1
|
Domingo JL, Nadal M. PCDD/Fs in human tissues: A review of global biomonitoring data. CHEMOSPHERE 2025; 377:144345. [PMID: 40153989 DOI: 10.1016/j.chemosphere.2025.144345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/15/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025]
Abstract
This review investigates the concentrations of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in internal human organs and tissues - excluding blood - with a particular focus on adipose tissue studies conducted worldwide up to January 2025. A thorough analysis of published literature highlights significant geographical and temporal trends in human PCDD/F exposure, including potential associations between PCDD/F levels and various health conditions. Several research gaps are identified, and proposals for future studies are given. Studies from Europe, Asia, and North America demonstrated a general decline in tissue PCDD/F concentrations over recent decades, particularly from the 1970s to early 2000s, attributed to successful emission control measures. Adipose tissue PCDD/F levels were typically higher in industrialized regions, with occupational exposure studies showing significantly elevated concentrations compared to the general population. Notable regional variations were observed, with some Asian countries continuing to show relatively high PCDD/F levels despite the overall declining trend. The review also highlighted potential associations between PCDD/F exposure and various health conditions, including endometriosis and cryptorchidism, though causal relationships remain unclear. Physiologically Based Pharmacokinetic (PBPK) modeling studies estimate valuable insights into the distribution and accumulation of these compounds in human tissues. Research gaps identified include limited data from developing countries and other underrepresented regions. It is also important to acknowledge the variability in analytical methods and reporting units across the reviewed studies, which may complicate direct comparisons of results. This review emphasizes the importance of continued biomonitoring efforts, particularly in underrepresented regions, to track exposure trends and protect vulnerable populations.
Collapse
Affiliation(s)
- Jose L Domingo
- Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, Sant Llorens 21, Catalonia, 43201, Reus, Spain.
| | - Martí Nadal
- Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, Sant Llorens 21, Catalonia, 43201, Reus, Spain
| |
Collapse
|
2
|
Tadić Đ, Pires de Lima A, Ricci M. Quality assurance and quality control for human biomonitoring data-focus on matrix reference materials. Anal Bioanal Chem 2025:10.1007/s00216-025-05859-3. [PMID: 40259016 DOI: 10.1007/s00216-025-05859-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/20/2025] [Accepted: 03/24/2025] [Indexed: 04/23/2025]
Abstract
Human biomonitoring (HBM) is an essential tool for making evidence-based policy decisions upon assessment of human exposure to pollutants. In contrast, the heterogeneity of data reliability across studies has been identified as a weakness in current HBM research. The scientific community is currently encountering measurement challenges due to gaps in the availability of quality assurance/quality control (QA/QC) tools. This article provides a summarised view on the availability of reference materials in human matrices such as hair, serum, blood, plasma, urine, and breast milk for selected groups of organic contaminants (e.g., pesticides, flame retardants, perfluorinated compounds, perchlorate, phthalates, phenols) and elements (e.g., mercury, arsenic, cadmium, chromium, lead, nickel, tin) of relevance to human health. The QA/QC situation of HBM measurement data with regard to laboratories' performance in proficiency testing schemes is also addressed, highlighting areas for improvement. Finally, the article uses the example of per- and polyfluoroalkyl substance analysis to illustrate QA/QC challenges specifically related to the HBM field.
Collapse
Affiliation(s)
- Đorđe Tadić
- European Commission, Joint Research Centre (JRC), Geel, Belgium
| | | | - Marina Ricci
- European Commission, Joint Research Centre (JRC), Geel, Belgium.
| |
Collapse
|
3
|
Botelho JC, Kato K, Wong LY, Calafat AM. Per- and polyfluoroalkyl substances (PFAS) exposure in the U.S. population: NHANES 1999-March 2020. ENVIRONMENTAL RESEARCH 2025; 270:120916. [PMID: 39848516 PMCID: PMC12082571 DOI: 10.1016/j.envres.2025.120916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS), also known as "forever chemicals" because of their persistence in the environment, have been used in many commercial applications since the 1940s. Of late, the detection of PFAS in drinking water throughout the United States has raised public and scientific concerns. To understand PFAS exposure trends in the general U.S. population, we analyzed select PFAS serum concentration data from participants ≥12 years old of nine National Health and Nutrition Examination Survey (NHANES) cycles. Our goals were to a) evaluate concentration changes of four legacy PFAS-perfluorohexane sulfonic acid (PFHxS), perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), and perfluorononanoic acid (PFNA) from 1999 to 2000 to 2017-March 2020, b) discuss serum concentrations and assess demographic predictors of two PFAS measured for the first time in 2017-2018, perfluoro-1-heptanesulfonic acid (PFHpS) and 9-chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9CLPF), and c) compare concentration profiles of legacy PFAS in NHANES to profiles in exposed communities. We report a decrease in geometric mean concentrations of the four legacy PFAS (16%-87%, depending on the PFAS) from 1999 to 2000, although in 2017-March 2020, more than 96% of people aged 12-19 years, some of whom were born after PFAS production changes started in the early 2000s, had measurable concentrations of these PFAS. An estimated 78% of the U.S. general population had detectable concentrations of PFHpS, and 8% had detectable concentrations of 9CLPF (>44% of whom self-identified as Asian). Comparing profiles in NHANES and people living in communities with PFAS contamination can help identify exposure sources and evaluate and monitor exposures in select areas or among specific population groups. Collectively, our findings highlight the usefulness of NHANES data to help researchers, public health officials, and policy makers prioritize investigations, monitor exposure changes, and evaluate effectiveness of efforts to limit exposures.
Collapse
Affiliation(s)
- Julianne Cook Botelho
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Kayoko Kato
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Lee-Yang Wong
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| |
Collapse
|
4
|
Kasper-Sonnenberg M, Pälmke C, Wrobel S, Brüning T, Murawski A, Apel P, Weber T, Kolossa-Gehring M, Koch HM. Plasticizer exposure in Germany from 1988 to 2022: Human biomonitoring data of 20 plasticizers from the German Environmental Specimen Bank. ENVIRONMENT INTERNATIONAL 2025; 195:109190. [PMID: 39693778 DOI: 10.1016/j.envint.2024.109190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/05/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024]
Abstract
The German Environmental Specimen Bank (ESB) annually archives 24-h urine samples since the early 1980s. In this study, we analyzed 420 of these samples from the years 2014 to 2022 for metabolites of 18 phthalates and two substitutes. We merged the new data with the data from previous measurement campaigns to a combined dataset of 1825 samples covering a 35-year period from 1988 to 2022 to investigate time trends, calculate daily intakes and perform an anti-androgenic mixture risk assessment. With the extended set of 41 biomarkers, we are now able to monitor the exposure to all EU-labelled reprotoxic phthalates. Most phthalate exposures continued to decrease since first measurements in the 80s, with biggest drops for DnBP (96.6 %) and DEHP (90.9 %). DiNP and DiDP, seen on the rise in earlier campaigns, now declined. Exposures to the newly included, reprotoxic phthalates were generally negligible. Regarding mixture risk, 5 % of the highly exposed still exceeded the Hazard Index (HI) of 1 in 2009. In the current measurement campaign only three individuals (0.7 %) exceeded the HI of 1 (with exceedances still driven by DEHP and DnBP).In 2022, 20 % of the individuals still had an HI > 0.2, which we propose as a benchmark for interpreting phthalate mixture risk, considering concurrent exposures to other anti-androgens. Exposure to the substitutes DINCH and DEHTP continues to increase, with daily intakes of DEHTP exceeding those of DEHP since 2018. Compared with the United States (US) National Health and Nutrition Examination Survey (NHANES) phthalate exposures seem to align, except for DEHTP with up to ten times higher levels in the US. Human biomonitoring (HBM) is the ideal tool to capture actual mixture exposures per individual, integrating all external exposure sources and pathways, thus we will continue to use HBM in exposure and risk assessment of phthalates and other (anti-androgenic) chemicals.
Collapse
Affiliation(s)
- Monika Kasper-Sonnenberg
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University-Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Claudia Pälmke
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University-Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Sonja Wrobel
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University-Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University-Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Aline Murawski
- German Environment Agency (UBA), Corrensplatz 1, 14195 Berlin, Germany
| | - Petra Apel
- German Environment Agency (UBA), Corrensplatz 1, 14195 Berlin, Germany
| | - Till Weber
- German Environment Agency (UBA), Corrensplatz 1, 14195 Berlin, Germany
| | | | - Holger M Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University-Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany.
| |
Collapse
|
5
|
Ramutshatsha-Makhwedzha D, Munonde TS. Review of the Integrated Approaches for Monitoring and Treating Parabens in Water Matrices. Molecules 2024; 29:5533. [PMID: 39683693 DOI: 10.3390/molecules29235533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/14/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Due to their antibacterial and antifungal properties, parabens are commonly used as biocides and preservatives in food, cosmetics, and pharmaceuticals. Parabens have been reported to exist in various water matrices at low concentrations, which renders the need for sample preparation before their quantification using analytical techniques. Thus, sample preparation methods such as solid-phase extraction (SPE), rotating-disk sorptive extraction (RDSE), and vortex-assisted dispersive liquid-liquid extraction (VA-DLLE) that are commonly used for parabens extraction and preconcentration have been discussed. As a result of sample preparation methods, analytical techniques now detect parabens at trace levels ranging from µg/L to ng/L. These compounds have been detected in water, air, soil, and human tissues. While the full impact of parabens on human health and ecosystems is still being debated in the scientific community, it is widely recognized that parabens can act as endocrine disruptors. Furthermore, some studies have suggested that parabens may have carcinogenic effects. The presence of parabens in the environment is primarily due to wastewater discharges, which result in widespread contamination and their concentrations increased during the COVID-19 pandemic waves. Neglecting the presence of parabens in water exposes humans to these compounds through contaminated food and drinking water. Although there are reviews that focus on the occurrence, fate, and behavior of parabens in the environment, they frequently overlook critical aspects such as removal methods, policy development, and regulatory frameworks. Addressing this gap, the effective treatment of parabens in water relies on combined approaches that address both cost and operational challenges. Membrane filtration methods, such as nanofiltration (NF) and reverse osmosis (RO), demonstrate high efficacy but are hindered by maintenance and energy costs due to extensive fouling. Innovations in anti-fouling and energy efficiency, coupled with pre-treatment methods like adsorption, help mitigate these costs and enhance scalability. Furthermore, combining adsorption with advanced oxidation processes (AOPs) or biological treatments significantly improves economic and energy efficiency. Integrating systems like O₃/UV with activated carbon, along with byproduct recovery strategies, further advances circular economy goals by minimizing waste and resource use. This review provides a thorough overview of paraben monitoring in wastewater, current treatment techniques, and the regulatory policies that govern their presence. Furthermore, it provides perspectives that are critical for future scientific investigations and shaping policies aimed at mitigating the risks of parabens in drinking water.
Collapse
Affiliation(s)
- Denga Ramutshatsha-Makhwedzha
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering, and Technology, University of South Africa, Florida Science Campus, Roodepoort 1710, South Africa
| | - Tshimangadzo S Munonde
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering, and Technology, University of South Africa, Florida Science Campus, Roodepoort 1710, South Africa
| |
Collapse
|
6
|
Hong S, Kim OJ, Jung SK, Jeon HL, Kim S, Kil J. The Exposure Status of Environmental Chemicals in South Korea: The Korean National Environmental Health Survey 2018-2020. TOXICS 2024; 12:829. [PMID: 39591007 PMCID: PMC11597996 DOI: 10.3390/toxics12110829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/15/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024]
Abstract
In South Korea, a Human Biomonitoring (HBM) program, known as the Korean National Environmental Health Survey (KoNEHS), was launched in 2009. This study aims to provide an overview of environmental chemical exposures in South Korea based on data from the KoNEHS cycle 4 (2018-2020). To ensure population representativeness, Koreans aged 3 years and older were recruited from 426 sites across the country. A total of 6381 participants joined in the collection of biospecimens, which were subsequently analyzed for 33 environmental chemicals or their metabolites, including nine that were not included in the previous cycle. The five most common PFASs were detected in more than 99.7% of the participants. The GM of serum PFOS was the highest in adults at 15.1 µg/L (13.9, 16.4) and in adolescents at 7.97 µg/L (7.42, 8.56). In adults, there was a gradual decrease in the detection rate and concentration of some heavy metals and phthalate metabolites. In children and adolescents, the detection rate of BPA in urine decreased, while the rate of its substitutes BPF and BPS increased, and the rate of propyl paraben in urine decreased significantly. The results of the KoNEHS cycle 4 indicate that exposure levels to certain environmental chemicals are still high, highlighting further monitoring and on-going surveys to determine their trends, especially for newly investigated substances, such as PFASs.
Collapse
Affiliation(s)
| | | | | | | | | | - Jihyon Kil
- Environmental Health Research Department, National Institute of Environmental Research, Ministry of Environment, Incheon 22689, Republic of Korea (S.K.)
| |
Collapse
|
7
|
Karthikeyan S, Pollock T, Walker M, Khoury C, St-Amand A. Analysis of chemical exposures in racial populations in Canada: An investigation based on the Canadian health measures survey. Int J Hyg Environ Health 2024; 260:114406. [PMID: 38852336 DOI: 10.1016/j.ijheh.2024.114406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/15/2024] [Accepted: 05/31/2024] [Indexed: 06/11/2024]
Abstract
Despite demonstrated disparities in environmental chemical exposures by racial identity, no Canadian study has systematically assessed the feasibility of using a nationally representative dataset to examine differences in chemical concentrations by race. We assessed the feasibility and constraints of analysing chemical exposures in racial populations, including visible minorities and populations of Indigenous identity, using biomonitoring data collected through the Canadian Health Measures Survey (CHMS). Our primary objectives were to assess the ability to 1) generate geometric means and percentiles of chemical concentrations for racial populations by age or sex, 2) statistically compare concentrations among racial populations, and 3) calculate time trends of concentrations by race. We conducted these analyses for several priority chemicals: lead, cadmium, benzene, bisphenol A (BPA), and di(2-ethylhexyl) phthalate (DEHP). Survey participants self-identified as one of the following: White, Black, East and Southeast Asian, South Asian, Middle Eastern, Latin American, First Nations, Metis, and Inuit. Analyses were conducted for individual and combined cycles of the CHMS. Using data from the latest CHMS cycle in which each chemical was measured, we observed that sample sizes were sufficient to report geometric mean concentrations for all races except Inuit. Due to privacy considerations associated with small sample sizes, the 5th and 95th percentile concentrations could not be consistently reported for all racial populations in this analysis. While we were able to statistically compare concentrations among racial populations, the analysis was constrained by the limited number of statistical degrees of freedom available in a single CHMS cycle. Both of these constraints were alleviated by combining multiple cycles of data. The analysis of time trends was less subject to privacy and statistical limitations; we were able to calculate time trends of chemical concentrations for all racial populations. Our findings provide an important baseline for follow-up investigations of descriptive and etiological analyses of environmental chemical exposures and race in the CHMS.
Collapse
Affiliation(s)
- Subramanian Karthikeyan
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada.
| | - Tyler Pollock
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Mike Walker
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Cheryl Khoury
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Annie St-Amand
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| |
Collapse
|
8
|
Goldberg M, Adgent MA, Stevens DR, Chin HB, Ferguson KK, Calafat AM, Travlos G, Ford EG, Stallings VA, Rogan WJ, Umbach DM, Baird DD, Sandler DP. Environmental phenol exposures in 6- to 12-week-old infants: The Infant Feeding and Early Development (IFED) study. ENVIRONMENTAL RESEARCH 2024; 252:119075. [PMID: 38719065 PMCID: PMC11178257 DOI: 10.1016/j.envres.2024.119075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/17/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Exposure to phenols, endocrine-disrupting chemicals used in personal care and consumer products, is widespread. Data on infant exposures are limited despite heightened sensitivity to endocrine disruption during this developmental period. We aimed to describe distributions and predictors of urinary phenol concentrations among U.S. infants ages 6-12 weeks. METHODS The Infant Feeding and Early Development (IFED) study is a prospective cohort study of healthy term infants enrolled during 2010-2013 in the Philadelphia region. We measured concentrations of seven phenols in 352 urine samples collected during the 6- or 8- and/or 12-week study visits from 199 infants. We used linear mixed models to estimate associations of maternal, sociodemographic, infant, and sample characteristics with natural-log transformed, creatinine-standardized phenol concentrations and present results as mean percent change from the reference level. RESULTS Median concentrations (μg/L) were 311 for methylparaben, 10.3 for propylparaben, 3.6 for benzophenone-3, 2.1 for triclosan, 1.0 for 2,5-dichlorophenol, 0.7 for BPA, and 0.3 for 2,4-dichlorophenol. Geometric mean methylparaben concentrations were approximately 10 times higher than published estimates for U.S. children ages 3-5 and 6-11 years, while propylparaben concentrations were 3-4 times higher. Infants of Black mothers had higher concentrations of BPA (83%), methylparaben (121%), propylparaben (218%), and 2,5-dichorophenol (287%) and lower concentrations of benzophenone-3 (-77%) and triclosan (-53%) than infants of White mothers. Triclosan concentrations were higher in breastfed infants (176%) and lower in infants whose mothers had a high school education or less (-62%). Phenol concentrations were generally higher in summer samples. CONCLUSIONS Widespread exposure to select environmental phenols among this cohort of healthy U.S. infants, including much higher paraben concentrations compared to those reported for U.S. children, supports the importance of expanding population-based biomonitoring programs to infants and toddlers. Future investigation of exposure sources is warranted to identify opportunities to minimize exposures during these sensitive periods of development.
Collapse
Affiliation(s)
- Mandy Goldberg
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA.
| | - Margaret A Adgent
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Danielle R Stevens
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Helen B Chin
- Department of Global and Community Health, College of Public Health, George Mason University, Fairfax, VA, USA
| | - Kelly K Ferguson
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Gregory Travlos
- Comparative & Molecular Pathogenesis Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Eileen G Ford
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Virginia A Stallings
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Walter J Rogan
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - David M Umbach
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Donna D Baird
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
| |
Collapse
|
9
|
Borghese MM, Ward A, MacPherson S, Manz KE, Atlas E, Fisher M, Arbuckle TE, Braun JM, Bouchard MF, Ashley-Martin J. Serum concentrations of legacy, alternative, and precursor per- and polyfluoroalkyl substances: a descriptive analysis of adult female participants in the MIREC-ENDO study. Environ Health 2024; 23:55. [PMID: 38858670 PMCID: PMC11163811 DOI: 10.1186/s12940-024-01085-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/24/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND Several legacy and emerging per- and polyfluoroalkyl substances (PFAS) have been regulated around the world. There is growing concern over the proliferation of alternative PFAS, as well as PFAS precursors. Biomonitoring data for PFAS are critical for assessing exposure and human health risk. METHODS We collected serum samples from 289 adult female participants in a 2018-2021 follow-up study of the Maternal-Infant Research on Environmental Chemicals (MIREC) Canadian pregnancy cohort. Samples were analyzed for 40 PFAS using ultra-performance liquid chromatography-tandem mass spectrometry. For those compounds with > 50% detection, as well as the sum of these compounds, we describe serum concentrations and patterns of exposure according to sociodemographic and obstetrical history characteristics. RESULTS 17 out of 40 PFAS were detected in > 50% of samples with 7 of these detected in > 97% of samples. Median [95th percentile] concentrations (µg/L) were highest for PFOS (1.62 [4.56]), PFOA (0.69 [1.52]), PFNA (0.38 [0.81]), and PFHxS (0.33 [0.92]). Geometric mean concentrations of PFOA and PFHxS were approximately 2-fold lower among those with more children (≥ 3 vs. 1), greater number of children breastfed (≥ 3 vs. ≤ 1), longer lifetime duration of breastfeeding (> 4 years vs. ≤ 9 months), and shorter time since last pregnancy (≤ 4 years vs. > 8 years). We observed similar patterns for PFOS, PFHpS, and the sum of 17 PFAS, though the differences between groups were smaller. Concentrations of PFOA were higher among "White" participants, while concentrations of N-MeFOSE, N-EtFOSE, 7:3 FTCA, and 4:2 FTS were slightly higher among participants reporting a race or ethnicity other than "White". Concentrations of legacy, alternative, and precursor PFAS were generally similar across levels of age, education, household income, body mass index, and menopausal status. CONCLUSIONS We report the first Canadian biomonitoring data for several alternative and precursor PFAS. Our findings suggest that exposure to PFAS, including several emerging alternatives, may be widespread. Our results are consistent with previous studies showing that pregnancy and breastfeeding are excretion pathways for PFAS.
Collapse
Affiliation(s)
- M M Borghese
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
| | - A Ward
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - S MacPherson
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - K E Manz
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - E Atlas
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - M Fisher
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - T E Arbuckle
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - J M Braun
- Department of Epidemiology, Brown University, Providence, RI, USA
| | - M F Bouchard
- Institut national de la recherche scientifique, Laval, QC, Canada
| | - J Ashley-Martin
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| |
Collapse
|
10
|
Yoshida N, Lyu Z, Kim S, Park N, Hitomi T, Fujii Y, Kho Y, Choi K, Harada KH. Temporal trends in exposure to parabens, benzophenones, triclosan, and triclocarban in adult females in Kyoto, Japan, from 1993 to 2016. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:37050-37059. [PMID: 38758445 DOI: 10.1007/s11356-024-33627-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024]
Abstract
Products used in daily life can contain chemicals such as parabens, benzophenones, triclosan, and triclocarban that have potential endocrine-disrupting effects. Little is known about the temporal trends of exposure levels to some of these chemicals in Japan. Our study assessed the intake and risk associated with exposure to commonly used chemicals. We measured the concentrations of five parabens, four benzophenones, and triclosan and triclocarban in 133 single spot urine samples. The urine samples were collected in 1993, 2000, 2003, 2009, 2011, and 2016 from healthy female residents in Kyoto, Japan. With the exception of methylparaben, ethylparaben, and butylparaben, there were no significant fluctuations in the concentrations of target chemicals over the study period; however, methylparaben, ethylparaben, and butylparaben showed temporal changes in concentrations. Methylparaben concentrations peaked in 2003 with a median value of 309 μg/g creatinine, ethylparaben concentrations peaked in 1993 with a median value of 17.3 μg/g creatinine, and butylparaben showed a decline, with the median values becoming non-detectable in 2009 and 2016. We calculated estimated daily intakes and hazard quotients for each chemical. In the analysis of total samples, 2.3% (3 samples) for butylparaben and 0.8% (1 sample) for propylparaben were found to surpass a hazard quotient of 1. Overall, 3% (n = 4) of the study participants exceeded a hazard index of 1. The potential health risks associated with exposure to butylparaben and propylparaben emphasize the need for further monitoring and research.
Collapse
Affiliation(s)
- Nao Yoshida
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida Konoe, Sakyo, Kyoto, 606-8501, Japan
| | - Zhaoqing Lyu
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida Konoe, Sakyo, Kyoto, 606-8501, Japan
| | - Sungmin Kim
- Department of Health, Environment & Safety, Eulji University, Seongnam, 13135, Korea
| | - Nayoun Park
- Department of Health, Environment & Safety, Eulji University, Seongnam, 13135, Korea
| | - Toshiaki Hitomi
- Department of Preventive Medicine, St. Marianna University School of Medicine, Kawasaki, 216-8511, Japan
| | - Yukiko Fujii
- Department of Pharmaceutical Sciences, Daiichi University of Pharmacy, Fukuoka, 815-8511, Japan
| | - Younglim Kho
- Department of Health, Environment & Safety, Eulji University, Seongnam, 13135, Korea
| | - Kyungho Choi
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, 08826, Korea
| | - Kouji H Harada
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida Konoe, Sakyo, Kyoto, 606-8501, Japan.
| |
Collapse
|
11
|
Oncina-Cánovas A, Vioque J, Riutort-Mayol G, Soler-Blasco R, Irizar A, Barroeta Z, Fernández-Somoano A, Tardón A, Vrijheid M, Guxens M, Carey M, Meharg C, Ralphs K, McCreanor C, Meharg A, Signes-Pastor AJ. Pro-vegetarian dietary patterns and essential and heavy metal exposure in children of 4-5-years from the INfancia y medio Ambiente cohort (INMA). Int J Hyg Environ Health 2024; 257:114344. [PMID: 38430670 DOI: 10.1016/j.ijheh.2024.114344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
Dietary patterns provide a comprehensive assessment of food consumption, including essential nutrients and potential exposure to environmental contaminants. While pro-vegetarian (PVG) dietary patterns have shown health benefits in adults, their effects on children are less well studied. This study aims to explore the association between children's adherence to the most common PVG dietary patterns and their exposure to metals, assessed through urine concentration. In our study, we included a population of 723 children aged 4-5-years from the INfancia y Medio Ambiente (INMA) cohort in Spain. We calculated three predefined PVG dietary patterns, namely general (gPVG), healthful (hPVG), and unhealthful (uPVG), using dietary information collected through a validated Food Frequency Questionnaire. Urinary concentrations of various essential and heavy metals (Co, Cu, Zn, Se, Mo, Pb, and Cd) were measured using mass spectrometry. Additionally, urinary arsenic speciation, including arsenobetaine (AsB), dimethylarsinic acid (DMA), monomethylarsonic acid (MMA), and inorganic arsenic (iAs), was measured. The sum of urinary MMA and iAs was used to assess iAs exposure. We estimated primary (PMI) and secondary iAs methylation (SMI) indices. To explore the association between PVG dietary patterns in quintiles and metal exposure, we utilized multiple-adjusted linear regression models and the quantile g-computation approach. Compared with the lowest quintile, participants in the highest quintile of gPVG showed a 22.7% lower urinary Co (95% confidence interval (CI): -38.7; -1.98) and a 12.6% lower Se (95%CI: -22.9; -1.00) concentrations. Second quintile of adherence to hPVG was associated with a 51.7% lower urinary iAs + MMA concentrations (95%CI: -74.3; -8.61). Second quintile of adherence to an uPVG was associated with a 13.6% lower Se levels (95%CI: -22.9; -2.95) while the third quintile to this pattern was associated with 17.5% lower Mo concentrations (95%CI: -29.5; -2.95). The fourth quintile of adherence to gPVG was associated with a 68.5% higher PMI and a 53.7% lower SMI. Our study showed that adherence to a gPVG dietary pattern in childhood may modestly reduce the intakes of some essential metals such as Co and Se. Further investigations are warranted to explore any potential health implications.
Collapse
Affiliation(s)
- Alejandro Oncina-Cánovas
- Instituto de Investigación Sanitaria y Biomédica de Alicante, Universidad Miguel Hernández (ISABIAL-UMH), 03010, Alicante, Spain; Unidad de Epidemiología de la Nutrición, Departamento de Salud Pública, Historia de la Ciencia y Ginecología, Universidad Miguel Hernández (UMH), 03550, Alicante, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, 28034, Madrid, Spain.
| | - Jesús Vioque
- Instituto de Investigación Sanitaria y Biomédica de Alicante, Universidad Miguel Hernández (ISABIAL-UMH), 03010, Alicante, Spain; Unidad de Epidemiología de la Nutrición, Departamento de Salud Pública, Historia de la Ciencia y Ginecología, Universidad Miguel Hernández (UMH), 03550, Alicante, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, 28034, Madrid, Spain
| | - Gabriel Riutort-Mayol
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Valencia, Spain
| | - Raquel Soler-Blasco
- CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, 28034, Madrid, Spain; Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Valencia, Spain; Department of Nursing, Universitat de València, Valencia, Spain
| | - Amaia Irizar
- Health Research Institute, Biodonostia, Donostia-San Sebastian, Spain
| | - Ziortza Barroeta
- Health Research Institute, Biodonostia, Donostia-San Sebastian, Spain
| | - Ana Fernández-Somoano
- CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, 28034, Madrid, Spain; University Institute of Oncology of the Principality of Asturias (IUOPA), Department of Medicine, University of Oviedo, Julián Clavería Street s/n, 33006, Oviedo, Asturias, Spain; Institute of Health Research of the Principality of Asturias (ISPA), Roma Avenue s/n, 33001, Oviedo, Spain
| | - Adonina Tardón
- CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, 28034, Madrid, Spain; University Institute of Oncology of the Principality of Asturias (IUOPA), Department of Medicine, University of Oviedo, Julián Clavería Street s/n, 33006, Oviedo, Asturias, Spain; Institute of Health Research of the Principality of Asturias (ISPA), Roma Avenue s/n, 33001, Oviedo, Spain
| | - Martine Vrijheid
- CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, 28034, Madrid, Spain; ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain
| | - Mònica Guxens
- CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, 28034, Madrid, Spain; ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
| | - Manus Carey
- Biological Sciences, Institute for Global Food Security, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland, UK
| | - Caroline Meharg
- Biological Sciences, Institute for Global Food Security, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland, UK
| | - Kathryn Ralphs
- Biological Sciences, Institute for Global Food Security, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland, UK
| | - Coalain McCreanor
- Biological Sciences, Institute for Global Food Security, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland, UK
| | - Andrew Meharg
- Biological Sciences, Institute for Global Food Security, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland, UK
| | - Antonio J Signes-Pastor
- Instituto de Investigación Sanitaria y Biomédica de Alicante, Universidad Miguel Hernández (ISABIAL-UMH), 03010, Alicante, Spain; Unidad de Epidemiología de la Nutrición, Departamento de Salud Pública, Historia de la Ciencia y Ginecología, Universidad Miguel Hernández (UMH), 03550, Alicante, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, 28034, Madrid, Spain.
| |
Collapse
|
12
|
Sieck NE, Bruening M, van Woerden I, Whisner C, Payne-Sturges DC. Effects of Behavioral, Clinical, and Policy Interventions in Reducing Human Exposure to Bisphenols and Phthalates: A Scoping Review. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:36001. [PMID: 38477609 PMCID: PMC10936218 DOI: 10.1289/ehp11760] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/09/2023] [Accepted: 01/29/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND There is growing interest in evidence-based interventions, programs, and policies to mitigate exposures to bisphenols and phthalates and in using implementation science frameworks to evaluate hypotheses regarding the importance of specific approaches to individual or household behavior change or institutions adopting interventions. OBJECTIVES This scoping review aimed to identify, categorize, and summarize the effects of behavioral, clinical, and policy interventions focused on exposure to the most widely used and studied bisphenols [bisphenol A (BPA), bisphenol S (BPS), and bisphenol F (BPF)] and phthalates with an implementation science lens. METHODS A comprehensive search of all individual behavior, clinical, and policy interventions to reduce exposure to bisphenols and phthalates was conducted using PubMed, Web of Science, Cumulative Index to Nursing and Allied Health Literature (CINAHL), and Google Scholar. We included studies published between January 2000 and November 2022. Two reviewers screened references in CADIMA, then extracted data (population characteristics, intervention design, chemicals assessed, and outcomes) for studies meeting inclusion criteria for the present review. RESULTS A total of 58 interventions met the inclusion criteria. We classified interventions as dietary (n = 27 ), clinical (n = 13 ), policy (n = 14 ), and those falling outside of these three categories as "other" (n = 4 ). Most interventions (81%, 47/58) demonstrated a decrease in exposure to bisphenols and/or phthalates, with policy level interventions having the largest magnitude of effect. DISCUSSION Studies evaluating policy interventions that targeted the reduction of phthalates and BPA in goods and packaging showed widespread, long-term impact on decreasing exposure to bisphenols and phthalates. Clinical interventions removing bisphenol and phthalate materials from medical devices and equipment showed overall reductions in exposure biomarkers. Dietary interventions tended to lower exposure with the greatest magnitude of effect in trials where fresh foods were provided to participants. The lower exposure reductions observed in pragmatic nutrition education trials and the lack of diversity (sociodemographic backgrounds) present limitations for generalizability to all populations. https://doi.org/10.1289/EHP11760.
Collapse
Affiliation(s)
- Nicole E. Sieck
- Maryland Institute for Applied Environmental Health, School of Public Health, University of Maryland, College Park, Maryland, USA
| | - Meg Bruening
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Irene van Woerden
- Department of Community and Public Health, Idaho State University, Pocatello, Idaho, USA
| | - Corrie Whisner
- College of Health Solutions, Arizona State University, Phoenix, Arizona, USA
| | - Devon C. Payne-Sturges
- Maryland Institute for Applied Environmental Health, School of Public Health, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
13
|
Nguyen HT, Isobe T, Iwai-Shimada M, Takagi M, Ueyama J, Oura K, Tanoue R, Kunisue T, Nakayama SF. Urinary concentrations and elimination half-lives of parabens, benzophenones, bisphenol and triclosan in Japanese young adults. CHEMOSPHERE 2024; 349:140920. [PMID: 38072198 DOI: 10.1016/j.chemosphere.2023.140920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/15/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024]
Abstract
Environmental phenols are widely distributed in the environment and human samples, suggesting potential exposure to these chemicals. We designed an intervention trial with 30 participants over 6 days to assess the urinary concentrations and half-lives of environmental phenols in Japanese young people. The target environmental phenols include three parabens (methyl paraben, ethyl paraben, and propyl paraben), two benzophenones (benzophenone 1 and 3), two bisphenols (bisphenol F and bisphenol S), and triclosan. Throughout the intervention, the participants consumed the same food and drinks and used personal care products provided by the project. The target phenols were measured in urine from the participants using a liquid chromatography-tandem mass spectrometer. We compared the measured concentrations between the study periods to better understand the exposure tendency. Some statistically significant differences were observed. All target analytes were detected in more than 50% of samples collected on Day 0 (the day before the intervention). Methyl paraben was the dominant phenol detected in urine (1640 μg/g-creatinine), followed by ethyl paraben (119 μg/g-creatinine). Downward trends in creatinine-corrected concentrations were observed for all target analytes in some instances. Non-compartment analysis was performed to estimate urinary excretion parameters. The estimated half-lives ranged from 7.69 to 20.3 h. Use of paraben-free products during the intervention period reduced the body burden.
Collapse
Affiliation(s)
- Hue T Nguyen
- Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Tomohiko Isobe
- Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan.
| | - Miyuki Iwai-Shimada
- Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Mai Takagi
- Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Jun Ueyama
- Department of Biomolecular Sciences, Field of Omics Health Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-minami, Higashi-ku, Nagoya, 461-8673, Japan
| | - Kana Oura
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577, Japan
| | - Rumi Tanoue
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577, Japan
| | - Tatsuya Kunisue
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577, Japan
| | - Shoji F Nakayama
- Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| |
Collapse
|
14
|
Yang P, Xie J, Huang S, Li X, Deng L, Zhang J, Chen L, Wu N, Huang G, Zhou C, Xiao L, Shen X. "Cocktail" of environmental chemicals and early reproductive outcomes of IVF: The insight from paternal and maternal exposure. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119462. [PMID: 37925986 DOI: 10.1016/j.jenvman.2023.119462] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/09/2023] [Accepted: 10/21/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Humans are exposed to various chemicals, including organophosphate esters (OPEs), phthalates (PAEs), and phenols. The effects on early reproductive outcomes of in vitro fertilization (IVF) remain unclear. METHODS We recruited 192 women and 157 men who underwent IVF treatment. A total of forty-nine urinary chemicals were detected, including six OPEs, fifteen PAEs, six parabens, two chlorophenols, nine bisphenols, five benzophenones, and six synthetic phenolic antioxidants. We examined the individual and joint effects of parental chemical exposure on early reproductive outcomes. RESULTS We found that certain chemicals were associated with early reproductive outcomes in Poisson regression models. For example, urinary diphenyl phosphate was negatively associated with high-quality embryos in both female (β: -0.12, 95%CI: -0.17, -0.07) and male partners (β: -0.09, 95%CI: -0.15, -0.03). A negative association was found between mixed chemicals and high-quality embryos in Bayesian kernel machine regression, weighted quantile sum regression (β: -0.34, 95%CI: -0.60, -0.07), and quantile-based g-computation model (β: -0.69, 95%CI: -1.34, -0.05) among female partners. Paternal mixture exposure was not associated with early reproductive outcomes. CONCLUSIONS Our results indicated that increased exposure to environmental chemicals was associated with adverse early reproductive outcomes of IVF, especially female partners.
Collapse
Affiliation(s)
- Pan Yang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou, 510632, China; Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Jinying Xie
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Songyi Huang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Xiaojie Li
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Langjing Deng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jinglei Zhang
- Reproductive Medicine Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Lin Chen
- Reproductive Medicine Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Nanxin Wu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Guangtong Huang
- School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Canquan Zhou
- Reproductive Medicine Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| | - Li Xiao
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| | - Xiaoting Shen
- Reproductive Medicine Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
15
|
Mínguez-Alarcón L, Gaskins AJ, Meeker JD, Braun JM, Chavarro JE. Endocrine-disrupting chemicals and male reproductive health. Fertil Steril 2023; 120:1138-1149. [PMID: 37827483 PMCID: PMC10841502 DOI: 10.1016/j.fertnstert.2023.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023]
Abstract
Modifiable factors, such as environmental exposures, can impact human fertility. The objective of this review is to summarize the potential effects of exposure to important endocrine-disrupting chemicals on male reproductive health. Most experimental and animal data demonstrate strong evidence for the negative effects of exposure to phenols, phthalates, pesticides, and perfluoroalkyl and polyfluoroalkyl substances on male reproductive health. Although evidence of negative associations in humans was overall strong for phthalates and pesticides, limited and inconclusive relationships were found for the other examined chemical biomarkers. Reasons for the discrepancies in results include but are not limited to, differences in study populations, exposure concentrations, number of samples collected, sample sizes, study design, and residual confounding. Additional studies are needed, particularly for newer phenols and perfluoroalkyl and polyfluoroalkyl substances, given the scarce literature on the topic and increasing exposures over time.
Collapse
Affiliation(s)
- Lidia Mínguez-Alarcón
- Channing Division of Network Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Audrey J Gaskins
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, Rhode Island
| | - Jorge E Chavarro
- Channing Division of Network Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.
| |
Collapse
|
16
|
Zhu Y, Pan X, Jia Y, Yang X, Song X, Ding J, Zhong W, Feng J, Zhu L. Exploring Route-Specific Pharmacokinetics of PFAS in Mice by Coupling in Vivo Tests and Physiologically Based Toxicokinetic Models. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:127012. [PMID: 38088889 PMCID: PMC10718298 DOI: 10.1289/ehp11969] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/08/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Oral ingestion, inhalation, and skin contact are important exposure routes for humans to uptake per- and polyfluoroalkyl substances (PFAS). However, nasal and dermal exposure to PFAS remains unclear, and accurately predicting internal body burden of PFAS in humans via multiple exposure pathways is urgently required. OBJECTIVES We aimed to develop multiple physiologically based toxicokinetic (PBTK) models to unveil the route-specific pharmacokinetics and bioavailability of PFAS via respective oral, nasal, and dermal exposure pathways using a mouse model and sought to predict the internal concentrations in various tissues through multiple exposure routes and extrapolate it to humans. METHODS Mice were administered the mixed solution of perfluorohexane sulfonate, perfluorooctane sulfonate, and perfluorooctanoic acid through oral, nasal, and dermal exposure separately or jointly. The time-dependent concentrations of PFAS in plasma and tissues were determined to calibrate and validate the individual and combined PBTK models, which were applied in single- and repeated-dose scenarios. RESULTS The developed route-specific PBTK models successfully simulated the tissue concentrations of PFAS in mice following single or joint exposure routes as well as long-term repeated dose scenarios. The time to peak concentration of PFAS in plasma via dermal exposure was much longer (34.1-83.0 h) than that via nasal exposure (0.960 h). The bioavailability of PFAS via oral exposure was the highest (73.2%-98.0%), followed by nasal (33.9%-66.8%) and dermal exposure (4.59%-7.80%). This model was extrapolated to predict internal levels in human under real environment. DISCUSSION Based on these data, we predict the following: PFAS were absorbed quickly via nasal exposure, whereas a distinct hysteresis effect was observed for dermal exposure. Almost all the PFAS to which mice were exposed via gastrointestinal route were absorbed into plasma, which exhibited the highest bioavailability. Exhalation clearance greatly depressed the bioavailability of PFAS via nasal exposure, whereas the lowest bioavailability in dermal exposure was because of the interception of PFAS within the skin layers. https://doi.org/10.1289/EHP11969.
Collapse
Affiliation(s)
- Yumin Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China
| | - Xiaoyu Pan
- Beijing Sankuai Online Technology Co., Ltd., Beijing, P. R. China
| | - Yibo Jia
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China
| | - Xin Yang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China
| | - Xiaohua Song
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China
| | - Jiaqi Ding
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China
| | - Wenjue Zhong
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China
| | - Jianfeng Feng
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China
| |
Collapse
|
17
|
Jiang VS, Calafat AM, Williams PL, Chavarro JE, Ford JB, Souter I, Hauser R, Mínguez-Alarcón L. Temporal trends in urinary concentrations of phenols, phthalate metabolites and phthalate replacements between 2000 and 2017 in Boston, MA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165353. [PMID: 37437643 PMCID: PMC10543552 DOI: 10.1016/j.scitotenv.2023.165353] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 07/14/2023]
Abstract
Endocrine disrupting chemicals (EDCs) can adversely affect human health and are ubiquitously found in everyday products. We examined temporal trends in urinary concentrations of EDCs and their replacements. Urinary concentrations of 11 environmental phenols, 15 phthalate metabolites, phthalate replacements such as two di(isononyl)cyclohexane-1,2-dicarboxylate (DINCH) metabolites, and triclocarban were quantified using isotope-dilution tandem mass spectrometry. This ecological study included 996 male and 819 female patients who were predominantly White/Caucasian (83 %) with an average age of 35 years and a BMI of 25.5 kg/m2 seeking fertility treatment in Boston, MA, USA. Patients provided a total of 6483 urine samples (median = 2, range = 1-30 samples per patient) between 2000 and 2017. Over the study period, we observed significant decreases (% per year) in urinary concentrations of traditional phenols, parabens, and phthalates such as bisphenol A (β: -6.3, 95 % CI: -7.2, -5.4), benzophenone-3 (β: -6.5, 95 % CI: -1.1, -18.9), parabens ((β range:-5.4 to -14.2), triclosan (β: -18.8, 95 % CI: -24, -13.6), dichlorophenols (2.4-dichlorophenol β: -6.6, 95 % CI: -8.8, -4.3); 2,5-dichlorophenol β: -13.6, 95 % CI: -17, -10.3), di(2-ethylhexyl) phthalate metabolites (β range: -11.9 to -22.0), and other phthalate metabolites including mono-ethyl, mono-n-butyl, and mono-methyl phthalate (β range: -0.3 to -11.5). In contrast, we found significant increases in urinary concentrations of environmental phenol replacements including bisphenol S (β: 3.9, 95 % CI: 2.7, 7.6) and bisphenol F (β: 6, 95 % CI: 1.8, 10.3), DINCH metabolites (cyclohexane-1,2-dicarboxylic acid monohydroxy isononyl ester [MHiNCH] β: 20, 95 % CI: 17.8, 22.2; monocarboxyisooctyl phthalate [MCOCH] β: 16.2, 95 % CI: 14, 18.4), and newer phthalate replacements such as mono-3-carboxypropyl phthalate, monobenzyl phthalate, mono-2-ethyl-5-carboxypentyl phthalate and di-isobutyl phthalate metabolites (β range = 5.3 to 45.1), over time. Urinary MHBP concentrations remained stable over the study period. While the majority of biomarkers measured declined over time, concentrations of several increased, particularly replacement chemicals that are studied.
Collapse
Affiliation(s)
- Victoria S Jiang
- Division of Reproductive Endocrinology and Infertility, Vincent Department of Obstetrics & Gynecology, Massachusetts General Hospital/Harvard Medical School; 55 Fruit Street, Suite 10A, Boston, MA, USA
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, USA
| | - Paige L Williams
- Departments of Epidemiology and Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, USA; Departments of Biostatistics and Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, USA
| | - Jorge E Chavarro
- Departments of Epidemiology and Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, USA; Departments of Nutrition and Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, USA; Channing Division of Network Medicine, Harvard Medical School & Brigham and Women's Hospital, 75 Francis St, Boston, MA, USA
| | - Jennifer B Ford
- Departments of Environmental Health and Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, USA
| | - Irene Souter
- Division of Reproductive Endocrinology and Infertility, Vincent Department of Obstetrics & Gynecology, Massachusetts General Hospital/Harvard Medical School; 55 Fruit Street, Suite 10A, Boston, MA, USA
| | - Russ Hauser
- Division of Reproductive Endocrinology and Infertility, Vincent Department of Obstetrics & Gynecology, Massachusetts General Hospital/Harvard Medical School; 55 Fruit Street, Suite 10A, Boston, MA, USA; Departments of Epidemiology and Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, USA; Departments of Environmental Health and Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, USA
| | - Lidia Mínguez-Alarcón
- Departments of Environmental Health and Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, USA; Channing Division of Network Medicine, Harvard Medical School & Brigham and Women's Hospital, 75 Francis St, Boston, MA, USA.
| |
Collapse
|
18
|
Dueñas-Moreno J, Mora A, Kumar M, Meng XZ, Mahlknecht J. Worldwide risk assessment of phthalates and bisphenol A in humans: The need for updating guidelines. ENVIRONMENT INTERNATIONAL 2023; 181:108294. [PMID: 37935082 DOI: 10.1016/j.envint.2023.108294] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023]
Abstract
Phthalates and bisphenol A (BPA) are compounds widely used as raw materials in the production of plastics, making them ubiquitous in our daily lives. This results in widespread human exposure and human health hazards. Although efforts have been conducted to evaluate the risk of these compounds in diverse regions around the world, data scattering may mask important trends that could be useful for updating current guidelines and regulations. This study offers a comprehensive global assessment of human exposure levels to these chemicals, considering dietary and nondietary ingestion, and evaluates the associated risk. Overall, the exposure daily intake (EDI) values of phthalates and BPA reported worldwide ranged from 1.11 × 10-7 to 3 700 µg kg bw-1 d-1 and from 3.00 × 10-5 to 6.56 µg kg bw-1 d-1, respectively. Nevertheless, the dose-additive effect of phthalates has been shown to increase the EDI up to 5 100 µg kg bw-1 d-1, representing a high risk in terms of noncarcinogenic (HQ) and carcinogenic (CR) effects. The worldwide HQ values of phthalates and BPA ranged from 2.25 × 10-7 to 3.66 and from 2.74 × 10-7 to 9.72 × 10-2, respectively. Meanwhile, a significant number of studies exhibit high CR values for benzyl butyl phthalate (BBP) and di(2-ethylhexyl) phthalate (DEHP). Moreover, DEHP has shown the highest maximum mean CR values for humans in numerous studies, up to 179-fold higher than BBP. Despite mounting evidence of the harmful effects of these chemicals at low-dose exposure on animals and humans, most regulations have not been updated. Thus, this article emphasizes the need for updating guidelines and public policies considering compelling evidence for the adverse effects of low-dose exposure, and it cautions against the use of alternative plasticizers as substitutes for phthalates and BPA because of the significant gaps in their safety.
Collapse
Affiliation(s)
- Jaime Dueñas-Moreno
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Puebla, Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla 72453, Mexico
| | - Abrahan Mora
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Puebla, Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla 72453, Mexico
| | - Manish Kumar
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India; Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, 64700 Nuevo León, Mexico
| | - Xiang-Zhou Meng
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jürgen Mahlknecht
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, 64700 Nuevo León, Mexico.
| |
Collapse
|
19
|
Tewfik EL, Noisel N, Verner MA. Biomonitoring equivalents for perfluorooctanoic acid (PFOA) for the interpretation of biomonitoring data. ENVIRONMENT INTERNATIONAL 2023; 179:108170. [PMID: 37657409 DOI: 10.1016/j.envint.2023.108170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/03/2023]
Abstract
BACKGROUND Perfluorooctanoic acid (PFOA) is detected in the blood of virtually all biomonitoring study participants. Assessing health risks associated with blood PFOA levels is challenging because exposure guidance values (EGVs) are typically expressed in terms of external dose. Biomonitoring equivalents (BEs) consistent with EGVs could facilitate health-based interpretations. OBJECTIVE To i) derive BEs for serum/plasma PFOA corresponding to non-cancer EGVs of the U.S. Environmental Protection Agency (U.S. EPA), the Agency for Toxic Substances and Disease Registry (ATSDR) and Health Canada, and ii) compare with PFOA concentrations from national biomonitoring surveys. METHODS Starting from EGV points of departure, we employed pharmacokinetic data/models and uncertainty factors. Points of departure in pregnant rodents (U.S. EPA 2016, ATSDR) were converted into fetus and pup serum concentrations using an animal gestation/lactation pharmacokinetic model, and equivalent human fetus and child concentrations were converted into BEs in maternal serum using a human gestation/lactation model. The point of departure in adult rodents (Health Canada) was converted into a BE using experimental data. For epidemiology-based EGVs (U.S. EPA 2023, draft), BEs were directly based on epidemiological data or derived using a human gestation/lactation pharmacokinetic model. BEs were compared with Canadian/U.S. biomonitoring data. RESULTS Non-cancer BEs (ng/mL) were 684 (Health Canada, 2018) or ranged from 15 to 29 (U.S. EPA, 2016), 6-10 (ATSDR, 2021) and 0.2-0.8 (U.S. EPA, 2023, draft). Ninety-fifth percentiles of serum levels from the 2018-2019 Canadian Health Measures Survey (CHMS) and the 2017-2018 National Health and Nutrition Examination Survey (NHANES) were slightly below the BE for ATSDR, and geometric means were above the non-cancer BEs for the U.S. EPA (2023, draft). CONCLUSION Non-cancer BEs spanned three orders of magnitude. The lowest BEs were for EGVs based on developmental endpoints in epidemiological studies. Concentrations in Canadian/U.S. national surveys were higher than or close to BEs for the most recent non-cancer EGVs.
Collapse
Affiliation(s)
- Ernest-Louli Tewfik
- Department of Occupational and Environmental Health, School of Public Health, Université de Montréal, Montreal, Canada; Centre de Recherche en Santé Publique, Université de Montréal and CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Canada
| | - Nolwenn Noisel
- Department of Occupational and Environmental Health, School of Public Health, Université de Montréal, Montreal, Canada; Centre de Recherche en Santé Publique, Université de Montréal and CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Canada
| | - Marc-André Verner
- Department of Occupational and Environmental Health, School of Public Health, Université de Montréal, Montreal, Canada; Centre de Recherche en Santé Publique, Université de Montréal and CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Canada.
| |
Collapse
|
20
|
Goodman CV, Till C, Green R, El-Sabbagh J, Arbuckle TE, Hornung R, Lanphear B, Seguin JR, Booij L, Fisher M, Muckle G, Bouchard MF, Ashley-Martin J. Prenatal exposure to legacy PFAS and neurodevelopment in preschool-aged Canadian children: The MIREC cohort. Neurotoxicol Teratol 2023; 98:107181. [PMID: 37178772 PMCID: PMC10979774 DOI: 10.1016/j.ntt.2023.107181] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 04/04/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND Exposure to perfluoroalkyl substances (PFAS) has been shown to be neurotoxic in experimental studies, but epidemiological evidence linking prenatal PFAS exposure to child neurodevelopment is equivocal and scarce. OBJECTIVE To quantify associations between prenatal exposure to legacy PFAS and children's intelligence (IQ) and executive functioning (EF) in a Canadian pregnancy and birth cohort and to determine if these associations differ by child sex. METHODS We measured first-trimester plasma concentrations of perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), and perfluorohexanesulfonic acid (PFHxS) in the Maternal-Infant Research on Environmental Chemicals (MIREC) study and assessed children's full-scale (n = 522), performance (n = 517), and verbal (n = 519) IQ using the Wechsler Preschool and Primary Scale of Intelligence (WPPSI-III). Children's working memory (n = 513) and ability to plan and organize (n = 514) were assessed using a parent-reported questionnaire, the Behavior Rating Inventory of Executive Function - Preschool Version (BRIEF-P). We quantified associations between individual log2-transformed PFAS exposure and children's IQ and EF using multiple linear regression analyses and evaluated effect modification by child sex. We also used Repeated Holdout Weighted Quantile Sum (WQS) regression models with effect modification by child sex to quantify the effect of combined exposure to all three PFAS chemicals on IQ and EF. All models were adjusted for key sociodemographic characteristics. RESULTS Geometric mean plasma concentrations (IQR) for PFOA, PFOS and PFHxS were 1.68 (1.10-2.50), 4.97 (3.20-6.20) and 1.09 (0.67-1.60) μg/L respectively. We found evidence of effect modification by child sex in all models examining performance IQ (p < .01). Specifically, every doubling of PFOA, PFOS, and or PFHxS was inversely associated with performance IQ, but only in males (PFOA: B = -2.80, 95% CI: -4.92, -0.68; PFOS: B = -2.64, 95% CI: -4.77, -0.52; PFHxS: B = -2.92, 95% CI: -4.72, -1.12). Similarly, every quartile increase in the WQS index was associated with poorer performance IQ in males (B = -3.16, 95% CI: -4.90, -1.43), with PFHxS contributing the largest weight to the index. In contrast, no significant association was found for females (B = 0.63, 95% CI: -0.99, 2.26). No significant associations were found for EF in either males or females. CONCLUSIONS Higher prenatal PFAS exposure was associated with lower performance IQ in males, suggesting that this association may be sex- and domain-specific.
Collapse
Affiliation(s)
- Carly V Goodman
- Department of Psychology, York University, Toronto, ON, Canada
| | - Christine Till
- Department of Psychology, York University, Toronto, ON, Canada.
| | - Rivka Green
- Department of Psychology, York University, Toronto, ON, Canada
| | - Jana El-Sabbagh
- Department of Psychology, York University, Toronto, ON, Canada
| | - Tye E Arbuckle
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Richard Hornung
- Pediatrics and Environmental Health, Cincinnati Children's Hospital Medical Center (retired), United States
| | - Bruce Lanphear
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Jean R Seguin
- CHU Sainte-Justine Research Centre and Department of Psychiatry, School of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Linda Booij
- CHU Sainte-Justine Research Centre and Department of Psychiatry, School of Medicine, Université de Montréal, Montreal, QC, Canada; Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Mandy Fisher
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Gina Muckle
- École de psychologie, Université Laval, Centre de recherche du CHU de Québec-Université Laval, Montreal, QC, Canada
| | - Maryse F Bouchard
- CHU Sainte-Justine Research Centre and Department of Environmental and Occupational Health, School of Public Health, Université de Montréal, Montreal, QC, Canada; Institut national de la recherche scientifique, Université du Quebec, Quebec City, QC, Canada
| | | |
Collapse
|
21
|
Groisman L, Berman T, Quinn A, Pariente G, Rorman E, Karakis I, Gat R, Sarov B, Novack L. Levels of PFAS concentrations in the placenta and pregnancy complications. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115165. [PMID: 37348217 DOI: 10.1016/j.ecoenv.2023.115165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/12/2023] [Accepted: 06/18/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND Recent research has raised concerns about the potential health effects of perfluoroalkyl and polyfluoroalkyl substances (PFAS) exposure, particularly during critical periods of development such as pregnancy. In this study, we sought to investigate the presence and potential impacts of PFAS in the placenta. METHODS We measured 13 PFAS compounds in placental tissue samples among 50 women who gave birth at a tertiary medical center in southern Israel. The sample comprised of 10 women with pregnancy-related complications (preterm birth, preeclampsia, gestational diabetes or small-for-gestational age) and 40 women without complications individually matched to cases by age. RESULTS For five (5) out of 13 PFAS compounds (Perfluorooctane Sulfonate (PFOS), perfluorooctanoic acid (PFOA), Perfluorohexanesulphonic acid (PFHxS), Perfluorononanoic acid (PFNA), Perfluorodecanoic acid (PFDA)) median concentrations were lower or comparable to placental measurements in different international populations. Geometric mean was estimated at 0.09 ng/g (90%CI:0.07;0.10) for PFOA, 0.05 ng/g for PFNA (90%CI:0.04;0.07), 0.03 ng/g for PFDA (90%CI:0.01;0.03), 0.06 ng/g for PFHxS (90%CI:0.05;0.07), 0.23 ng/g for PFOS linear measurement (90%CI:0.20;0.26) and 0.25 ng/g (90%CI:0.22;0.30) for PFOS summed concentrations that included non-linear isomers. Composite outcome of pregnancy-related complications was associated with elevated PFOA placental concentrations at an odds ratio (OR)= 1.82 (90%CI:1.06;3.13) for an increase of one quintile of PFOA value and adjusted to maternal gravidity in a conditional logistic regression. CONCLUSION This pilot study indicates a widespread exposure to multiple PFAS compounds in placental tissue of pregnant women in Israel. These findings warrant further validation through comprehensive national human biomonitoring initiatives.
Collapse
Affiliation(s)
- Luda Groisman
- National Public Health Laboratory, Israel Ministry of Health, Tel Aviv, Israel
| | - Tamar Berman
- Department of Health Promotion, Tel Aviv University, Israel; Department of Environmental Health, Israel Ministry of Health, Israel, Tel Aviv University, Israel
| | - Anna Quinn
- Ben-Gurion University of the Negev, Faculty of Health Sciences, Israel
| | - Gali Pariente
- The Division of Obstetrics and Gynecology, Soroka University Medical Center, Israel
| | - Efrat Rorman
- National Public Health Laboratory, Israel Ministry of Health, Tel Aviv, Israel
| | - Isabella Karakis
- Ben-Gurion University of the Negev, Faculty of Health Sciences, Israel; Department of Environmental Epidemiology, Israel Ministry of Health, Israel
| | - Roni Gat
- Ben-Gurion University of the Negev, Faculty of Health Sciences, Israel; Soroka University Medical Center, Negev Environmental Health Research Institute, Israel
| | - Batia Sarov
- Ben-Gurion University of the Negev, Faculty of Health Sciences, Israel
| | - Lena Novack
- Ben-Gurion University of the Negev, Faculty of Health Sciences, Israel; Soroka University Medical Center, Negev Environmental Health Research Institute, Israel.
| |
Collapse
|
22
|
Lyu Z, Harada KH, Kim S, Fujitani T, Hitomi T, Pan R, Park N, Fujii Y, Kho Y, Choi K. Temporal trends in bisphenol exposures and associated health risk among Japanese women living in the Kyoto area from 1993 to 2016. CHEMOSPHERE 2023; 316:137867. [PMID: 36642136 DOI: 10.1016/j.chemosphere.2023.137867] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Bisphenols, and especially bisphenol A, are widely used as components of epoxy resins and polycarbonate. Widespread detection and potential health risks have led to bisphenol A being replaced by other alternatives, including structurally similar bisphenol analogs. Several bisphenol analogs are suspected to have similar adverse health consequences. This study examined the temporal trends in bisphenol exposure among a group of Japanese women from 1993 to 2016, and assessed the associated health risks. METHODS We used archived single spot urine samples of healthy Japanese women living in the Kyoto area (n = 133) collected in 1993, 2000, 2003, 2009, 2011, and 2016. We measured the concentrations of 10 bisphenols in these samples. RESULTS A sharp increase in the detection rates of bisphenol F was observed after 2000. There was a distinct downward trend in urinary bisphenol A concentrations and an upward trend in bisphenol E concentrations after 2009. While the hazard index for all measured bisphenols was below 1 in all subjects, bisphenol F was determined as the most important risk driver after 2000, rather than bisphenol A. DISCUSSION Trends of decreasing bisphenol A and increasing bisphenol E exposure especially after 2011, along with no significant change in the sum of all bisphenol analogs in urine, provide clear evidence that bisphenol A has been replaced by other bisphenols in the study population. We found no significant change in the total exposure to bisphenols during the study period. Bisphenol F might become the most important bisphenol in terms of risk, while cumulative risks due to all bisphenol exposure were deemed insignificant. Considering the accumulating evidence indicating adverse effects at lower exposure levels, further studies are warranted to assess exposure and risk from bisphenol A analogs.
Collapse
Affiliation(s)
- Zhaoqing Lyu
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida, Kyoto, 606-8501, Japan
| | - Kouji H Harada
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida, Kyoto, 606-8501, Japan.
| | - Sungmin Kim
- Department of Health, Environment & Safety, Eulji University, Seongnam, 13135, Republic of Korea
| | - Tomoko Fujitani
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida, Kyoto, 606-8501, Japan
| | - Toshiaki Hitomi
- Department of Preventive Medicine, St. Marianna University School of Medicine, Kawasaki, 216-8511, Japan
| | - Rui Pan
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida, Kyoto, 606-8501, Japan; Department of Global Environmental Health, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Nayoun Park
- Department of Health, Environment & Safety, Eulji University, Seongnam, 13135, Republic of Korea
| | - Yukiko Fujii
- Department of Pharmaceutical Sciences, Daiichi University of Pharmacy, Fukuoka, 815-8511, Japan
| | - Younglim Kho
- Department of Health, Environment & Safety, Eulji University, Seongnam, 13135, Republic of Korea
| | - Kyungho Choi
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
23
|
Domínguez-Romero E, Komprdová K, Kalina J, Bessems J, Karakitsios S, Sarigiannis DA, Scheringer M. Time-trends in human urinary concentrations of phthalates and substitutes DEHT and DINCH in Asian and North American countries (2009-2019). JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:244-254. [PMID: 35513587 PMCID: PMC10005949 DOI: 10.1038/s41370-022-00441-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 05/26/2023]
Abstract
BACKGROUND Many phthalates are environmental pollutants and toxic to humans. Following phthalate regulations, human exposure to phthalates has globally decreased with time in European countries, the US and Korea. Conversely, exposure to their substitutes DEHT and/or DINCH has increased. In other countries, including China, little is known on the time-trends in human exposure to these plasticizers. OBJECTIVE We aimed to estimate time-trends in the urinary concentrations of phthalates, DEHT, and DINCH metabolites, in general population from non-European countries, in the last decade. METHODS We compiled human biomonitoring (HBM) data from 123 studies worldwide in a database termed "PhthaLit". We analyzed time-trends in the urinary concentrations of the excreted metabolites of various phthalates as well as DEHT and DINCH per metabolite, age group, and country/region, in 2009-2019. Additionally, we compared urinary metabolites levels between continents. RESULTS We found solid time-trends in adults and/or children from the US, Canada, China and Taiwan. DEHP metabolites decreased in the US and Canada. Conversely in Asia, 5oxo- and 5OH-MEHP (DEHP metabolites) increased in Chinese children. For low-weight phthalates, the trends showed a mixed picture between metabolites and countries. Notably, MnBP (a DnBP metabolite) increased in China. The phthalate substitutes DEHT and DINCH markedly increased in the US. SIGNIFICANCE We addressed the major question of time-trends in human exposure to phthalates and their substitutes and compared the results in different countries worldwide. IMPACT Phthalates account for more than 50% of the plasticizer world market. Because of their toxicity, some phthalates have been regulated. In turn, the consumption of non-phthalate substitutes, such as DEHT and DINCH, is growing. Currently, phthalates and their substitutes show high detection percentages in human urine. Concerning time-trends, several studies, mainly in Europe, show a global decrease in phthalate exposure, and an increase in the exposure to phthalate substitutes in the last decade. In this study, we address the important question of time-trends in human exposure to phthalates and their substitutes and compare the results in different countries worldwide.
Collapse
Affiliation(s)
- Elena Domínguez-Romero
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, 611 37, Czech Republic.
| | - Klára Komprdová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, 611 37, Czech Republic
| | - Jiří Kalina
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, 611 37, Czech Republic
| | - Jos Bessems
- VITO (Flemish Institute for Technological Research), BE-2400, Mol, Belgium
| | - Spyros Karakitsios
- Aristotle Univ Thessaloniki, Dept Chem Engn, Environm Engn Lab, Univ Campus,Bldg D,Rm 201, Thessaloniki, 54124, Greece
- HERACLES Res Ctr Exposome & Hlth, Ctr Interdisciplinary Res & Innovat, Balkan Ctr, Bldg B,10thkm Thessaloniki Thermi Rd, Thessaloniki, 57001, Greece
| | - Dimosthenis A Sarigiannis
- Aristotle Univ Thessaloniki, Dept Chem Engn, Environm Engn Lab, Univ Campus,Bldg D,Rm 201, Thessaloniki, 54124, Greece
- HERACLES Res Ctr Exposome & Hlth, Ctr Interdisciplinary Res & Innovat, Balkan Ctr, Bldg B,10thkm Thessaloniki Thermi Rd, Thessaloniki, 57001, Greece
- Sch Adv Study IUSS, Sci Technol & Soc Dept, Environm Hlth Engn, Piazza Vittoria 15, I-27100, Pavia, Italy
| | - Martin Scheringer
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, 611 37, Czech Republic
| |
Collapse
|
24
|
Deng F, Guo C, Zeng W, Zhong Y, Luo X, Pan X, Zhang L, Tan L. Supported liquid extraction and ultra-high performance liquid chromatography-tandem mass spectrometry for the determination of urinary polycyclic aromatic hydrocarbon metabolites and their application for human biomonitoring. J Pharm Biomed Anal 2023; 224:115201. [PMID: 36549260 DOI: 10.1016/j.jpba.2022.115201] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/29/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a class of highly lipophilic and ubiquitous, persistent organic pollutants with carcinogenic and mutagenic toxicities. They are a great public health concern, and avoiding exposure to them is a high priority. Human biomonitoring is critical for the evaluation of exposure levels to PAHs by the general population. In this work, we demonstrated the biomonitoring of eleven hydroxylated PAHs (OHPAHs) in urine samples from 226 volunteers from Guangzhou, and evaluated the health risks. The urinary PAH metabolites were released by enzymatic deconjugation, separated, and enriched by supported liquid extraction, and then quantified by ultra-high performance liquid chromatography-tandem mass spectrometry. The limit of quantification of the individual OHPAHs ranged from 10 ng/L to 40 ng/L, and satisfactory recoveries were obtained, ranging from 92.6% to 97.6%. The detection frequencies of the OHPAHs were 100%, and naphthalene metabolites were found at the highest concentrations with a geometric mean of 8.61 μg/L. The mean total OHPAH level in the urine samples of males (13.2 μg/L) was significantly higher than that of females (5.84 μg/L). Pearson correlation analyses indicated significant and positive correlations among urinary OHPAHs. The total estimated daily intake of PAHs was calculated, and a low health risk was obtained by evaluating their hazard quotients and hazard indexes.
Collapse
Affiliation(s)
- Fenfang Deng
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Chongshan Guo
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Wei Zeng
- Waters Technologies (Shanghai) Ltd., Shanghai 201203, China
| | - Yi Zhong
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Xiaoyan Luo
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Xinhong Pan
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Lin Zhang
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Lei Tan
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China; School of Public Health, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
25
|
Li HR, Fu XH, Song LL, Cen MQ, Wu J. Association between pyrethroid exposure and risk of depressive symptoms in the general US adults. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:685-698. [PMID: 35904735 DOI: 10.1007/s11356-022-22203-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to investigate the association between pyrethroid exposure and the risk of depressive symptoms in adults in the USA. Data of participants aged ≥20 years (n = 6455) from the National Health and Nutrition Examination Survey (NHANES, 2007-2014) were included. 3-Phenoxybenzoic acid (3-PBA), an adequately detected pyrethroid metabolite, was used as a biomarker to assess pyrethroid exposure. Depressive symptoms were defined as the Patient's Health Questionnaire (PHQ-9) total score ≥10 or use of antidepressant. Multivariable logistic regression analyses were performed to examine the association between urinary 3-PBA levels and the risk of depressive symptoms. In this study, 1150 participants (weighted frequency, 18.45%) developed depressive symptoms. Participants in the highest tertile have a higher risk of depressive symptoms than those in the lowest tertile of urinary 3-PBA and weighted OR of 1.28 (95% CI, 1.00-1.63, P=0.019). There was a nonlinear association between urinary 3-PBA and depressive symptoms (P for nonlinearity = 0.034). Mediation analysis showed the mediating effect of trouble sleeping on the association of urinary 3-PBA with depressive symptoms was 28.8% (P = 0.006). Our findings indicate that pyrethroid exposure is associated with the increased risk of depressive symptoms, and trouble sleeping may mediated this association. Further studies should be conducted to validate our findings and elucidate their underlying mechanisms.
Collapse
Affiliation(s)
- Hui-Ru Li
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xi-Hang Fu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ling-Ling Song
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Man-Qiu Cen
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jing Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
26
|
Ünlü Endirlik B, Wincent E, Dreij K. Non-additive mixture effects of benzo[a]pyrene and pesticides in vitro and in vivo: Role of AhR signaling. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120510. [PMID: 36306888 DOI: 10.1016/j.envpol.2022.120510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and pesticides are two major groups of environmental contaminants which humans are simultaneously exposed to. However, potential mixture interactions of these groups of chemicals are not well-studied. In this study, the effects of binary mixtures of the PAH benzo[a]pyrene (B[a]P) and the commonly used pesticides chlorpyrifos, paraquat and tebuconazole on human liver HepG2 cells were investigated. The results showed that binary mixtures of B[a]P and paraquat or tebuconazole mainly caused additive effects on cell viability and cytochrome P4501a1 (CYP1A1) expression compared to single compound exposures. In contrast, the binary mixture with chlorpyrifos interacted antagonistically on cell viability and ROS production, whereas synergistic effects were observed for induction of CYP1A1 expression. B[a]P and chlorpyrifos also inhibited the activity of recombinant human CYP1A1 enzyme. To verify the synergistic in vitro results, zebrafish (Danio rerio) embryos were exposed to binary mixtures of B[a]P and chlorpyrifos. The mixtures caused synergistic induction of CYP1A expression, as well as synergistic developmental toxicity on multiple endpoints including non-inflated swim bladder, yolk-sac and pericardial edema, and spinal deformation. The effects were reduced upon morpholino-mediated knockdown of the aryl hydrocarbon receptor (AhR), indicating an AhR-dependence of the synergistic toxicity. Altogether, these data suggest that the combination of AhR activation and CYP1A1 inhibition is responsible for the underlying non-additive interaction between B[a]P and chlorpyrifos in vitro and in vivo.
Collapse
Affiliation(s)
- Burcu Ünlü Endirlik
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, 171 77, Stockholm, Sweden; Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Erciyes University, 38280, Kayseri, Turkey
| | - Emma Wincent
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, 171 77, Stockholm, Sweden
| | - Kristian Dreij
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, 171 77, Stockholm, Sweden.
| |
Collapse
|
27
|
Pirard C, Charlier C. Urinary levels of parabens, phthalate metabolites, bisphenol A and plasticizer alternatives in a Belgian population: Time trend or impact of an awareness campaign? ENVIRONMENTAL RESEARCH 2022; 214:113852. [PMID: 35820649 DOI: 10.1016/j.envres.2022.113852] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
A human biomonitoring study was carried out in 2015 within an adult population living in Liege (Belgium). Some phthalate metabolites and parabens were measured in the urine of 252 participants, and information were collected about their food habits, life styles and home environment to identify some predictors of exposure. Concomitantly, an awareness campaign was initiated by the Provincial Authorities of Liege and spread over 2 years. Three years later (2018), 92 of the initial participants provided again urine samples, and the levels of phthalate metabolites, phthalate substitute (DINCH), parabens, bisphenol-A and bisphenol alternatives (bisphenol-S, -F, -Z, -P) were determined and compared to those obtained in 2015 to assess time trends. In 2015, methyl- and ethylparaben were the most abundant parabens (P50 = 9.12 μg/L and 1.1 μg/L respectively), while propyl- and butylparaben were sparsely detected. Except for mono-2-ethylhexyl phthalate and 6-OH-mono-propyl-heptyl phthalate, all other targeted phthalate metabolites were positively quantified in most of the urine samples (between 89 and 98%) with median concentrations ranging between 2.7 μg/L and 21.3 μg/L depending on the metabolite. The multivariate regression models highlighted some significant associations between urinary phthalate metabolite or paraben levels and age, rural or urban character of the residence place, and the use of some personal care products. However, all determination coefficients were weak meaning that the usual covariates included in the models only explained a small part of the variance. Between 2015 and 2018, levels of parabens and phthalate metabolites significantly decreased (from 1.3 to 2.5 fold) except for monoethyl phthalate which seemed to remain quite constant. Contrariwise, all bisphenol alternatives and DINCH metabolites were measured in higher concentrations in 2018 vs 2015 while BPA levels did not differ significantly. However, it was not feasible to unequivocally highlight an impact of the awareness campaign on the exposure levels of the population.
Collapse
Affiliation(s)
- Catherine Pirard
- Laboratory of Clinical, Forensic and Environmental Toxicology, CHU of Liege, B35, 4000, Liege, Belgium; Center for Interdisciplinary Research on Medicines (CIRM), University of Liege (ULiege), CHU (B35), 4000, Liege, Belgium.
| | - Corinne Charlier
- Laboratory of Clinical, Forensic and Environmental Toxicology, CHU of Liege, B35, 4000, Liege, Belgium; Center for Interdisciplinary Research on Medicines (CIRM), University of Liege (ULiege), CHU (B35), 4000, Liege, Belgium
| |
Collapse
|
28
|
Zhou S, Zhang L, Guo C, Zhong Y, Luo X, Pan X, Yang Z, Tan L. Comparing liquid-liquid, solid-phase, and supported-liquid extraction for the determination of polycyclic aromatic hydrocarbons in serum samples and their application for human biomonitoring. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
29
|
Allicin Promoted Reducing Effect of Garlic Powder through Acrylamide Formation Stage. Foods 2022; 11:foods11162394. [PMID: 36010398 PMCID: PMC9407168 DOI: 10.3390/foods11162394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Acrylamide is formed during food heating and is neurotoxic to animals and potentially carcinogenic to humans. It is important to reduce acrylamide content during food processing. Researchers have suggested that garlic powder could reduce acrylamide content, but the key substance and acrylamide reduction pathway of garlic powder was unclear. Methods: The inhibitory effect of garlic powder on acrylamide in asparagine/glucose solution and a fried potato model system were firstly evaluated. Furthermore, the effect of allicin on the amount of produced acrylamide in the asparagine/glucose solution model system and fried potatoes was studied with kinetic analysis. Results: The freeze-dried garlic powder had a higher inhibition rate (41.0%) than oven-dried garlic powder (maximum inhibition rate was 37.3%), and allicin had a 71.3% attribution to the reduction of acrylamide content. Moreover, the inhibition rate of allicin had a nonlinear relationship with the addition level increase. The kinetic analysis indicated that garlic powder and allicin could reduce acrylamide content through the AA formation stage, but not the decomposition stage. Conclusions: Allicin was the key component of garlic powder in reducing acrylamide content during acrylamide formation stage. This research could provide a new method to reduce acrylamide content during food processing and expand the application area of garlic.
Collapse
|
30
|
Tarazona JV, Cattaneo I, Niemann L, Pedraza-Diaz S, González-Caballero MC, de Alba-Gonzalez M, Cañas A, Dominguez-Morueco N, Esteban-López M, Castaño A, Borges T, Katsonouri A, Makris KC, Ottenbros I, Mol H, De Decker A, Morrens B, Berman T, Barnett-Itzhaki Z, Probst-Hensch N, Fuhrimann S, Tratnik JS, Horvat M, Rambaud L, Riou M, Schoeters G, Govarts E, Kolossa-Gehring M, Weber T, Apel P, Namorado S, Santonen T. A Tiered Approach for Assessing Individual and Combined Risk of Pyrethroids Using Human Biomonitoring Data. TOXICS 2022; 10:451. [PMID: 36006130 PMCID: PMC9416723 DOI: 10.3390/toxics10080451] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 12/04/2022]
Abstract
Pyrethroids are a major insecticide class, suitable for biomonitoring in humans. Due to similarities in structure and metabolic pathways, urinary metabolites are common to various active substances. A tiered approach is proposed for risk assessment. Tier I was a conservative screening for overall pyrethroid exposure, based on phenoxybenzoic acid metabolites. Subsequently, probabilistic approaches and more specific metabolites were used for refining the risk estimates. Exposure was based on 95th percentiles from HBM4EU aligned studies (2014-2021) covering children in Belgium, Cyprus, France, Israel, Slovenia, and The Netherlands and adults in France, Germany, Israel, and Switzerland. In all children populations, the 95th percentiles for 3-phenoxybenzoic acid (3-PBA) exceeded the screening value. The probabilistic refinement quantified the risk level of the most exposed population (Belgium) at 2% or between 1-0.1% depending on the assumptions. In the substance specific assessments, the 95th percentiles of urinary concentrations in the aligned studies were well below the respective human biomonitoring guidance values (HBM-GVs). Both information sets were combined for refining the combined risk. Overall, the HBM data suggest a low health concern, at population level, related to pyrethroid exposure for the populations covered by the studies, even though a potential risk for highly exposed children cannot be completely excluded. The proposed tiered approach, including a screening step and several refinement options, seems to be a promising tool of scientific and regulatory value in future.
Collapse
Affiliation(s)
- Jose V. Tarazona
- European Food Safety Authority (EFSA), 43126 Parma, Italy
- National Centre for Environmental Health, Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Irene Cattaneo
- European Food Safety Authority (EFSA), 43126 Parma, Italy
| | - Lars Niemann
- Department of Safety of Pesticides, German Federal Institute for Risk Assessment, 10589 Berlin, Germany
| | - Susana Pedraza-Diaz
- National Centre for Environmental Health, Instituto de Salud Carlos III, 28220 Madrid, Spain
| | | | | | - Ana Cañas
- National Centre for Environmental Health, Instituto de Salud Carlos III, 28220 Madrid, Spain
| | | | - Marta Esteban-López
- National Centre for Environmental Health, Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Argelia Castaño
- National Centre for Environmental Health, Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Teresa Borges
- General-Directorate of Health, Ministry of Health, 1049-005 Lisbon, Portugal
| | | | - Konstantinos C. Makris
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, Limassol 3036, Cyprus
| | - Ilse Ottenbros
- National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 Bilthoven, The Netherlands
| | - Hans Mol
- Wageningen Food Safety Research (WFSR), 6700 Wageningen, The Netherlands
| | | | - Bert Morrens
- Department of Sociology, University of Antwerp, 2020 Antwerpen, Belgium
| | | | - Zohar Barnett-Itzhaki
- Ruppin Research Group in Environmental and Social Sustainability, Ruppin Academic Center, Emek Hefer 4025000, Israel
| | - Nicole Probst-Hensch
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
| | - Samuel Fuhrimann
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
| | - Janja Snoj Tratnik
- Jozef Stefan Institute, Department of Environmental Sciences, 1000 Jubljana, Slovenia
| | - Milena Horvat
- Jozef Stefan Institute, Department of Environmental Sciences, 1000 Jubljana, Slovenia
| | - Loic Rambaud
- Department of Environmental and Occupational Health, Santé Publique France, 12 rue du Val d’Osne, Saint-Maurice, CEDEX, 94415 Paris, France
| | - Margaux Riou
- Department of Environmental and Occupational Health, Santé Publique France, 12 rue du Val d’Osne, Saint-Maurice, CEDEX, 94415 Paris, France
| | - Greet Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), 2020 Mol, Belgium
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), 2020 Mol, Belgium
| | | | - Till Weber
- German Environment Agency (UBA), 14195 Berlin, Germany
| | - Petra Apel
- German Environment Agency (UBA), 14195 Berlin, Germany
| | - Sonia Namorado
- Department of Epidemiology, National Institute of Health Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - Tiina Santonen
- Finnish Institute of Occupational Health, Työterveyslaitos, P.O. Box 40, 00032 Helsinki, Finland
| |
Collapse
|
31
|
Barra NG, Kwon YH, Morrison KM, Steinberg GR, Wade MG, Khan WI, Vijayan MM, Schertzer JD, Holloway AC. Increased gut serotonin production in response to bisphenol A structural analogs may contribute to their obesogenic effects. Am J Physiol Endocrinol Metab 2022; 323:E80-E091. [PMID: 35575233 DOI: 10.1152/ajpendo.00049.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Obesogens are synthetic, environmental chemicals that can disrupt endocrine control of metabolism and contribute to the risk of obesity and metabolic disease. Bisphenol A (BPA) is one of the most studied obesogens. There is considerable evidence that BPA exposure is associated with weight gain, increased adiposity, poor blood glucose control, and nonalcoholic fatty liver disease in animal models and human populations. Increased usage of structural analogs of BPA has occurred in response to legislation banning their use in some commercial products. However, BPA analogs may also cause some of the same metabolic impairments because of common mechanisms of action. One key effector that is altered by BPA and its analogs is serotonin, however, it is unknown if BPA-induced changes in peripheral serotonin pathways underlie metabolic perturbations seen with BPA exposure. Upon ingestion, BPA and its analogs act as endocrine-disrupting chemicals in the gastrointestinal tract to influence serotonin production by the gut, where over 95% of serotonin is produced. The purpose of this review is to evaluate how BPA and its analogs alter gut serotonin regulation and then discuss how disruption of serotonergic networks influences host metabolism. We also provide evidence that BPA and its analogs enhance serotonin production in gut enterochromaffin cells. Taken together, we propose that BPA and many BPA analogs represent endocrine-disrupting chemicals that can influence host metabolism through the endogenous production of gut-derived factors, such as serotonin.
Collapse
Affiliation(s)
- Nicole G Barra
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Yun Han Kwon
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Katherine M Morrison
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Gregory R Steinberg
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Michael G Wade
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Waliul I Khan
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | - Jonathan D Schertzer
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Alison C Holloway
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
32
|
Lyu Z, Harada KH, Kim S, Fujitani T, Cao Y, Hitomi T, Fujii Y, Kho Y, Choi K. Exposure to phthalate esters in Japanese females in Kyoto, Japan from 1993 to 2016: Temporal trends and associated health risks. ENVIRONMENT INTERNATIONAL 2022; 165:107288. [PMID: 35588674 DOI: 10.1016/j.envint.2022.107288] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Phthalates are used as plasticizers in many products used in daily life worldwide. Due to industrial and economic developments, exposure among general population to phthalates may vary geographically and temporally. However, studies are lacking for investigating temporal changes in phthalate exposure in the Japanese population. In the present study, the temporal trends in exposure to various phthalates were assessed among a group of Japanese adult female population over 1993-2016 and derived associated risks. For this purpose, urine samples of healthy Japanese females in Kyoto, Japan (N = 132) collected in 1993, 2000, 2003, 2009, 2011, and 2016, were employed and measured for the concentrations of 18 phthalate metabolites. Over this period, the detection rates of mono(3-carboxypropyl) phthalate (MCPP) and monoisobutyl phthalate (MiBP) decreased, and the geometric means of the urinary concentrations of mono(2-ethyl-5-carboxypentyl) phthalate (MECPP), and mono(2-ethyl-5-oxohexyl) phthalate (MEOHP) showed a significant decreasing trend. Cumulative risk due to exposure to dibutyl phthalate (DBP), diisobutyl phthalate (DiBP), butyl benzyl phthalate (BBP), and di-2-ethylhexyl phthalate (DEHP) showed a dramatic decrease only between 1993 and 2000. The maximum hazard quotient (HQM) was attributed to DEHP in most subjects regardless of sampling year. This study showed the temporal trend of the exposure of Japanese females to several phthalate esters over two decades. As of the late 2010's, DEHP was still the predominant component of phthalate ester exposure in the population. The HI value, however, indicates that direct risk due to phthalate exposure was unlikely among the studied population.
Collapse
Affiliation(s)
- Zhaoqing Lyu
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida, Kyoto 606-8501, Japan
| | - Kouji H Harada
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida, Kyoto 606-8501, Japan.
| | - Sungmin Kim
- Department of Health, Environment & Safety, Eulji University, Seongnam 13135, Republic of Korea
| | - Tomoko Fujitani
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida, Kyoto 606-8501, Japan
| | - Yang Cao
- Department of Preventive Medicine, St. Marianna University School of Medicine, Kawasaki 216-8511, Japan
| | - Toshiaki Hitomi
- Department of Preventive Medicine, St. Marianna University School of Medicine, Kawasaki 216-8511, Japan
| | - Yukiko Fujii
- Department of Pharmaceutical Sciences, Daiichi University of Pharmacy, Fukuoka 815-8511, Japan
| | - Younglim Kho
- Department of Health, Environment & Safety, Eulji University, Seongnam 13135, Republic of Korea
| | - Kyungho Choi
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
33
|
Exposure variability and determining factors of urinary metals for schoolchildren in Taiwan. Int J Hyg Environ Health 2022; 243:113976. [DOI: 10.1016/j.ijheh.2022.113976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/14/2022] [Accepted: 04/26/2022] [Indexed: 11/22/2022]
|
34
|
Bartel-Steinbach M, Lermen D, Gwinner F, Schäfer M, Göen T, Conrad A, Weber T, von Briesen H, Kolossa-Gehring M. Long-term monitoring of mercury in young German adults: Time trend analyses from the German Environmental Specimen Bank, 1995-2018. ENVIRONMENTAL RESEARCH 2022; 207:112592. [PMID: 34973943 DOI: 10.1016/j.envres.2021.112592] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
As highlighted in the Minamata Convention, Mercury (Hg) in its various forms poses a substantial risk to human health and the environment. The health relevance of Hg is also recognized by the European Human Biomonitoring Initiative (HBM4EU), which classifies Hg as a priority substance, since considerable knowledge and data gaps on Hg exposure levels and their changes over time still exist in Europe. The German Environmental Specimen Bank (German ESB) provides valuable policy relevant data and long-term trends of substance exposure on a national level for international comparison and evaluation. In this study we analysed data of the German ESB on Hg exposure of young adults aged 20 to 29 including data on urinary Hg levels from 1995 to 2018 and whole blood Hg levels from 2001 to 2010. Results show a clear decrease in both, about 86% in urine total daily Hg excretion from 1995 (0.76 μg/L) to 2018 (0.11 μg/L) (n = 10,069) and about 57% in blood concentrations of Hg from 2001 (1.76 μg/L) to 2010 (0.77 μg/L) (n = 4085). Over the investigated timeframe only a few values exceeded the toxicologically derived health based guidance value HBM I for blood and urine, with these exceedances decreasing over time in line with the general trend. The factors mostly influencing Hg excretion identified in this study are dental amalgam as well as fish and seafood consumption. Besides other factors (e.g. age and sex), also airborne Hg exposure appears to be a low but evident influencing factor in Germany. Although a considerable decrease in internal Hg exposure is recognized in the last decades, the current low-level exposure may cause adverse health effects especially to vulnerable groups such as pregnant women and children. To further elucidate and evaluate current exposure sources and to reduce human exposure to Hg, continuous environmental and human biomonitoring is needed.
Collapse
Affiliation(s)
| | - Dominik Lermen
- Fraunhofer Institute for Biomedical Engineering IBMT, Sulzbach, Germany
| | - Frederik Gwinner
- Fraunhofer Institute for Biomedical Engineering IBMT, Sulzbach, Germany
| | - Moritz Schäfer
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Göen
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - André Conrad
- German Environment Agency (Umweltbundesamt), Berlin, Germany
| | - Till Weber
- German Environment Agency (Umweltbundesamt), Berlin, Germany
| | - Hagen von Briesen
- Fraunhofer Institute for Biomedical Engineering IBMT, Sulzbach, Germany
| | | |
Collapse
|
35
|
Joksić AŠ, Tratnik JS, Mazej D, Kocman D, Stajnko A, Eržen I, Horvat M. Polycyclic aromatic hydrocarbons (PAHs) in men and lactating women in Slovenia: Results of the first national human biomonitoring. Int J Hyg Environ Health 2022; 241:113943. [DOI: 10.1016/j.ijheh.2022.113943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 02/04/2023]
|
36
|
Mohanto NC, Ito Y, Kato S, Kamijima M. Life-Time Environmental Chemical Exposure and Obesity: Review of Epidemiological Studies Using Human Biomonitoring Methods. Front Endocrinol (Lausanne) 2021; 12:778737. [PMID: 34858347 PMCID: PMC8632231 DOI: 10.3389/fendo.2021.778737] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/23/2021] [Indexed: 12/22/2022] Open
Abstract
The exponential global increase in the incidence of obesity may be partly attributable to environmental chemical (EC) exposure. Humans are constantly exposed to ECs, primarily through environmental components. This review compiled human epidemiological study findings of associations between blood and/or urinary exposure levels of ECs and anthropometric overweight and obesity indices. The findings reveal research gaps that should be addressed. We searched MEDLINE (PubMed) for full text English articles published in 2006-2020 using the keywords "environmental exposure" and "obesity". A total of 821 articles were retrieved; 102 reported relationships between environmental exposure and obesity indices. ECs were the predominantly studied environmental exposure compounds. The ECs were grouped into phenols, phthalates, and persistent organic pollutants (POPs) to evaluate obesogenic roles. In total, 106 articles meeting the inclusion criteria were summarized after an additional search by each group of EC combined with obesity in the PubMed and Scopus databases. Dose-dependent positive associations between bisphenol A (BPA) and various obesity indices were revealed. Both individual and summed di(2-ethylhexyl) phthalate (DEHP) and non-DEHP metabolites showed inconsistent associations with overweight and obesity indices, although mono-butyl phthalate (MBP), mono-ethyl phthalate (MEP), and mono-benzyl phthalate (MBzP) seem to have obesogenic roles in adolescents, adults, and the elderly. Maternal exposure levels of individual POP metabolites or congeners showed inconsistent associations, whereas dichlorodiphenyldichloroethylene (DDE) and perfluorooctanoic acid (PFOA) were positively associated with obesity indices. There was insufficient evidence of associations between early childhood EC exposure and the subsequent development of overweight and obesity in late childhood. Overall, human evidence explicitly reveals the consistent obesogenic roles of BPA, DDE, and PFOA, but inconsistent roles of phthalate metabolites and other POPs. Further prospective studies may yield deeper insights into the overall scenario.
Collapse
|