1
|
Bouma F, Hoek G, Koppelman GH, Vonk JM, Janssen NA, van Ratingen S, Hendricx W, Wesseling J, Kerckhoffs J, Vermeulen R, de Hoogh K, Gehring U. Comparison of air pollution exposure assessment methods and the association with children's respiratory health. ENVIRONMENT INTERNATIONAL 2025; 198:109407. [PMID: 40157023 DOI: 10.1016/j.envint.2025.109407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/27/2025] [Accepted: 03/20/2025] [Indexed: 04/01/2025]
Abstract
INTRODUCTION Epidemiological studies of the associations of long-term exposure to outdoor air pollution with asthma onset and lung function in children have used different exposure assessment methods. Little is known about how these different methods affect the magnitude of the effect estimates. The aim of this study was to compare associations of long-term air pollution exposures, estimated with different exposure assessment methods, with asthma incidence and lung function. METHODS Eight exposure assessment methods, differing in modelling (dispersion, empirical) and monitoring strategy (fixed site, mobile), were applied to estimate annual average air pollution levels at the residential addresses of 3,687 participants of the Dutch PIAMA birth cohort. Associations of air pollution exposure with asthma and lung function were assessed and compared between methods. Heterogeneity in the associations was assessed with meta-analyses. RESULTS Estimated exposure levels and contrasts differed substantially between methods. Exposure estimates from the different methods were moderately to highly correlated, with Pearson correlations ranging from 0.5 to 0.9. Higher air pollution levels were consistently associated with higher asthma incidence and lower FEV1. However, the magnitude of the association differed between methods (e.g. the ORs (95 % CI) for asthma incidence ranged from 1.09 (0.99; 1.21) to 2.56 (1.50; 4.36) for BC per 1 µg/m3 increment). CONCLUSION Different air pollution exposure assessment methods resulted in consistent conclusions about the presence and direction of associations with asthma incidence and lung function in children, but associations differed in magnitude. Differences in exposure assessment methods may partially drive heterogeneity in associations between different studies.
Collapse
Affiliation(s)
- Femke Bouma
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands.
| | - Gerard Hoek
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Gerard H Koppelman
- Department of Pediatric Pulmonology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, the Netherlands
| | - Judith M Vonk
- Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, the Netherlands; Department of Epidemiology, University Medical Center Groningen, University of Groningen, the Netherlands
| | - Nicole Ah Janssen
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Sjoerd van Ratingen
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Wouter Hendricx
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Joost Wesseling
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Jules Kerckhoffs
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Ulrike Gehring
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
2
|
Wang X, Wang X, Cheng Y, Luo C, Xia W, Gao Z, Bu W, Jiang Y, Fei Y, Shi W, Tang J, Liu L, Zhu J, Zhao X. Construction of metal interpretable scoring system and identification of tungsten as a novel risk factor in COPD. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116842. [PMID: 39106568 DOI: 10.1016/j.ecoenv.2024.116842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/24/2024] [Accepted: 08/02/2024] [Indexed: 08/09/2024]
Abstract
Numerous studies have highlighted the correlation between metal intake and deteriorated pulmonary function, emphasizing its pivotal role in the progression of Chronic Obstructive Pulmonary Disease (COPD). However, the efficacy of traditional models is often compromised due to overfitting and high bias in datasets with low-level exposure, rendering them ineffective in delineating the contemporary risk trends associated with pulmonary diseases. To address these limitations, we embarked on developing advanced, interpretable models, crucial for elucidating the intricate mechanisms of metal toxicity and enriching the domain knowledge embedded in toxicity models. In this endeavor, we scrutinized extensive, long-term metal exposure datasets from NHANES to explore the interplay between metal and pulmonary functionality. Employing a variety of machine-learning approaches, we opted for the "Mixer of Experts" model for its proficiency in identifying a myriad of toxicological trends and sensitivities. We conceptualized and illustrated the TSAP (Toxicity Score at Population-level), a metal interpretable scoring system offering performance nearly equivalent to the amalgamation of standard interpretable methods addressing the "black box" conundrum. This streamlined, bifurcated procedural analysis proved instrumental in discerning established risk factors, thereby uncovering Tungsten as a novel contributor to COPD risk. SYNOPSIS: TSAP achieved satisfied performance with transparent interpretability, suggesting tungsten intake need further action for COPD prevention.
Collapse
Affiliation(s)
- Xuehai Wang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Xiangdong Wang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Yulan Cheng
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Chao Luo
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Weiyi Xia
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Zhengnan Gao
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Wenxia Bu
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Yichen Jiang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Yue Fei
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Weiwei Shi
- Nantong Hospital to Nanjing University of Chinese Medicine, China
| | - Juan Tang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Lei Liu
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China; Department of Pathology, Affiliated Hospital of Nantong University, Nantong 226001, China.
| | - Jinfeng Zhu
- Nantong Hospital to Nanjing University of Chinese Medicine, China.
| | - Xinyuan Zhao
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China.
| |
Collapse
|
3
|
Li W, Zhou J, Boon D, Fan T, Anneser E, Goodman JE, Prueitt RL. Nickel in ambient particulate matter and respiratory or cardiovascular outcomes: A critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123442. [PMID: 38278409 DOI: 10.1016/j.envpol.2024.123442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/05/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
Exposure to ambient particulate matter (PM) has been associated with respiratory and cardiovascular outcomes, and nickel has been more frequently associated with these outcomes than other metal constituents of ambient PM. Because of this, we evaluated whether the evidence to date supports causal relationships between exposure to nickel in ambient PM and respiratory or cardiovascular outcomes. We critically reviewed 38 studies in human populations published between 2012 and 2022. Although a large variety of respiratory and cardiovascular outcomes were examined, data were sparse for many. As a result, we focused our evaluation on seven respiratory outcomes and three cardiovascular outcomes that were each examined in ≥3 studies. Of these health outcomes, exposure to nickel in ambient PM has been statistically significantly associated with respiratory mortality, respiratory emergency hospital visits, asthma, lung function (i.e., forced expiratory volume in 1 s, forced vital capacity), cardiovascular mortality, and ischemic heart disease mortality. Studies of the health outcomes of focus are subject to multiple methodological limitations, primarily ecological fallacy (short-term exposure studies), exposure measurement error, confounding, model misspecification, and multiple comparisons issue. While some statistically significant associations were reported, they were not strong, precise, or consistent. Statistically significant findings for long-term exposure to nickel in PM were largely reported in studies that could not establish temporality, despite their cohort study design. Statistically significant findings for short-term exposure to nickel in PM were largely reported in studies that could establish temporality, although this cannot inform causal inference at the individual level due to the aggregate level data used. The biological plausibility of the associations is only supported at high concentrations not relevant to ambient exposures. Overall, the literature to date does not provide adequate support for a causal relationship between nickel in ambient PM and respiratory or cardiovascular outcomes.
Collapse
Affiliation(s)
- Wenchao Li
- Gradient, One Beacon St., 17th Floor, Boston, MA, 02108, USA
| | - Jean Zhou
- Gradient, One Beacon St., 17th Floor, Boston, MA, 02108, USA
| | - Denali Boon
- Gradient, One Beacon St., 17th Floor, Boston, MA, 02108, USA
| | - Tongyao Fan
- Gradient, One Beacon St., 17th Floor, Boston, MA, 02108, USA
| | - Elyssa Anneser
- Gradient, One Beacon St., 17th Floor, Boston, MA, 02108, USA
| | - Julie E Goodman
- Gradient, One Beacon St., 17th Floor, Boston, MA, 02108, USA
| | - Robyn L Prueitt
- Gradient, One Beacon St., 17th Floor, Boston, MA, 02108, USA.
| |
Collapse
|
4
|
Zhang J, Chen Z, Shan D, Wu Y, Zhao Y, Li C, Shu Y, Linghu X, Wang B. Adverse effects of exposure to fine particles and ultrafine particles in the environment on different organs of organisms. J Environ Sci (China) 2024; 135:449-473. [PMID: 37778818 DOI: 10.1016/j.jes.2022.08.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 10/03/2023]
Abstract
Particulate pollution is a global risk factor that seriously threatens human health. Fine particles (FPs) and ultrafine particles (UFPs) have small particle diameters and large specific surface areas, which can easily adsorb metals, microorganisms and other pollutants. FPs and UFPs can enter the human body in multiple ways and can be easily and quickly absorbed by the cells, tissues and organs. In the body, the particles can induce oxidative stress, inflammatory response and apoptosis, furthermore causing great adverse effects. Epidemiological studies mainly take the population as the research object to study the distribution of diseases and health conditions in a specific population and to focus on the identification of influencing factors. However, the mechanism by which a substance harms the health of organisms is mainly demonstrated through toxicological studies. Combining epidemiological studies with toxicological studies will provide a more systematic and comprehensive understanding of the impact of PM on the health of organisms. In this review, the sources, compositions, and morphologies of FPs and UFPs are briefly introduced in the first part. The effects and action mechanisms of exposure to FPs and UFPs on the heart, lungs, brain, liver, spleen, kidneys, pancreas, gastrointestinal tract, joints and reproductive system are systematically summarized. In addition, challenges are further pointed out at the end of the paper. This work provides useful theoretical guidance and a strong experimental foundation for investigating and preventing the adverse effects of FPs and UFPs on human health.
Collapse
Affiliation(s)
- Jianwei Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Zhao Chen
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Dan Shan
- Department of Medical, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, China
| | - Yang Wu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Yue Zhao
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Chen Li
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China; National Demonstration Center for Experimental Preventive Medicine Education (Tianjin Medical University), Tianjin 300070, China
| | - Yue Shu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Xiaoyu Linghu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Baiqi Wang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China; National Demonstration Center for Experimental Preventive Medicine Education (Tianjin Medical University), Tianjin 300070, China.
| |
Collapse
|
5
|
Supphapipat K, Leurcharusmee P, Chattipakorn N, Chattipakorn SC. Impact of air pollution on postoperative outcomes following organ transplantation: Evidence from clinical investigations. Clin Transplant 2024; 38:e15180. [PMID: 37987510 DOI: 10.1111/ctr.15180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/22/2023]
Abstract
INTRODUCTION Air pollution is a worldwide problem affecting human health via various body systems, resulting in numerous significant adverse events. Air pollutants, including particulate matter < or = 2.5 microns (PM2.5), particulate matter < or = 10 microns (PM10), ozone (O3 ), nitrogen dioxide (NO2 ), and traffic-related air pollution (TRAP), have demonstrated the negative effects on human health (e.g., increased cerebrovascular, cardiovascular, and respiratory diseases, malignancy, and mortality). Organ transplant patients, who are taking immunosuppressive agents, are especially vulnerable to the adverse effects of air pollutants. The evidence from clinical investigation has shown that exposure to air pollution after organ transplantation is associated with organ rejection, cardiovascular disease, coronary heart disease, cerebrovascular disease, infection-related mortality, and vitamin D deficiency. OBJECTIVES AND METHOD This review aims to summarize and discuss the association of exposure to air pollutants and serum 25-hydroxyvitamin D level and outcomes after transplantation. Controversial findings are also included and discussed. CONCLUSION All of the findings suggest that air pollution results in a hazardous environment, which not only impacts human health worldwide but also affects post-transplant outcomes.
Collapse
Affiliation(s)
- Kittitorn Supphapipat
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Department of Anesthesiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Prangmalee Leurcharusmee
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Department of Anesthesiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
6
|
Lomme J, Reedijk M, Peters S, Downward GS, Stefanopoulou M, Vermeulen R, Huss A. Traffic-related air pollution, road traffic noise, and Parkinson's disease: Evaluations in two Dutch cohort studies. Environ Epidemiol 2023; 7:e272. [PMID: 38912395 PMCID: PMC11189687 DOI: 10.1097/ee9.0000000000000272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/06/2023] [Indexed: 06/25/2024] Open
Abstract
Background Environmental factors such as air pollution have been associated with Parkinson's disease (PD), but findings have been inconsistent. We investigated the association between exposure to several air pollutants, road traffic noise, and PD risk in two Dutch cohorts. Methods Data from 50,087 participants from two Dutch population-based cohort studies, European Prospective Investigation into Cancer and Nutrition in the Netherlands and Arbeid, Milieu en Gezondheid Onderzoek were analyzed. In these cohorts, 235 PD cases were ascertained based on a previously validated algorithm combining self-reported information (diagnosis, medication, and symptoms) and registry data. We assigned the following traffic-related exposures to residential addresses at baseline: NO2, NOx, particulate matter (PM)2.5absorbance (as a marker for black carbon exposure), PM with aerodynamic diameter ≤2.5 µm (PM2.5), ≤10 µm (PM10), PMcoarse (size fraction 2.5-10 µm), ultrafine particles <0.1 µm (UFP), and road traffic noise (Lden). Logistic regression models were applied to investigate the associations with PD, adjusted for possible confounders. Results Both single- and two-pollutant models indicated associations between exposure to NOx, road traffic noise, and increasing odds of developing PD. Odds ratios of fully adjusted two-pollutant models in the highest compared with the lowest exposure quartile were 1.62 (95% CI = 1.02, 2.62) for NOx and 1.47 (95% CI = 0.97, 2.25) for road traffic noise, with clear trends across exposure categories. Conclusions Our findings suggest that NOx and road traffic noise are associated with an increased risk of PD. While the association with NOx has been shown before, further investigation into the possible role of environmental noise on PD is warranted.
Collapse
Affiliation(s)
- Jara Lomme
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Marije Reedijk
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Susan Peters
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - George S. Downward
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
- Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, The Netherlands
| | | | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
- Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Anke Huss
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
7
|
Bouma F, Hoek G, Koppelman GH, Vonk JM, Kerckhoffs J, Vermeulen R, Gehring U. Exposure to ambient ultrafine particles and allergic sensitization in children up to 16 years. ENVIRONMENTAL RESEARCH 2023; 219:115102. [PMID: 36565840 DOI: 10.1016/j.envres.2022.115102] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 11/19/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Few epidemiological studies so far have investigated the role of long-term exposure to ultrafine particles (UFP) in inhalant and food allergy development. OBJECTIVES The purpose of this study was to assess the association between UFP exposure and allergic sensitization to inhalant and food allergens in children up to 16 years old in the Netherlands. METHODS 2295 participants of a prospective birth cohort with IgE measurements to common inhalant and food allergens at ages 4, 8, 12 and/or 16 were included in the study. Annual average UFP concentrations were estimated for the home addresses at birth and at the time of the IgE measurements using land-use regression models. Generalized estimating equations were used for the assessment of overall and age-specific associations between UFP exposure and allergic sensitization. Additionally, single- and two-pollutant models with NO2, PM2.5, PM2.5 absorbance and PM10 were assessed. RESULTS We found no significant associations between UFP exposure and allergic sensitization to inhalant and food allergens (OR (95% CI) ranging from 1.02 (0.95-1.10) to 1.05 (0.98-1.12), per IQR increment). NO2, PM2.5, PM2.5 absorbance and PM10 showed significant associations with sensitization to food allergens (OR (95% CI) ranging from 1.09 (1.00-1.20) to 1.23 (1.06-1.43) per IQR increment). NO2, PM2.5, PM2.5 absorbance and PM10 were not associated with sensitization to inhalant allergens. For NO2, PM2.5 and PM2.5 absorbance, the associations with sensitization to food allergens persisted in two-pollutant models with UFP. CONCLUSION This study found no association between annual average exposure to UFP and allergic sensitization in children up to 16 years of age. NO2, PM2.5, PM2.5 absorbance and PM10 were associated with sensitization to food allergens.
Collapse
Affiliation(s)
- Femke Bouma
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands.
| | - Gerard Hoek
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Gerard H Koppelman
- Department of Pediatric Pulmonology, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Judith M Vonk
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jules Kerckhoffs
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ulrike Gehring
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
8
|
Kiss P, de Rooij MMT, Koppelman GH, Boer J, Vonk JM, Vermeulen R, Hogerwerf L, Sterk HAM, Huss A, Smit LAM, Gehring U. Residential exposure to livestock farms and lung function in adolescence - The PIAMA birth cohort study. ENVIRONMENTAL RESEARCH 2023; 219:115134. [PMID: 36563981 DOI: 10.1016/j.envres.2022.115134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/07/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND There is a growing interest in the impact of air pollution from livestock farming on respiratory health. Studies in adults suggest adverse effects of livestock farm emissions on lung function, but so far, studies involving children and adolescents are lacking. OBJECTIVES To study the association of residential proximity to livestock farms and modelled particulate matter ≤10 μm (PM10) from livestock farms with lung function in adolescence. METHODS We performed a cross-sectional study among 715 participants of the Dutch prospective PIAMA (Prevention and Incidence of Asthma and Mite Allergy) birth cohort study. Relationships of different indicators of residential livestock farming exposure (distance to farms, distance-weighted number of farms, cattle, pigs, poultry, horses and goats within 3 km; modelled atmospheric PM10 concentrations from livestock farms) with forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC) at age 16 were assessed by linear regression taking into account potential confounders. Associations were expressed per interquartile range increase in exposure. RESULTS Higher exposure to livestock farming was consistently associated with a lower FEV1, but not with FVC among participants living in less urbanized municipalities (<1500 addresses/km2, N = 402). Shorter distances of homes to livestock farms were associated with a 1.4% (0.2%; 2.7%) lower FEV1. Larger numbers of farms within 3 km and higher concentrations of PM10 from livestock farming were associated with a 1.8% (0.8%, 2.9%) and 0.9% (0.4%,1.5%) lower FEV1, respectively. CONCLUSIONS Our findings suggest that higher exposure to livestock farming is associated with a lower FEV1 in adolescents. Replication and more research on the etiologic agents involved in these associations and the underlying mechanisms is needed.
Collapse
Affiliation(s)
- Pauline Kiss
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands
| | - Myrna M T de Rooij
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Gerard H Koppelman
- University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Department of Pediatric Pulmonology and Pediatric Allergology, Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands
| | - Jolanda Boer
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Judith M Vonk
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, the Netherlands
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands
| | - Lenny Hogerwerf
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Hendrika A M Sterk
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Anke Huss
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Lidwien A M Smit
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Ulrike Gehring
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
9
|
Abdillah SFI, Wang YF. Ambient ultrafine particle (PM 0.1): Sources, characteristics, measurements and exposure implications on human health. ENVIRONMENTAL RESEARCH 2023; 218:115061. [PMID: 36525995 DOI: 10.1016/j.envres.2022.115061] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/28/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
The problem of ultrafine particles (UFPs; PM0.1) has been prevalent since the past decades. In addition to become easily inhaled by human respiratory system due to their ultrafine diameter (<100 nm), ambient UFPs possess various physicochemical properties which make it more toxic. These properties vary based on the emission source profile. The current development of UFPs studies is hindered by the problem of expensive instruments and the inexistence of standardized measurement method. This review provides detailed insights on ambient UFPs sources, physicochemical properties, measurements, and estimation models development. Implications on health impacts due to short-term and long-term exposure of ambient UFPs are also presented alongside the development progress of potentially low-cost UFPs sensors which can be used for future UFPs studies references. Current challenge and future outlook of ambient UFPs research are also discussed in this review. Based on the review results, ambient UFPs may originate from primary and secondary sources which include anthropogenic and natural activities. In addition to that, it is confirmed from various chemical content analysis that UFPs carry heavy metals, PAHs, BCs which are toxic in its nature. Measurement of ambient UFPs may be performed through stationary and mobile methods for environmental profiling and exposure assessment purposes. UFPs PNC estimation model (LUR) developed from measurement data could be deployed to support future epidemiological study of ambient UFPs. Low-cost sensors such as bipolar ion and ionization sensor from common smoke detector device may be further developed as affordable instrument to monitor ambient UFPs. Recent studies indicate that short-term exposure of UFPs can be associated with HRV change and increased cardiopulmonary effects. On the other hand, long-term UFPs exposure have positive association with COPD, CVD, CHF, pre-term birth, asthma, and also acute myocardial infarction cases.
Collapse
Affiliation(s)
- Sultan F I Abdillah
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, 32023, Taiwan; Center for Environmental Risk Management, Chung Yuan Christian University, Taoyuan, 32023, Taiwan
| | - Ya-Fen Wang
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, 32023, Taiwan; Center for Environmental Risk Management, Chung Yuan Christian University, Taoyuan, 32023, Taiwan.
| |
Collapse
|
10
|
Robinson PD, Salimi F, Cowie CT, Clifford S, King GG, Thamrin C, Hardaker K, Mazaheri M, Morawska L, Toelle BG, Marks GB. Ultrafine particle exposure and biomarkers of effect on small airways in children. ENVIRONMENTAL RESEARCH 2022; 214:113860. [PMID: 35820650 DOI: 10.1016/j.envres.2022.113860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/03/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
The small size and large surface area of ultrafine particles (UFP) enhance their ability to deposit in the lung periphery and their reactivity. The Ultrafine Particles from Traffic Emissions and Children's Health (UPTECH) cross-sectional study was conducted in 8-11-year-old schoolchildren attending 25 primary (elementary) schools, randomly selected from the Brisbane Metropolitan Area, Queensland, Australia. Main study findings outlined indirect evidence of distal airway deposition (raised C reactive protein) but as yet, there is no direct evidence in the literature of effects of UFP exposure on peripheral airway function. We present further UPTECH study data from two sensitive peripheral airway function tests, Oscillometry and Multiple Breath Nitrogen Washout (MBNW), performed in 577 and 627 children (88% and 96% of UPTECH study cohort) respectively: mean(SD) age 10.1(0.9) years, 46% male, with 50% atopy and 14% current asthma. Bayesian generalised linear mixed effects regression models were used to estimate the effect of UFP particle number count (PNC) exposure on key oscillometry (airway resistance, (Rrs), and reactance, (Xrs)) and MBNW (lung clearance index, (LCI) and functional residual capacity, (FRC)) indices. We adjusted for age, sex, and height, and potential confounders including socio-economic disadvantage, PM2.5 and NO2 exposure. All models contained an interaction term between UFP PNC exposure and atopy, allowing estimation of the effect of exposure on non-atopic and atopic students. Increasing UFP PNC was associated with greater lung stiffness as evidenced by a decrease in Xrs [mean (95% credible interval) -1.63 (-3.36 to -0.05)%] per 1000#.cm-3]. It was also associated with greater lung stiffness (decrease in Xrs) in atopic subjects across all models [mean change ranging from -2.06 to -2.40% per 1000#.cm-3]. A paradoxical positive effect was observed for Rrs across all models [mean change ranging from -1.55 to -1.70% per 1000#.cm-3] (decreases in Rrs indicating an increase in airway calibre), which was present for both atopic and non-atopic subjects. No effects on MBNW indices were observed. In conclusion, a modest detrimental effect of UFP on peripheral airway function among atopic subjects, as assessed by respiratory system reactance, was observed extending the main UPTECH study findings which reported a positive association with a biomarker for systemic inflammation, C-reactive protein (CRP). Further studies are warranted to explore the pathophysiological mechanisms underlying increased respiratory stiffness, and whether it persists through to adolescence and adulthood.
Collapse
Affiliation(s)
- Paul D Robinson
- The Children's Hospital at Westmead, Sydney, Australia; Airway Physiology and Imaging, Woolcock Institute of Medical Research, University of Sydney, Australia; University of Sydney, Sydney, Australia
| | - Farhad Salimi
- University of Sydney, Sydney, Australia; Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia; Centre for Air Pollution, Energy and Health Research (CAR), Australia
| | - Christine T Cowie
- Centre for Air Pollution, Energy and Health Research (CAR), Australia; Respiratory and Environmental Epidemiology, Woolcock Institute of Medical Research, University of Sydney, Australia; South Western Sydney Clinical Campus, University of New South Wales, Australia; Ingham Institute of Applied Medical Research, Sydney, Australia
| | - Samuel Clifford
- Centre for Air Pollution, Energy and Health Research (CAR), Australia; London School of Hygiene and Tropical Medicine, London, UK; International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Australia
| | - Gregory G King
- Airway Physiology and Imaging, Woolcock Institute of Medical Research, University of Sydney, Australia; University of Sydney, Sydney, Australia
| | - Cindy Thamrin
- Airway Physiology and Imaging, Woolcock Institute of Medical Research, University of Sydney, Australia; University of Sydney, Sydney, Australia
| | - Kate Hardaker
- Airway Physiology and Imaging, Woolcock Institute of Medical Research, University of Sydney, Australia; University of Sydney, Sydney, Australia
| | - Mandana Mazaheri
- Centre for Air Pollution, Energy and Health Research (CAR), Australia; Department of Planning, Industry and the Environment, Sydney, Australia
| | - Lidia Morawska
- Centre for Air Pollution, Energy and Health Research (CAR), Australia; International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Australia
| | - Brett G Toelle
- University of Sydney, Sydney, Australia; Respiratory and Environmental Epidemiology, Woolcock Institute of Medical Research, University of Sydney, Australia; Sydney Local Health District, Sydney, Australia.
| | - Guy B Marks
- Centre for Air Pollution, Energy and Health Research (CAR), Australia; Respiratory and Environmental Epidemiology, Woolcock Institute of Medical Research, University of Sydney, Australia; South Western Sydney Clinical Campus, University of New South Wales, Australia; Ingham Institute of Applied Medical Research, Sydney, Australia
| |
Collapse
|
11
|
Zhou L, Tao Y, Su X, Chen X, Li L, Fu Q, Xie J, Chen R. Short-Term Associations between Size-Fractioned Particles and Cardiopulmonary Function in COPD Patients: A Panel Study in Shanghai, China, during 2014-2021. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12473. [PMID: 36231774 PMCID: PMC9566564 DOI: 10.3390/ijerph191912473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/16/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
It remains unknown which size fractions dominate the adverse cardiopulmonary effects of particulate matter (PM). Therefore, this study aimed to explore the differential associations between size-fractioned particle number concentrations (PNCs) and cardiopulmonary function measures, including the forced expiratory volume in one second (FEV1), the forced vital capacity (FVC), and the left ventricular ejection fraction (LVEF). We conducted a panel study among 211 patients with chronic obstructive pulmonary disease (COPD) in Shanghai, China, between January 2014 and December 2021. We applied linear mixed-effect models to determine the associations between cardiopulmonary function measures and PNCs ranging from 0.01 to 10 μm in diameter. Generally, only particles <1 μm showed significant associations, i.e., ultrafine particles (UFPs, <0.1 μm) for FVC and particles ranging from 0.1 to 1 µm for FEV1 and LVEF. An interquartile range (IQR) increment in UFP was associated with decreases of 78.4 mL in FVC. PNC0.1-0.3 and PNC0.3-1 corresponded to the strongest effects on FEV1 (119.5 mL) and LVEF (1.5%) per IQR increment. Particles <1 µm might dominate the cardiopulmonary toxicity of PM, but UFPs might not always have the strongest effect. Tailored regulations towards particles <1 µm should be intensified to reduce PM pollution and protect vulnerable populations.
Collapse
Affiliation(s)
- Lu Zhou
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yingmin Tao
- Division of General Practice, The Fifth People’s Hospital of Shanghai, Fudan University, Shanghai 200240, China
- Center of Community-Based Health Research, Fudan University, Shanghai 200240, China
| | - Xiaozhen Su
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Xiyin Chen
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Liang Li
- Division of General Practice, The Fifth People’s Hospital of Shanghai, Fudan University, Shanghai 200240, China
- Center of Community-Based Health Research, Fudan University, Shanghai 200240, China
| | - Qingyan Fu
- Shanghai Environmental Monitoring Center, Shanghai 200235, China
| | - Juan Xie
- Division of General Practice, The Fifth People’s Hospital of Shanghai, Fudan University, Shanghai 200240, China
- Center of Community-Based Health Research, Fudan University, Shanghai 200240, China
| | - Renjie Chen
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| |
Collapse
|
12
|
Ageing Significantly Alters the Physicochemical Properties and Associated Cytotoxicity Profiles of Ultrafine Particulate Matters towards Macrophages. Antioxidants (Basel) 2022; 11:antiox11040754. [PMID: 35453439 PMCID: PMC9030427 DOI: 10.3390/antiox11040754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 01/27/2023] Open
Abstract
There are still significant concerns about the detrimental effects and health risks of particulate matters (PMs) on the respiratory system. Notably, a largely overlooked knowledge gap is whether the environmental ageing process would change the physicochemical properties of PMs as well as the toxic influences of PMs on macrophages. Here, we applied ambient treatment of model PMs to mimic the real O3-induced ageing process and investigated ageing-determined cytotoxicity profile changes of PMs towards macrophages. The consequent distinct bioreactivity and toxicity towards macrophages are largely attributed to the changes of species of surface O-functional groups. Importantly, we unveiled the specific interactions between aged PMs and macrophages due to the variant contents of the surface carboxyl group, resulting in the divergent inflammatory activations and immune balance in the lung. Collectively, this study unearths the significance of ageing in altering particle cytotoxicity, and also provides additional understandings for consecutive investigations on the adverse effects of air pollution on the respiratory system.
Collapse
|