan School of Public HealthHarvard UniversityBostonMA
| | - Joel Schwartz
- Department of Environmental Health, T.H. Chan School of Public HealthHarvard UniversityBostonMA
- Department of Epidemiology, T.H. Chan School of Public HealthHarvard UniversityBostonMA
| | - Anna Kosheleva
- Department of Environmental Health, T.H. Chan School of Public HealthHarvard UniversityBostonMA
| | - Antonella Zanobetti
- Department of Environmental Health, T.H. Chan School of Public HealthHarvard UniversityBostonMA
| |
Collapse
|
10
|
White AJ, Gregoire AM, Fisher JA, Medgyesi DN, Li L, Koutrakis P, Sandler DP, Jones RR. Exposure to Particle Radioactivity and Breast Cancer Risk in the Sister Study: A U.S.-Wide Prospective Cohort. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:47701. [PMID: 35377195 PMCID: PMC8978644 DOI: 10.1289/ehp10288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 03/01/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Alexandra J. White
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, North Carolina, USA
| | - Allyson M. Gregoire
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, North Carolina, USA
| | - Jared A. Fisher
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Danielle N. Medgyesi
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Longxiang Li
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Petros Koutrakis
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Dale P. Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, North Carolina, USA
| | - Rena R. Jones
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| |
Collapse
|