1
|
Xiong Z, Mahai G, Wang A, Li F, Qian X, Huang Y, Li Y, Xia W, Xu S. Exploring the relationships between prenatal phthalate exposure and neonatal thyroid function: A prospective cohort study. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138132. [PMID: 40188546 DOI: 10.1016/j.jhazmat.2025.138132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/14/2025] [Accepted: 03/31/2025] [Indexed: 04/08/2025]
Abstract
Previous studies have reported the thyroid disruptive effects of prenatal phthalate exposure; however, evidence on the impact of prenatal phthalate alternative exposure on neonatal thyroid function is still limited. We aimed to investigate the associations between prenatal exposure to phthalates and phthalate alternatives (individually and as a mixture) and neonatal thyroid function, based on longitudinal data from the Wuhan Healthy Baby Cohort Study. We measured concentrations of phthalate and phthalate alternative metabolites (mPAEs) in urine samples, provided by 1202 mothers at three trimesters, and neonatal thyroid stimulating hormone (TSH) levels in heel-prick blood samples. The results suggested higher levels of some mPAEs, particularly monomethyl phthalate (MMP) and mono-2-ethyl-5-Carboxypentyl terephthalate (MECPTP), were associated with increased neonatal TSH. Interquartile range (IQR) increases of mPAEs were associated with an increase in TSH ranging from 8.21 % to 13.5 %, and the associations were more likely to occur in girls. Quantiles g-computation models revealed that joint exposure to phthalates was significantly associated with increased TSH in three trimesters, MEOHP and MMP were the most predominant contributors to the positive associations. The research results imply that prenatal phthalate exposure may interfere with thyroid hormone homeostasis, which warrants further replication.
Collapse
Affiliation(s)
- Zhaoying Xiong
- School of Environmental Science and Engineering, Hainan University, Haikou 570208, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Gaga Mahai
- School of Environmental Science and Engineering, Hainan University, Haikou 570208, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Aizhen Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Fasheng Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xi Qian
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yizhao Huang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shunqing Xu
- School of Environmental Science and Engineering, Hainan University, Haikou 570208, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
2
|
Cruz JC, Rocha BA, Souza MCO, Kannan K, Júnior FB. Co-exposure to multiple endocrine-disrupting chemicals and oxidative stress: Epidemiological evidence of nonmonotonic dose response curves. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:178952. [PMID: 40010254 DOI: 10.1016/j.scitotenv.2025.178952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 02/04/2025] [Accepted: 02/20/2025] [Indexed: 02/28/2025]
Abstract
This study aimed to investigate the effect of multiple exposure to eight classes (parabens, bisphenols, glycidyl ethers, antimicrobials, benzophenones, phthalates, tri and dichlorophenols) of endocrine disrupting chemicals (EDCs) on oxidative stress levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG). A cross-sectional study was conducted with 300 healthy Brazilian children and adolescents. Urinary levels of 65 EDCs, creatinine and 8-OHdG were analyzed by Liquid Chromatography-Tandem Mass Spectrometry. Elastic net was used to estimate the associations between the levels of EDCs and 8-OHdG. The optimal hyperparameters were estimated using ten-fold cross-validation. Bayesian Kernel machine regression (BKMR) was used to investigate potential interactions and 8-OHdG level response as a function of the co-exposure to EDCs. The elastic net analysis showed that 2,4-DCP (0.149; CI 95 %:-0.033, 0.335, p = 0.02) and BPA (0.21; CI 95 %: 0.08; 0.356, p < 0.005) were associated with urinary levels of 8-OHdG. The BKMR model indicated a positive nonlinear and nonmonotonic relationship between EDCs mixture and 8-OHdG with an inverted U-shaped dose-response curve. This study suggests the first epidemiological evidence of a complex, nonmonotonic relationship between urinary levels of EDCs and 8-OHdG. However, the lack of established reference ranges for 8-OHdG limited a deeper discussion of our findings' clinical significance. Therefore, further studies should focus on validating our results across diverse populations, particularly those affected by oxidative stress-related diseases, and investigate potential mechanisms for supporting this association.
Collapse
Affiliation(s)
- Jonas Carneiro Cruz
- Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Avenida do Cafe s/n°, Ribeirao Preto, Sao Paulo 14040-903, Brazil.
| | - Bruno Alves Rocha
- Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Avenida do Cafe s/n°, Ribeirao Preto, Sao Paulo 14040-903, Brazil; Institute of Chemistry, Federal University of Alfenas, 37130-001 Alfenas, MG, Brazil
| | - Marília Cristina Oliveira Souza
- Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Avenida do Cafe s/n°, Ribeirao Preto, Sao Paulo 14040-903, Brazil
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12237, United States
| | - Fernando Barbosa Júnior
- Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Avenida do Cafe s/n°, Ribeirao Preto, Sao Paulo 14040-903, Brazil
| |
Collapse
|
3
|
Bian J, Guo Z, Liao G, Wang F, Yu YHK, Arrandale VH, Chan AHS, Huang J, Ge Y, Li X, Chen X, Lu B, Tang X, Liu C, Tse LA, Lu S. Increased health risk from co-exposure to polycyclic aromatic hydrocarbons, phthalates, and per- and polyfluoroalkyl substances: Epidemiological insight from e-waste workers in Hong Kong. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177912. [PMID: 39671928 DOI: 10.1016/j.scitotenv.2024.177912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/23/2024] [Accepted: 12/02/2024] [Indexed: 12/15/2024]
Abstract
The alarming surge in electronic waste (e-waste) in Hong Kong has heightened concerns regarding occupational exposure to a myriad of pollutants. Among these, polycyclic aromatic hydrocarbons (PAHs), phthalates (PAEs), and per- and polyfluoroalkyl substances (PFASs) are prevalent and known for their harmful effects, including the induction of oxidative stress and DNA damage, thereby contributing to various diseases. This study addresses gaps in knowledge by investigating exposure levels of these pollutants-measured via hydroxylated PAHs (OH-PAHs), phthalate metabolites (mPAEs), and PFASs-in urine from 101 e-waste workers and 100 office workers. E-waste workers exhibited higher concentrations of these substances compared to office workers. Elevated urinary levels of OH-PAHs, mPAEs, and PFASs correlated significantly with increased 8-hydroxy-2-deoxyguanosine (8-OHdG) levels (β = 2.53, 95 % CI: 2.12-3.02). The association between short-chain PFASs (Perfluoropentanoic acid, PFPeA) and DNA damage was discovered for the first time. Despite most participants (95 %) showing hazard index (HI) values below non-carcinogenic risk thresholds for PAHs and PAEs, certain pollutants posed higher risks among e-waste workers, necessitating enhanced protective measures. Moreover, the 95th percentile of carcinogenic risk associated with diethylhexyl phthalate (DEHP) exceeded 10-4 in both groups, highlighting the urgent need for regulatory measures to mitigate DEHP exposure risks in Hong Kong.
Collapse
Affiliation(s)
- Junye Bian
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, China
| | - Zhihui Guo
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, China
| | - Gengze Liao
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong; The CUHK Centre for Public Health and Primary Care (Shenzhen) & Shenzhen Municipal Key Laboratory for Health Risk Analysis, Shenzhen Research Institute of the Chinese University of Hong Kong, Shenzhen, China
| | - Feng Wang
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong; The CUHK Centre for Public Health and Primary Care (Shenzhen) & Shenzhen Municipal Key Laboratory for Health Risk Analysis, Shenzhen Research Institute of the Chinese University of Hong Kong, Shenzhen, China
| | | | | | - Alan Hoi-Shou Chan
- Department of Systems Engineering, City University of Hong Kong, Hong Kong
| | - Jiayin Huang
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, China
| | - Yiming Ge
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, China
| | - Xinjie Li
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, China
| | - Xulong Chen
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, China
| | - Bingjun Lu
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, China
| | - Xinxin Tang
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, China
| | - Chengwen Liu
- Shenzhen Quality and Safety Inspection and Testing Institute, Shenzhen, China
| | - Lap Ah Tse
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong; The CUHK Centre for Public Health and Primary Care (Shenzhen) & Shenzhen Municipal Key Laboratory for Health Risk Analysis, Shenzhen Research Institute of the Chinese University of Hong Kong, Shenzhen, China; Institute of Space and Earth Information Science, The Chinese University of Hong Kong, Hong Kong.
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, China.
| |
Collapse
|
4
|
Zhang YJ, Wang XX, Zeng LJ, Ka-Yam LAM, Dai QY, Chen Y, Chen J, Guo Y, Cai Z. Rewiring the nexus between urban traffic pollution-derived polycyclic aromatic hydrocarbon exposure and DNA injury via urinary metabolomics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125188. [PMID: 39486674 DOI: 10.1016/j.envpol.2024.125188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/23/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024]
Abstract
Urban road traffic environmental stress impacts outdoor population health, with oxidative damage serving as an early indicator of xenobiotic exposure. Polycyclic aromatic hydrocarbons (PAHs) as priority carcinogens pose significant public health burden, yet knowledge remains limited regarding the endogenous metabolic alternations associated with oxidative DNA injury. This cross-sectional study focused on the cohort consisting of 109 sanitation workers ("traffic exposure group") and 112 demographics-matched common residents ("controls") in South China. The goal was to elucidate the occurrence of internal exposure to nine hydroxyl PAHs, and the interrelations with oxidative DNA damage (indicated by 8-hydroxy-2'-deoxyguanosine, 8-OHdG) by linear mixed-effect regression model. T-test and orthogonal partial least squares discriminant analysis were used to determine differential metabolites in non-targeted metabolomics. Results revealed outdoor workers suffered from the heavier PAH exposure burden and exhibited a stronger dose-dependent correlation with 8-OHdG, evidenced by the higher regression coefficient (0.244, 95% CI: 0.154-0.334) than controls (0.203, 95% CI: 0.079-0.328). In total 42 differential endogenous metabolites witnessed significant expression under traffic emission scenario, mainly implicated in phenylalanine, tyrosine and tryptophan biosynthesis. The down-expressed uric acid was the unique metabolite that inversely correlated with the increased intake of ∑8PAH especially in cases. Partially attributed to the traffic-derived PAHs, the dysregulated amino acid, nicotinamide, purine, and steroid hormones metabolic pathways encompassing 11 metabolites were determined as underlying biomarkers in mediating DNA damage. Notably, our findings proposed uric acid may act as a potential antioxidant, as evidenced by the negative correlation with 8-OHdG. The study illustrates outcomes of metabolomics can collaboratively indicate DNA oxidative damage caused by PAHs linked to urban traffic exposure, which holds significant implications for future toxicological research.
Collapse
Affiliation(s)
- Ying-Jie Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Xiao-Xiao Wang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Li-Juan Zeng
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - L A M Ka-Yam
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Qing-Yuan Dai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Yi Chen
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Jian Chen
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Ying Guo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077, China.
| |
Collapse
|
5
|
Li JY, Guo JL, Yi JF, Liu LY, Zeng LX, Guo Y. Widespread phthalate esters and monoesters in the aquatic environment: Distribution, bioconcentration, and ecological risks. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135201. [PMID: 39068891 DOI: 10.1016/j.jhazmat.2024.135201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/30/2024]
Abstract
Field research on phthalate monoesters (MPEs) and their relationships with phthalate esters (PAEs) is limited, especially in wild fishes. Here, PAEs and MPEs were measured in surface water, sediment, and wild fish collected from a representative river basin with high economic development. Several metabolites of emerging plasticizers, such as mono(3,5,5-trimethyl-1-hexyl) phthalate and mono(6-oxo-2-propylheptyl) phthalate, have already existed in fish with high detection frequencies (95 % and 100 %). Monobutyl phthalate and mono(2-ethylhexyl) phthalate were the predominant MPEs in fish and natural environment (surface water and sediment), while bis(2-ethylhexyl) phthalate was the most abundant PAEs in all matrices. The total concentrations (median) of 9 PAEs and 16 MPEs were 5980 and 266 ng/L in water, 231 and 10.6 ng/g (dw) in sediment, and 209 and 32.5 ng/g (ww) in fish, respectively. The occurrence of MPEs was highly related to their parent PAEs, with similar spatial distribution characteristics in the aquatic environments. Moreover, municipal wastewater discharge was recognized as the main source of MPEs in the research area. Fish species can accumulate targeted chemicals, and it seems more MPEs were from the PAE degradation in fish other than the direct uptake of MPEs in water. Parent PAEs showed higher ecological risk than their corresponding metabolites.
Collapse
Affiliation(s)
- Jia-Yao Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Jia-Liang Guo
- Guangdong Provincial Academy of Environmental Sciences, Guangzhou 510000, China
| | - Jing-Feng Yi
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Liang-Ying Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Li-Xi Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Ying Guo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
6
|
Salamanca-Fernández E, Espín-Moreno L, Olivas-Martínez A, Pérez-Cantero A, Martín-Rodríguez JL, Poyatos RM, Barbone F, Rosolen V, Mariuz M, Ronfani L, Palkovičová Murínová Ľ, Fábelová L, Szigeti T, Kakucs R, Sakhi AK, Haug LS, Lindeman B, Snoj Tratnik J, Kosjek T, Jacobs G, Voorspoels S, Jurdáková H, Górová R, Petrovičová I, Kolena B, Esteban M, Pedraza-Díaz S, Kolossa-Gehring M, Remy S, Govarts E, Schoeters G, Fernández MF, Mustieles V. Associations between Urinary Phthalate Metabolites with BDNF and Behavioral Function among European Children from Five HBM4EU Aligned Studies. TOXICS 2024; 12:642. [PMID: 39330570 PMCID: PMC11436069 DOI: 10.3390/toxics12090642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/20/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024]
Abstract
Based on toxicological evidence, children's exposure to phthalates may contribute to altered neurodevelopment and abnormal regulation of brain-derived neurotrophic factor (BDNF). We analyzed data from five aligned studies of the Human Biomonitoring for Europe (HBM4EU) project. Ten phthalate metabolites and protein BDNF levels were measured in the urine samples of 1148 children aged 6-12 years from Italy (NACII-IT cohort), Slovakia (PCB-SK cohort), Hungary (InAirQ-HU cohort) and Norway (NEBII-NO). Serum BDNF was also available in 124 Slovenian children (CRP-SLO cohort). Children's total, externalizing and internalizing behavioral problems were assessed using the Child Behavior Checklist at 7 years of age (only available in the NACII-IT cohort). Adjusted linear and negative binomial regression models were fitted, together with weighted quantile sum (WQS) regression models to assess phthalate mixture associations. Results showed that, in boys but not girls of the NACII-IT cohort, each natural-log-unit increase in mono-n-butyl phthalate (MnBP) and Mono(2-ethyl-5-oxohexyl) phthalate (MEOHP) was cross-sectionally associated with higher externalizing problems [incidence rate ratio (IRR): 1.20; 95% CI: 1.02, 1.42 and 1.26; 95% CI: 1.03, 1.55, respectively]. A suggestive mixture association with externalizing problems was also observed per each tertile mixture increase in the whole population (WQS-IRR = 1.15; 95% CI: 0.97, 1.36) and boys (IRR = 1.20; 95% CI: 0.96, 1.49). In NACII-IT, PCB-SK, InAirQ-HU and NEBII-NO cohorts together, urinary phthalate metabolites were strongly associated with higher urinary BDNF levels, with WQS regression confirming a mixture association in the whole population (percent change (PC) = 25.9%; 95% CI: 17.6, 34.7), in girls (PC = 18.6%; 95% CI: 7.92, 30.5) and mainly among boys (PC = 36.0%; 95% CI: 24.3, 48.9). Among CRP-SLO boys, each natural-log-unit increase in ∑DINCH concentration was associated with lower serum BDNF levels (PC: -8.8%; 95% CI: -16.7, -0.3). In the NACII-IT cohort, each natural-log-unit increase in urinary BDNF levels predicted worse internalizing scores among all children (IRR: 1.15; 95% CI: 1.00, 1.32). Results suggest that (1) children's exposure to di-n-butyl phthalate (DnBP) and di(2-ethylhexyl) phthalate (DEHP) metabolites is associated with more externalizing problems in boys, (2) higher exposure to DINCH may associate with lower systemic BDNF levels in boys, (3) higher phthalate exposure is associated with higher urinary BDNF concentrations (although caution is needed since the possibility of a "urine concentration bias" that could also explain these associations in noncausal terms was identified) and (4) higher urinary BDNF concentrations may predict internalizing problems. Given this is the first study to examine the relationship between phthalate metabolite exposure and BDNF biomarkers, future studies are needed to validate the observed associations.
Collapse
Affiliation(s)
- Elena Salamanca-Fernández
- Biomedical Research Center (CIBM), Department of Radiology and Physical Medicine, University of Granada, 18012 Granada, Spain
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain
| | | | | | - Ainhoa Pérez-Cantero
- Biomedical Research Center (CIBM), Department of Radiology and Physical Medicine, University of Granada, 18012 Granada, Spain
| | - José L Martín-Rodríguez
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain
- Servicio de Radiodiagnóstico, Hospital Universitario Clínico San Cecilio, 18012 Granada, Spain
| | - Rafael M Poyatos
- Unidad de Gestión Clínica de Laboratorios, Hospital Universitario Clínico San Cecilio, 18012 Granada, Spain
| | - Fabio Barbone
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| | - Valentina Rosolen
- Central Directorate for Health, Social Policies and Disability, Friuli Venezia Giulia Region, Via Cassa di Risparmio 10, 34121 Trieste, Italy
| | - Marika Mariuz
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| | - Luca Ronfani
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| | - Ľubica Palkovičová Murínová
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, 831 04 Bratislava, Slovakia
| | - Lucia Fábelová
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, 831 04 Bratislava, Slovakia
| | - Tamás Szigeti
- Center for Public Health and Pharmacy, Albert Flórián út 2-6, 1097 Budapest, Hungary
| | - Réka Kakucs
- Center for Public Health and Pharmacy, Albert Flórián út 2-6, 1097 Budapest, Hungary
| | - Amrit K Sakhi
- Norwegian Institute of Public Health, P.O. Box 222, Skøyen, N-0213 Oslo, Norway
| | - Line S Haug
- Norwegian Institute of Public Health, P.O. Box 222, Skøyen, N-0213 Oslo, Norway
| | - Birgitte Lindeman
- Norwegian Institute of Public Health, P.O. Box 222, Skøyen, N-0213 Oslo, Norway
| | | | - Tina Kosjek
- Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Griet Jacobs
- VITO GOAL, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| | - Stefan Voorspoels
- VITO GOAL, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| | - Helena Jurdáková
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, Mlynská Dolina, 84215 Bratislava, Slovakia
| | - Renáta Górová
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, Mlynská Dolina, 84215 Bratislava, Slovakia
| | - Ida Petrovičová
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nabrezie mladeze 91, 94974 Nitra, Slovakia
| | - Branislav Kolena
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nabrezie mladeze 91, 94974 Nitra, Slovakia
| | - Marta Esteban
- National Centre for Environmental Health, Instituto de Salud Carlos III, 28034 Madrid, Spain
| | - Susana Pedraza-Díaz
- National Centre for Environmental Health, Instituto de Salud Carlos III, 28034 Madrid, Spain
| | | | - Sylvie Remy
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Greet Schoeters
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Mariana F Fernández
- Biomedical Research Center (CIBM), Department of Radiology and Physical Medicine, University of Granada, 18012 Granada, Spain
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), 28034 Madrid, Spain
| | - Vicente Mustieles
- Biomedical Research Center (CIBM), Department of Radiology and Physical Medicine, University of Granada, 18012 Granada, Spain
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), 28034 Madrid, Spain
- Servicio de Radiodiagnóstico, Hospital Universitario Clínico San Cecilio, 18012 Granada, Spain
| |
Collapse
|
7
|
Li Y, Dai Y, Luo X, Zhang L, Yuan J, Tan L. Biomonitoring urinary organophosphorus flame retardant metabolites by liquid-liquid extraction and ultra-high performance liquid chromatography-tandem mass spectrometry and their association with oxidative stress. Anal Bioanal Chem 2024; 416:4543-4554. [PMID: 38877147 DOI: 10.1007/s00216-024-05393-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024]
Abstract
Organophosphate flame retardants (OPFRs) are widely used as substitutes for traditional brominated flame retardants, necessitating a reliable and sensitive method for biomonitoring their urinary metabolites to assess human exposure. This study conducted biomonitoring of 10 metabolites of OPFRs in 152 adults and assessed their association with oxidative stress biomarkers 8-hydroxydeoxyguanosine and 8-hydroxyguanosine. Urinary metabolites of OPFRs were released via enzymatic deconjugation. The addition of sodium chloride to the urine samples increases the ionic strength, inducing a salting-out effect that reduces the solubility of these compounds, thereby facilitating their extraction with a mixture of ethyl acetate and acetonitrile. Then, the metabolites of OPFRs were quantified by ultra-high performance liquid chromatography-tandem mass spectrometry, and we validated the method for linear range, precision, matrix effect, and method detection limit. The detection limit of the metabolites of OPFRs ranged from 0.01 to 0.2 μg/L, and these metabolites were detected with high frequencies ranging from 25.0 to 98.68% in the urine samples. The concentration of bis (2-chloroethyl) phosphate was significantly higher in males than in females, with the geometric mean concentration of 0.88 μg/L for males and 0.53 μg/L for females, respectively. Spearman correlation analysis revealed weak but statistically significant positive correlations among the urinary metabolites. Bayesian kernel machine regression analysis showed a significant positive association between elevated urinary concentrations of metabolites of OPFRs and increased oxidative stress levels. Di-n-butyl phosphate was identified as the metabolite that significantly contributed to the elevated level of 8-hydroxyguanosine.
Collapse
Affiliation(s)
- Yongxian Li
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China
| | - Yingyi Dai
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China
- School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Xinni Luo
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China
| | - Lin Zhang
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China
| | - Jun Yuan
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China
| | - Lei Tan
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China.
- School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
8
|
Lv Y, Jia Z, Wang Y, Huang Y, Li C, Chen X, Xia W, Liu H, Xu S, Li Y. Prenatal EDC exposure, DNA Methylation, and early childhood growth: A prospective birth cohort study. ENVIRONMENT INTERNATIONAL 2024; 190:108872. [PMID: 38986426 DOI: 10.1016/j.envint.2024.108872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Exposure to endocrine-disrupting chemicals (EDCs) has been found to be associated with growth and developmental abnormalities in children. However, the potential mechanisms by which exposure to EDCs during pregnancy increases the risk of obesity in children remain unclear. OBJECTIVE We aimed to explore associations between prenatal EDC exposure and the body mass index (BMI) of children at age two, and to further explore the potential impact of DNA methylation (DNAm). METHOD This study included 285 mother-child pairs from a birth cohort conducted in Wuhan, China. The BMI of each child was assessed at around 24 months of age. The concentrations of sixteen EDCs at the 1st, 2nd, and 3rd trimesters were measured using ultra-high performance liquid chromatography coupled to a triple quadrupole mass spectrometer. The research utilized general linear models, weighted quantile sum regression, and Bayesian Kernel Machine Regression to assess the association between prenatal EDC exposure and childhood BMI z-scores (BMIz). Cord blood DNAm was measured using the Human Methylation EPIC BeadChip array. An epigenome-wide DNAm association study related to BMIz was performed using robust linear models. Mediation analysis was then applied to explore potential mediators of DNAm. RESULTS Urinary concentrations of seven EDCs were positively associated with BMIz in the 1st trimester, which remained significant in the WQS model. A total of 641 differential DNAm positions were associated with elevated BMIz. Twelve CpG positions (annotated to DUXA, TMEM132C, SEC13, ID4, GRM4, C2CD2, PRAC1&PRAC2, TSPAN6 and DNAH10) mediated the associations between urine BP-3/BPS/MEP/TCS and elevated BMIz (P < 0.05). CONCLUSION Our results revealed that prenatal exposure to EDCs was associated with a higher risk of childhood obesity, with specific DNAm acting as a partial mediator.
Collapse
Affiliation(s)
- Yiqing Lv
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zhenxian Jia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yin Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yizhao Huang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Chengxi Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiaomei Chen
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hongxiu Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shunqing Xu
- School of Environmental Science and Engineering, Hainan University, China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
9
|
Hua L, Gao Y, Guo S, Zhu H, Yao Y, Wang B, Fang J, Sun H, Xu F, Zhao H. Urinary Metabolites of Polycyclic Aromatic Hydrocarbons of Rural Population in Northwestern China: Oxidative Stress and Health Risk Assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7758-7769. [PMID: 38669205 DOI: 10.1021/acs.est.4c00122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Polycyclic aromatic hydrocarbon (PAH) exposure is suspected to be linked to oxidative damage. Herein, ten PAH human exposure biomarkers [hydroxylated PAH metabolites (OH-PAHs)] and five oxidative stress biomarkers (OSBs) were detected in urine samples collected from participants living in a rural area (n = 181) in Northwestern China. The median molar concentration of ΣOH-PAHs in urine was 47.0 pmol mL-1. The 2-hydroxynaphthalene (2-OHNap; median: 2.21 ng mL-1) was the dominant OH-PAH. The risk assessment of PAH exposure found that hazard index (HI) values were <1, indicating that the PAH exposure of rural people in Jingyuan would not generate significant cumulative risks. Smokers (median: 0.033) obtained higher HI values than nonsmokers (median: 0.015, p < 0.01), suggesting that smokers face a higher health risk from PAH exposure than nonsmokers. Pearson correlation and multivariate linear regression analysis revealed that ΣOH-PAH concentrations were significant factors in increasing the oxidative damage to deoxyribonucleic acid (DNA) (8-hydroxy-2'-deoxyguanosine, 8-OHdG), ribonucleic acid (RNA) (8-oxo-7,8-dihydroguanine, 8-oxoGua), and protein (o, o'-dityrosine, diY) (p < 0.05). Among all PAH metabolites, only 1-hydroxypyrene (1-OHPyr) could positively affect the expression of all five OSBs (p < 0.05), suggesting that urinary 1-OHPyr might be a reliable biomarker for PAH exposure and a useful indicator for assessing the impacts of PAH exposure on oxidative stress. This study is focused on the relation between PAH exposure and oxidative damage and lays a foundation for the study of the health effect mechanism of PAHs.
Collapse
Affiliation(s)
- Liting Hua
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- School of Urban and Environmental Sciences, Key Laboratory of the Ministry of Education for Earth Surface Processes, Peking University, Beijing 100871, China
| | - Yafei Gao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Sai Guo
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongkai Zhu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yiming Yao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Beibei Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jing Fang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Fuliu Xu
- School of Urban and Environmental Sciences, Key Laboratory of the Ministry of Education for Earth Surface Processes, Peking University, Beijing 100871, China
| | - Hongzhi Zhao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
10
|
Jiang Q, Wan Y, Zhu K, Wang H, Feng Y, Xiang Z, Liu R, Zhao S, Zhu Y, Song R. Association of exposure to phthalates and phthalate alternatives with dyslexia in Chinese primary school children. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:28392-28403. [PMID: 38538993 DOI: 10.1007/s11356-024-32871-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/05/2024] [Indexed: 04/30/2024]
Abstract
Previous studies have shown associations between children's exposure to phthalates and neurodevelopmental disorders. Whereas the impact of exposure to phthalate alternatives is understudied. This study aimed to evaluate the association of exposure to phthalates/their alternatives with the risk of dyslexia. We recruited 745 children (355 dyslexia and 390 non-dyslexia) via the Tongji Reading Environment and Dyslexia Research Project, and their urine samples were collected. A total of 26 metabolites of phthalates/their alternatives were measured. Multivariate logistic regression and quantile-based g-computation were used to estimate the associations of exposure to the phthalates/their alternatives with dyslexia. More than 80% of the children had 17 related metabolites detected in their urine samples. After adjustment, the association between mono-2-(propyl-6-hydroxy-heptyl) phthalate (OH-MPHP) with the risk of dyslexia was observed. Compared with the lowest quartile of OH-MPHP levels, the odds of dyslexia for the third quartile was 1.93 (95% CI 1.06, 3.57). Regarding mixture analyses, it was found that OH-MPHP contributed the most to the association. Further analyses stratified by sex revealed that this association was only observed in boys. Our results suggested a significantly adverse association of di-2-propylheptyl phthalate exposure with children's language abilities. It highlights the necessity to prioritize the protection of children's neurodevelopment by minimizing their exposure to endocrine-disrupting chemicals like di-2-propylheptyl phthalate.
Collapse
Affiliation(s)
- Qi Jiang
- Department of Maternal and Child Health and MOE (Ministry of Education) the Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yanjian Wan
- Center for Public Health Laboratory Service, Institute of Environmental Health, Wuhan Centers for Disease Control & Prevention, Wuhan, 430024, Hubei, China
| | - Kaiheng Zhu
- Department of Maternal and Child Health and MOE (Ministry of Education) the Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Haoxue Wang
- Department of Maternal and Child Health and MOE (Ministry of Education) the Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yanan Feng
- Department of Maternal and Child Health and MOE (Ministry of Education) the Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhen Xiang
- Department of Maternal and Child Health and MOE (Ministry of Education) the Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Rundong Liu
- Department of Maternal and Child Health and MOE (Ministry of Education) the Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shuai Zhao
- Department of Maternal and Child Health and MOE (Ministry of Education) the Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ying Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430072, China
| | - Ranran Song
- Department of Maternal and Child Health and MOE (Ministry of Education) the Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
11
|
Yang P, Xie J, Huang S, Li X, Deng L, Zhang J, Chen L, Wu N, Huang G, Zhou C, Xiao L, Shen X. "Cocktail" of environmental chemicals and early reproductive outcomes of IVF: The insight from paternal and maternal exposure. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119462. [PMID: 37925986 DOI: 10.1016/j.jenvman.2023.119462] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/09/2023] [Accepted: 10/21/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Humans are exposed to various chemicals, including organophosphate esters (OPEs), phthalates (PAEs), and phenols. The effects on early reproductive outcomes of in vitro fertilization (IVF) remain unclear. METHODS We recruited 192 women and 157 men who underwent IVF treatment. A total of forty-nine urinary chemicals were detected, including six OPEs, fifteen PAEs, six parabens, two chlorophenols, nine bisphenols, five benzophenones, and six synthetic phenolic antioxidants. We examined the individual and joint effects of parental chemical exposure on early reproductive outcomes. RESULTS We found that certain chemicals were associated with early reproductive outcomes in Poisson regression models. For example, urinary diphenyl phosphate was negatively associated with high-quality embryos in both female (β: -0.12, 95%CI: -0.17, -0.07) and male partners (β: -0.09, 95%CI: -0.15, -0.03). A negative association was found between mixed chemicals and high-quality embryos in Bayesian kernel machine regression, weighted quantile sum regression (β: -0.34, 95%CI: -0.60, -0.07), and quantile-based g-computation model (β: -0.69, 95%CI: -1.34, -0.05) among female partners. Paternal mixture exposure was not associated with early reproductive outcomes. CONCLUSIONS Our results indicated that increased exposure to environmental chemicals was associated with adverse early reproductive outcomes of IVF, especially female partners.
Collapse
Affiliation(s)
- Pan Yang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou, 510632, China; Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Jinying Xie
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Songyi Huang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Xiaojie Li
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Langjing Deng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jinglei Zhang
- Reproductive Medicine Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Lin Chen
- Reproductive Medicine Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Nanxin Wu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Guangtong Huang
- School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Canquan Zhou
- Reproductive Medicine Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| | - Li Xiao
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| | - Xiaoting Shen
- Reproductive Medicine Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
12
|
Yang H, Ye DM, Lin ZZ, Lin XY, Yuan JJ, Guo Y. Young people exposure to antibiotics: Implication for health risk and the impact from eating habits of takeaway food. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166377. [PMID: 37597538 DOI: 10.1016/j.scitotenv.2023.166377] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/04/2023] [Accepted: 08/15/2023] [Indexed: 08/21/2023]
Abstract
Exposure to antibiotics, mainly from animal food ingestion, may have adverse effects on human health. Takeaway food is the preferred choice for the dietary of most Chinese young people nowadays, but the relationship between takeaway eating and antibiotic exposure is not yet adequately understood. In the present study, 297 young people were recruited to collect urine samples and questionnaires with an emphasis on their takeaway eating habits. The internal exposure to 16 antibiotics and three metabolites was measured in urine samples by high-performance liquid chromatography-tandem mass spectrometry, as well as a DNA oxidative damage marker, 8-hydroxydeoxyguanosine (8-OHdG). At least one kind of antibiotic was found in over 90 % of urine samples, with total concentrations from 0.667 to 3.02 × 104 ng/mL. High exposure levels of antibiotics were more likely to be found in individuals with a larger body mass index. The concentrations of six antibiotics were significantly different among people with different overall weekly eating frequencies, usually an upward trend. The estimated daily intakes of antibiotics were on the levels of 0.001-1.0 μg/kg/day, mainly contributed by clarithromycin, ciprofloxacin and oxytetracycline, indicating a potential health risk based on the microbiological effect. A significantly positive correlation was found between DNA oxidative damage and exposure for four categories of antibiotics, conformed by both Spearman correlation and multiple linear regression analysis. The levels of 8-OHdG were 355 %, 239 %, 234 %, and 334 % higher with elevated levels of phenicols, macrolides, tetracyclines and sulfonamides from quartiles 2 to 4. Our results suggest that high-frequency consumption of takeaways may exacerbate oxidative stress trends through human exposure to antibiotics.
Collapse
Affiliation(s)
- Hao Yang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Dong-Min Ye
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Ze-Zhao Lin
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Xiao-Ya Lin
- Sanya Woman and Children's Hospital, Sanya 572022, China
| | - Jia-Jun Yuan
- Sanya Woman and Children's Hospital, Sanya 572022, China; Shanghai Engineering Research Center of Intelligence Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Ying Guo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China.
| |
Collapse
|
13
|
Wu LH, Liu YX, Zhang YJ, Jia LL, Guo Y. Occurrence of bisphenol diglycidyl ethers and bisphenol analogs, and their associations with DNA oxidative damage in pregnant women. ENVIRONMENTAL RESEARCH 2023; 227:115739. [PMID: 36963715 DOI: 10.1016/j.envres.2023.115739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 02/24/2023] [Accepted: 03/21/2023] [Indexed: 05/08/2023]
Abstract
Bisphenol diglycidyl ethers (BDGEs) and Bisphenol A and its analogs (bisphenols) may have the same exposure routes and coexposure phenomenon in sensitive populations such as pregnant women. Previous biomonitoring studies on BDGEs are limited. Levels of fifteen bisphenols, six BDGEs and the DNA oxidative damage biomarker 8-hydroxy-2-deoxyguanosine (8-OHdG) were measured in the urine of pregnant women recruited in south China (n = 358). We aimed to provide the occurrence of bisphenols and BDGEs in pregnant women, and to investigate the potential relationship between their exposure and oxidative stress. Bisphenol A, bisphenol S, bisphenol F, bisphenol AP and all BDGEs (except for BADGE·2HCl) were frequently detected. The total concentrations of all bisphenols and BDGEs were 0.402-338 and 0.104-32.5 ng/mL, with geometric means of 2.87 and 2.48 ng/mL, respectively. BFDGE was the most abundant chemical of BDGEs, with a median concentration of 0.872 ng/mL, followed by BADGE·H2O·HCl (0.297 ng/mL). Except for pre-pregnancy obesity, maternal age/height, employment, fasting in the morning and parity did not affect the urinary concentrations of BDGEs. Significant and weak correlations were observed between concentrations (unadjusted) of total bisphenols and BDGEs (r = 0.389, p < 0.01), indicating their similar sources and exposure routes. The biomarker 8-OHdG was detected in all samples, with concentrations ranging from 1.98 to 32.6 ng/mL (median: 9.96 ng/mL). Levels of 8-OHdG were positively correlated with urinary several bisphenol concentrations (adjusted β range: 0.037-0.089, p < 0.05) but were not correlated with those of BDGEs. Further studies should focus on whether BDGEs and bisphenols exert combined effects on oxidative stress. Our study provided the first BDGEs exposure data in pregnant women and indicated that BDGEs exposure was highly prevalent in pregnant women as early as 2015 in south China.
Collapse
Affiliation(s)
- Liu-Hong Wu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Yan-Xiang Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Ying-Jie Zhang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Lu-Lu Jia
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Ying Guo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
14
|
Weng X, Zhu Q, Liao C, Jiang G. Cumulative Exposure to Phthalates and Their Alternatives and Associated Female Reproductive Health: Body Burdens, Adverse Outcomes, and Underlying Mechanisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37196176 DOI: 10.1021/acs.est.3c00823] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The global birth rate has recently shown a decreasing trend, and exposure to environmental pollutants has been identified as a potential factor affecting female reproductive health. Phthalates have been widely used as plasticizers in plastic containers, children's toys, and medical devices, and their ubiquitous presence and endocrine-disrupting potential have already raised particular concerns. Phthalate exposure has been linked to various adverse health outcomes, including reproductive diseases. Given that many phthalates are gradually being banned, a growing number of phthalate alternatives are becoming popular, such as di(isononyl) cyclohexane-1,2-dicarboxylate (DINCH), di(2-ethylhexyl) adipate (DEHA), and di(2-ethylhexyl) terephthalate (DEHTP), and they are beginning to have a wide range of environmental effects. Studies have shown that many phthalate alternatives may disrupt female reproductive function by altering the estrous cycle, causing ovarian follicular atresia, and prolonging the gestational cycle, which raises growing concerns about their potential health risks. Herein, we summarize the effects of phthalates and their common alternatives in different female models, the exposure levels that influence the reproductive system, and the effects on female reproductive impairment, adverse pregnancy outcomes, and offspring development. Additionally, we scrutinize the effects of phthalates and their alternatives on hormone signaling, oxidative stress, and intracellular signaling to explore the underlying mechanisms of action on female reproductive health, because these chemicals may affect reproductive tissues directly or indirectly through endocrine disruption. Given the declining global trends of female reproductive capacity and the potential ability of phthalates and their alternatives to negatively impact female reproductive health, a more comprehensive study is needed to understand their effects on the human body and their underlying mechanisms. These findings may have an important role in improving female reproductive health and in turn decreasing the number of complications during pregnancy.
Collapse
Affiliation(s)
- Xueyu Weng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingqing Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Bláhová L, Janoš T, Mustieles V, Rodríguez-Carrillo A, Fernández MF, Bláha L. Rapid extraction and analysis of oxidative stress and DNA damage biomarker 8-hydroxy-2'-deoxyguanosine (8-OHdG) in urine: Application to a study with pregnant women. Int J Hyg Environ Health 2023; 250:114175. [PMID: 37105016 DOI: 10.1016/j.ijheh.2023.114175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/28/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023]
Abstract
Oxidative stress is an important toxicity and genotoxicity mechanism of many chronic adverse health outcomes. This study developed a sensitive extraction method for urine matrix (based on lyophilization, without the need for pre-cleaning by solid phase extraction), coupled to LC-MS/MS analysis of the biomarker 8-hydroxy-2'-deoxyguanosine (8-OHdG). The methodology was validated in urine samples from a cohort of Spanish pregnant women collected during the first, second and third trimester of pregnancy, and urine samples collected within 24 h after delivery (n = 85). A detection and quantification limit of 0.01 and 0.05 μg/L, respectively, were established. The median 8-OHdG concentration was 2.18 μg/L (range 0.33-7.79); and the corresponding creatinine-adjusted concentrations ranged from 1.04 to 13.12 with median of 4.48 μg 8-OHdG/g creatinine. The concentrations of non-adjusted 8-OHdG significantly decreased (p < 0.05) in the 3rd trimester and post-delivery urine samples when compared to the 1st trimester levels. 8-OHdG concentrations were further studied in placenta samples matching the same urine samples (n = 26), with a median value of 1.3 ng 8-OHdG/g of tissue. Placental 8-OHdG concentrations were correlated with urinary levels of non-adjusted 8-OHdG in the 3rd trimester. Considering the small cohort size, results must be interpreted with caution, however statistical analyses revealed elevated urinary non-adjusted 8-OHdG levels in the 1st trimester of mothers that delivered boys compared to those who delivered girls (p < 0.01). Increased urinary non-adjusted 8-OHdG concentrations at the time of delivery were significantly associated with clinical records (any type of clinical record during pregnancy; p < 0.05). The novel extraction and analytical method for the assessment of 8-OHdG is applicable for sensitive analysis of multiple analytes or biomarkers in urine matrix. This method could also be applied for other matrices such as blood or tissues. Our findings show that 8-OHdG in urine of pregnant women could predict oxidative stress in placenta and can be related to characteristics such as maternal obesity, mode of delivery and newborn sex.
Collapse
Affiliation(s)
- Lucie Bláhová
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Tomáš Janoš
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Vicente Mustieles
- Center for Biomedical Research & School of Medicine, University of Granada, Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
| | - Andrea Rodríguez-Carrillo
- Center for Biomedical Research & School of Medicine, University of Granada, Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
| | - Mariana F Fernández
- Center for Biomedical Research & School of Medicine, University of Granada, Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
| | - Luděk Bláha
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
| |
Collapse
|
16
|
Zhao D, Zhu Y, Huang F, Chen M. Phthalate metabolite concentrations and effects on albuminuria in the US population. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114453. [PMID: 38321672 DOI: 10.1016/j.ecoenv.2022.114453] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 12/17/2022] [Accepted: 12/17/2022] [Indexed: 02/08/2024]
Abstract
BACKGROUND The usage pattern of phthalates has changed with the introduction of new alternatives such as 1,2-cyclohexane dicarboxylic acid, diisononyl ester (DINCH) and di-isodecyl phthalate (DiDP). However, the concentrations of these alternatives at the population level and their effects on endothelial function are under-studied. OBJECTIVES We examined the concentrations of the new alternatives and their previous counterparts, as well as the associations between phthalate exposure and albuminuria in the general US population. METHODS In total, 2672 participants from the National Health and Nutrition Examination Survey (NHANES) 2017-2018 were enrolled in this study, and we obtained data on 19 urinary phthalate metabolites, albumin, and creatinine. The distributions of urinary phthalates were studied by age and sex. Linear and logistic regressions were used to estimate the association between urinary phthalate metabolites and albumin. RESULTS The geometric mean of the total phthalate concentrations in males and females was 124.97 and 113.09 ng/mL respectively. The detection rates of most urinary phthalate metabolites were greater than 95 %. The major phthalate metabolites found in the US population were MEP (24.20 %) and MECPTP (23.76 %). More positive relationships between phthalate and micro- plus albuminuria were found in females aged ≥ 60 years group(1.49 (95 % CI: 1.08-1.90), 1.44 (95 % CI: 1.06-1.81), 1.52 (95 % CI: 1.14-1.90), 1.41(95 % CI: 1.04-1.78), 1.29(95 % CI: 1.01-1.58), 1.60(95 % CI: 1.20-2.01), 1.45(95 % CI:1.14-1.77), and 1.55(95 % CI: 1.22-1.87) in MECPP, MEHHP, MEOHP, MEHP, MCPP, MHBP, MHNCH and MCOCH respectively). In total population, logistic regression showed that all traditional phthalate metabolites were associated with an increased proportion of albuminuria (OR range from 1.19 to 1.40, all p < 0.05). However, three new alternatives were not associated with albuminuria (OR range from 1.01 to 1.05, all p > 0.05), and six new alternatives were associated with an increased proportion of albuminuria (OR range from 1.14 to 1.30, all p < 0.05). CONCLUSIONS Children have higher metabolite concentrations than adults. Exposure to certain phthalates may disrupt albuminuria homeostasis, especially in older females. Alternative phthalates may have a lower impact on albuminuria than conventional phthalates. The safety of the new alternatives should be interpreted with caution, as more research is still required.
Collapse
Affiliation(s)
- Dongdong Zhao
- Department of Medical Administration, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Yuanduo Zhu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Fang Huang
- Department of Medical Administration, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Mingwei Chen
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| |
Collapse
|
17
|
Liao Q, Huang H, Zhang X, Ma X, Peng J, Zhang Z, Chen C, Lv Y, Zhu X, Zheng J, Zeng X, Xing X, Deng Q, Dong G, Wei Q, Hou M, Xiao Y. Assessment of health risk and dose-effect of DNA oxidative damage for the thirty chemicals mixture of parabens, triclosan, benzophenones, and phthalate esters. CHEMOSPHERE 2022; 308:136394. [PMID: 36099984 DOI: 10.1016/j.chemosphere.2022.136394] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Humans are constantly exposed to parabens (PBs), triclosan (TCS), benzophenones (BPs), and phthalate esters (PAEs) due to the widespread existence of these chemicals in personal care products (PCPs), and the high frequency of usage for humans. Previous studies indicated each class of the above-mentioned chemicals can exhibit potential adverse effects on humans, in particular DNA oxidative damage. However, the health risk assessment of combined exposures to multiple PCPs is limited, especially the overall dose-effect of mixtures of these chemicals on DNA oxidative damage. In this study, we measured the urinary levels of 6 PBs, TCS, 8 BPs, 15 metabolites of PAEs (mono-PAEs), and 8-hydroxy-2'-deoxyguanosine (8-OHdG) from 299 adults simultaneously. PBs, TCS, BPs, and mono-PAEs were frequently detected in urinary samples with median concentrations of 52.888, 0.737, 1.305, and 141.381 ng/ml, suggesting a broad, low-level exposure among participants. Risk assessments indicated approximately 22% and 15% of participants suffered health risks (Hazard index >1) from exposure to TCS and PAEs. The relationship between 8-OHdG levels and chemical exposure was estimated by Bayesian kernel machine regression (BKMR) models. It indicated an overall positive correlation between the mixture of these chemicals and 8-OHdG, with methylparaben and mono-benzyl phthalate contributing the most to this association. Of note, sex-related differences were observed, in which exposure to PCPs led to higher health risks and more pronounced dose-effect on DNA damage in the female population. Our novel findings reveal the health risks of exposure to low-level PCPs mixtures and further point out the overall dose-response relationship between DNA oxidative damage and PCP mixtures.
Collapse
Affiliation(s)
- Qilong Liao
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, School of Public Health, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - Hehai Huang
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, China
| | - Xue Zhang
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, China
| | - Xiaoju Ma
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, China
| | - Jing Peng
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, China
| | - Zhaorui Zhang
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, China
| | - Chuanying Chen
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, China
| | - Yanrong Lv
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, China
| | - Xiaohui Zhu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Jing Zheng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Xiaowen Zeng
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, China
| | - Xiumei Xing
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, China
| | - Qifei Deng
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, School of Public Health, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - Guanghui Dong
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, China
| | - Qing Wei
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, School of Public Health, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - Mengjun Hou
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, School of Public Health, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - Yongmei Xiao
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, School of Public Health, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
18
|
Hua L, Guo S, Xu J, Yang X, Zhu H, Yao Y, Zhu L, Li Y, Zhang J, Sun H, Zhao H. Phthalates in dormitory dust and human urine: A study of exposure characteristics and risk assessments of university students. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157251. [PMID: 35817099 DOI: 10.1016/j.scitotenv.2022.157251] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/26/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Phthalate diesters (PAEs) are prevalent and potentially toxic to human health. The university dormitory represents a typical and relatively uniform indoor environment. This study evaluated the concentrations of phthalate monoesters (mPAEs) in urine samples from 101 residents of university status, and the concentrations of PAEs in dust collected from 36 corresponding dormitories. Di-(2-ethylhexyl) phthalate (DEHP, median: 68.0 μg/g) was the major PAE in dust, and mono-ethyl phthalate (47.9 %) was the most abundant mPAE in urine. The levels of both PAEs in dormitory dust and mPAEs in urine were higher in females than in males, indicating higher PAE exposure in females. Differences in lifestyles (dormitory time and plastic product use frequency) may also affect human exposure to PAEs. Moreover, there were significant positive correlations between the estimated daily intakes of PAEs calculated by using concentrations of PAEs in dust (EDID) and mPAEs in urine (EDIU), suggesting that PAEs in dust could be a significant source of human exposure to PAEs. The value of EDID/EDIU for low molecular weight PAEs (3-6 carbon atoms in their backbone) was lower than that of high molecular weight PAEs. The contribution rate of various pathways to PAE exposure illustrated that non-dietary ingestion (87.8 %) was the major pathway of human exposure to PAEs in dust. Approximately 4.95 % of university students' hazard quotients of DEHP were >1, indicating that there may be some health risks associated with DEHP exposure among PAEs. Furthermore, it is recommended that some measures be taken to reduce the production and application of DEHP.
Collapse
Affiliation(s)
- Liting Hua
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Sai Guo
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jiaping Xu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaomeng Yang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongkai Zhu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yiming Yao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lin Zhu
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Yongcheng Li
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingran Zhang
- SCIEX, Analytical Instrument Trading Co., Ltd, Beijing 100015, China
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongzhi Zhao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
19
|
Zhong HW, Guo JL, Hu YB, Jia LL, Guo Y. Phthalate exposure and DNA oxidative damage in young people of takeaway food lovers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:71978-71987. [PMID: 35606587 DOI: 10.1007/s11356-022-20849-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Numerous studies have demonstrated the ubiquitous of phthalates in materials of food and food packaging, and the effects of regular eating takeaway food for a long time on human health and phthalate exposure levels were not fully investigated. A total of 288 college students who love eating takeaway food were recruited to explore phthalate exposure and oxidative stress, by measuring metabolites of traditional or alternative phthalates and 8-hydroxydeoxyguanosine (8-OHdG, a biomarker of DNA oxidative damage) in their urine samples. Both traditional and alternative phthalates were highly detected. Based on weekly frequency of takeaway eating collecting from questionnaire, the students were divided into four groups including level 1 (L1, < 3 times), level 2 (L2, 3-7 times), level 3 (L3, 8-12 times) and level 4 (L4, > 12 times). The total concentrations of all phthalate metabolites were 42.5-893 ng/mL in all students, which were significantly different among four groups, with the lowest level in L1 (p < 0.05). Checking with the generalized linear model (L1 as the reference), the concentrations of most phthalate metabolites increased 12.0-144% in L2 and L3 compared with those in L1. For each group increase, the concentrations of total metabolites, and metabolites of high and low molecular weight phthalates will increase by 0.156%, 0.128%, and 0.142%, respectively. Besides, levels of 8-OHdG (0.639-33.7 ng/mL) were positively correlated with phthalate daily exposure doses. The each increase of a percentage unit of daily exposure of phthalates, the concentrations of 8-OHdG will increase by 0.258-0.405%. However, levels of 8-OHdG were not significantly different among the four groups. The alternative phthalates have already entered the body of Chinese young people. Our results indicated the regular consumption of takeaway food (e.g., more than three times per week) may increase the chance of exposure to certain phthalates, and may not significantly increase the levels of DNA oxidative damage, unless exposed to other pollutants such as phthalates.
Collapse
Affiliation(s)
- Hao-Wen Zhong
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, China
| | - Jia-Liang Guo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, China
| | - Yi-Bin Hu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, China
| | - Lu-Lu Jia
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, China
| | - Ying Guo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, China.
| |
Collapse
|
20
|
Phthalate Exposure and Biomarkers of Oxidation of Nucleic Acids: Results on Couples Attending a Fertility Center. TOXICS 2022; 10:toxics10020061. [PMID: 35202248 PMCID: PMC8876283 DOI: 10.3390/toxics10020061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 11/17/2022]
Abstract
Phthalates are substances used as plasticizing agents and solvents that can increase the risk of infertility and that appear to induce oxidative stress. The aim of the study was to show the possible relationship between urinary concentrations of phthalates metabolites, namely MEP, MBzP, MnBP, MEHP, MEHHP, and MnOP and biomarkers of nucleic acids oxidation, methylation, or protein nitroxidation. The oxidative stress biomarkers measured in human urine were 8-oxo-7,8-dihydroguanine, 8-oxo-7,8-dihydroguanosine, 8-oxo-7,8-dihydro-2′-deoxyguanosine, 3-nitrotyrosine, and 5-methylcytidine. Two hundred and seventy-four couples were enrolled, undergoing an assisted reproduction technology (ART) treatment, urine samples were analyzed in HPLC/MS-MS, and then two sub-groups with urinary concentration > 90th or <10th percentile were identified, reducing the sample size to 112 subjects. The levels of oxidative stress biomarkers were measured in both groups, reduced to 52 men and 60 women. A statistically significantly difference for 8-oxoGuo and 3-NO2Tyr between men and women, with higher levels in men, was found. The levels of oxidative stress biomarkers were directly correlated with some phthalate concentrations in both sexes.
Collapse
|