1
|
Brillas E, Peralta-Hernández JM. Fluoroquinolone ciprofloxacin removal from synthetic and real wastewaters by single and combined electrochemical advanced oxidation processes. A review. CHEMOSPHERE 2025; 380:144457. [PMID: 40334616 DOI: 10.1016/j.chemosphere.2025.144457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/09/2025]
Abstract
Ciprofloxacin (CIP) is a widely prescribed fluoroquinolone antibiotic detected in the aquatic environment fostering the emergence of bacteria and posing risks the human health and ecosystem integrity. The present comprehensive critical review deals with CIP removal from synthetic and real wastewater by electrochemical advanced oxidation processes (EAOPs) up to 2024. Lower performance was obtained in real wastewaters than synthetic ones because their components scavenged-generated oxidizing agents. Anodic oxidation (AO) has been developed with active dimensionally stable anodes (DSA) and the non-active potent boron-doped diamond (BDD) one, where CIP solutions in chloride medium reached a maximal of 75 % mineralization. A more rapid CIP degradation and up to 96 % mineralization have been found for homogeneous electro-Fenton (EF) with Pt and Fe2+ catalyst. Heterogeneous Fenton with functionalized iron cathodes and solid iron catalysts, and heterogeneous EF-like with non-ferrous catalysts gave worse results. Novel modified EF processes with dual cathodes for direct.•OH production after H2O2 electrogeneration allowed up to 96 % mineralization. Photoelectro-Fenton (PEF) with UVA light and solar PEF (SPEF) can yield overall mineralization by the rapid photolysis of final Fe(III)-carboxylate species formed. Photoelectrocatalysis (PEC) with new photoanodes like FTO/Ni-ZnO under UVA light yielded 87 % mineralization. Hybrid AO, EF, PEF, and PEC processes with persulfate, O3, ultrasounds, or photocatalysis were more powerful than their single EAOPs. The characteristics and performance of each method, the generation of oxidants (•OH, O2•-, and/or 1O2), its reusability, and the by-products produced are discussed. The loss of toxicity of the treated solutions by EAOPs is finally detailed.
Collapse
Affiliation(s)
- Enric Brillas
- Departament de Ciència de Materials i Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, Barcelona, CP 08028, Spain.
| | - Juan M Peralta-Hernández
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Cerro de la Venada s/n, Pueblito de Rocha, 36040, Guanajuato, Mexico.
| |
Collapse
|
2
|
Gao Y, Liang S, Jiang C, Gu M, Zhang Q, Abdelhafiz A, Zhang Z, Han Y, Yang Y, Zhang X, Liang P, Li J, Huang X. Electric field-confined synthesis of single atomic TiO xC y electrocatalytic membranes. SCIENCE ADVANCES 2025; 11:eads7154. [PMID: 40249798 PMCID: PMC12007568 DOI: 10.1126/sciadv.ads7154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 03/14/2025] [Indexed: 04/20/2025]
Abstract
Electrocatalysis exhibits certain benefits for water purification, but the low performance of electrodes severely hampers its utility. Here, we report a general strategy for fabricating high-performance three-dimensional (3D) porous electrodes with ultrahigh electrochemical active surface area and single-atom catalysts from earth-abundant elements. We demonstrate a binder-free dual electrospinning-electrospraying (DESP) strategy to densely distribute single atomic Ti and titanium oxycarbide (TiOxCy) sub-3-nm clusters throughout interconnected carbon nanofibers (CNs). The composite offers ultrahigh conductivity and mechanical robustness (ultrasonication resistant). The resulting TiOxCy filtration membrane exhibits record-high water purification capability with excellent permeability (~8370 liter m-2 hour-1 bar-1), energy efficiency (e.g., >99% removal of toxins within 1.25 s at 0.022 kWh·m-3 per order), and erosion resistance. The hierarchical design of the TiOxCy membrane facilitates rapid and energy-efficient electrocatalysis through both direct electron transfer and indirect reactive oxygen species (1O2, ·OH, and O2·-, etc.) oxidations. The electric field-confined DESP strategy provides a general platform for making high-performance 3D electrodes.
Collapse
Affiliation(s)
- Yifan Gao
- State Key Laboratory of Regional Environment and Sustainability, School of Environment, Tsinghua University, Beijing 100084, China
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Shuai Liang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Chengxu Jiang
- State Key Laboratory of Regional Environment and Sustainability, School of Environment, Tsinghua University, Beijing 100084, China
| | - Mengyao Gu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Quanbiao Zhang
- State Key Laboratory of Regional Environment and Sustainability, School of Environment, Tsinghua University, Beijing 100084, China
| | - Ali Abdelhafiz
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Zhen Zhang
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Ying Han
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yang Yang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Xiaoyuan Zhang
- State Key Laboratory of Regional Environment and Sustainability, School of Environment, Tsinghua University, Beijing 100084, China
| | - Peng Liang
- State Key Laboratory of Regional Environment and Sustainability, School of Environment, Tsinghua University, Beijing 100084, China
| | - Ju Li
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Xia Huang
- State Key Laboratory of Regional Environment and Sustainability, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Bernárdez-Rodas N, Rosales E, Pazos M, González-Prieto Ó, Torres LO, Sanromán MÁ. Three-Dimensional Electrosorption for Pharmaceutical Wastewater Management and Sustainable Biochar Regeneration. Molecules 2025; 30:1435. [PMID: 40286048 PMCID: PMC11990488 DOI: 10.3390/molecules30071435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/18/2025] [Accepted: 03/21/2025] [Indexed: 04/29/2025] Open
Abstract
The adsorption capacity of a biochar (BC) obtained from pine wood residues was evaluated for its ability to remove two pharmaceuticals: fluoxetine (FLX) and sulfamethizole (SMZ). The material showed promising results in FLX removal, but a limited capacity in the case of SMZ. In order to improve these results, BC surface modifications were made by doping with nitrogen, as well as using acid, basic and electrochemical treatments. A three-dimensional electrosorption treatment proved to be the most effective, increasing the adsorption rate from 0.45 to 13.46 mg/g after evaluating different operating conditions, such as the electrodes used or the BC dosage. Consecutive cycles of BC use were performed through desorption and electro-regeneration techniques to test its capacity for reuse, and it was observed that application in the 25 mA electric field increased the useful life of the material. Finally, the effect of ionic strength was studied, highlighting that the presence of ions did not significantly affect the efficiency of SMZ removal, although a slight increase was observed at a high ion concentration, probably due to a salinization effect.
Collapse
Affiliation(s)
- Nuria Bernárdez-Rodas
- CINTECX, Bioengineering and Sustainable Processes Group, Chemical Engineering Department, Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain; (N.B.-R.); (E.R.); (M.P.)
| | - Emilio Rosales
- CINTECX, Bioengineering and Sustainable Processes Group, Chemical Engineering Department, Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain; (N.B.-R.); (E.R.); (M.P.)
| | - Marta Pazos
- CINTECX, Bioengineering and Sustainable Processes Group, Chemical Engineering Department, Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain; (N.B.-R.); (E.R.); (M.P.)
| | - Óscar González-Prieto
- Hydro-Forestry Geomodeling Research Group, School of Forestry Engineering, University of Vigo, 36005 Pontevedra, Spain; (Ó.G.-P.); (L.O.T.)
| | - Luis Ortiz Torres
- Hydro-Forestry Geomodeling Research Group, School of Forestry Engineering, University of Vigo, 36005 Pontevedra, Spain; (Ó.G.-P.); (L.O.T.)
| | - M. Ángeles Sanromán
- CINTECX, Bioengineering and Sustainable Processes Group, Chemical Engineering Department, Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain; (N.B.-R.); (E.R.); (M.P.)
| |
Collapse
|
4
|
Fajardo-Puerto E, Elmouwahidi A, Bailón-García E, Pérez-Cadenas M, Pérez-Cadenas AF, Carrasco-Marín F. Antibiotic Degradation via Fenton Process Assisted by a 3-Electron Oxygen Reduction Reaction Pathway Catalyzed by Bio-Carbon-Manganese Composites. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1112. [PMID: 38998717 PMCID: PMC11243440 DOI: 10.3390/nano14131112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/16/2024] [Accepted: 06/22/2024] [Indexed: 07/14/2024]
Abstract
Bio-carbon-manganese composites obtained from olive mill wastewater were successfully prepared using manganese acetate as the manganese source and olive wastewater as the carbon precursor. The samples were characterized chemically and texturally by N2 and CO2 adsorption at 77 K and 273 K, respectively, by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction. Electrochemical characterization was carried out by cyclic voltammetry (CV) and linear sweep voltammetry (LSV). The samples were evaluated in the electro-Fenton degradation of tetracycline in a typical three-electrode system under natural conditions of pH and temperature (6.5 and 25 °C). The results show that the catalysts have a high catalytic power capable of degrading tetracycline (about 70%) by a three-electron oxygen reduction pathway in which hydroxyl radicals are generated in situ, thus eliminating the need for two catalysts (ORR and Fenton).
Collapse
Affiliation(s)
- Edgar Fajardo-Puerto
- UGR-Carbon, Materiales Polifuncionales Basados en Carbono, Dpto. de Química Inorgánica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Universidad de Granada (UEQ-UGR), 18071 Granada, Spain
| | - Abdelhakim Elmouwahidi
- UGR-Carbon, Materiales Polifuncionales Basados en Carbono, Dpto. de Química Inorgánica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Universidad de Granada (UEQ-UGR), 18071 Granada, Spain
| | - Esther Bailón-García
- UGR-Carbon, Materiales Polifuncionales Basados en Carbono, Dpto. de Química Inorgánica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Universidad de Granada (UEQ-UGR), 18071 Granada, Spain
| | - María Pérez-Cadenas
- UGR-Carbon, Materiales Polifuncionales Basados en Carbono, Dpto. de Química Inorgánica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Universidad de Granada (UEQ-UGR), 18071 Granada, Spain
- Dpto. Química Inorgánica y Química Técnica, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Av. de Esparta s/n, Las Rozas de Madrid, 28232 Madrid, Spain
| | - Agustín F Pérez-Cadenas
- UGR-Carbon, Materiales Polifuncionales Basados en Carbono, Dpto. de Química Inorgánica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Universidad de Granada (UEQ-UGR), 18071 Granada, Spain
| | - Francisco Carrasco-Marín
- UGR-Carbon, Materiales Polifuncionales Basados en Carbono, Dpto. de Química Inorgánica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Universidad de Granada (UEQ-UGR), 18071 Granada, Spain
| |
Collapse
|
5
|
Yang K, Zhang X, Zu D, Zhou H, Ma J, Yang Z. Shifting Emphasis from Electro- to Catalytically Active Sites: Effects of Pore Size of Flow-Through Anodes on Water Purification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20421-20430. [PMID: 37971949 DOI: 10.1021/acs.est.3c07448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
A flow-through anode has demonstrated high efficiency for micropollutant abatement in water purification. In addition to developing novel electrode materials, a rational design of its porous structure is crucial to achieve high electrooxidation kinetics while sustaining a low cost for flow-through operation. However, our knowledge of the relationship between the pore structure and its performance is still incomplete. Therefore, we systematically explore the effect of pore size (with a median from 4.7 to 49.4 μm) on the flow-through anode efficiency. Results showed that when the pore size was <26.7 μm, the electrooxidation kinetics was insignificantly improved, but the permeability declined dramatically. Traditional empirical evidence from hydrodynamic modeling and electrochemical tests indicated that a flow-through anode with a smaller pore size (e.g., 4.7 μm) had a high mass transfer capability and large electroactive area. However, this did not further accelerate the micropollutant removal. Combining an overpotential distribution model and an imprinting method has revealed that the reactivity of a flow-through anode is related to the catalytically active volume/sites. The rapid overpotential decay as a function of depth in the anode would offset the merits arising from a small pore size. Herein, we demonstrate an optimal pore size distribution (∼20 μm) of typical flow-through anodes to maximize the process performance at a low energy cost, providing insights into the design of advanced flow-through anodes in water purification applications.
Collapse
Affiliation(s)
- Kui Yang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China
| | - Xinyuan Zhang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Daoyuan Zu
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Hongjian Zhou
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Jinxing Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Zhifeng Yang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| |
Collapse
|
6
|
Hakizimana I, Zhao X, Wang C, Zhang C. Efficient multi-stage electrochemical flow-through system for refractory organic pollutant treatment: Kinetics, mass transfer, and thermodynamic analysis. CHEMOSPHERE 2023; 344:140405. [PMID: 37827465 DOI: 10.1016/j.chemosphere.2023.140405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Improving the kinetics rate and mass transfer is essential for expanding the potential of electrochemical technologies in wastewater treatment. The electrochemical flow-through configuration promises a high oxidation efficiency and low energy consumption. We aimed to provide a thorough understanding of the enhanced kinetics, mass transfer, and thermodynamic parameters during the degradation of amoxicillin (AMX) in a multi-stage flow-through (MSFT) system using porous Ti-ENTA/SnO2-Sb anodes. All operating conditions strongly influenced the kinetics of AMX degradation and followed pseudo-first-order rate kinetic model (R2 > 0.85), with the highest kobs of 0.228 min-1 at high temperature (318 K). In comparison to the flow-by mode, the AMX removal rate in the three-stage flow-through mode was greatly enhanced by 70%, exhibiting the superior capacity of a porous anode. This system exhibited outstanding performance regarding the high kinetics rate and mass transfer rate (km), which increased by factors of 3.46 and 10.74, respectively, obtained in the flow-by mode. It also revealed that •OH generation was 5.64 times higher, and the EE/O was 19.89-fold lower than those in flow-by mode. Temperature plays a vital role in the reaction process, and thermodynamic features found the positive enthalpy (ΔHo) of +27.06 kJ mol-1, signifying the process was endothermic. A Hatta number (Ha) of >0.02 at all temperatures proved this finding, confirming an undeniable role in mass transfer. Finally, these findings reveal the system's performance and offer the possibility of establishing a multi-stage flow-through for wastewater treatment.
Collapse
Affiliation(s)
- Israel Hakizimana
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China
| | - Xin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China.
| | - Can Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China
| | - Cong Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China
| |
Collapse
|
7
|
Wang Z, Li K, Guo J, Liu H, Zhang Y, Dang P, Wang J. Enhanced Mass Transfer of Ozone and Emerging Pollutants through a Gas-Solid-Liquid Reaction Interface for Efficient Water Decontamination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18647-18657. [PMID: 36722492 DOI: 10.1021/acs.est.2c07688] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Ozone (O3), as an environmentally friendly oxidant, is widely used to remove emerging pollutants and ensure the safety of the water supply, whereas the restricted accessibility of O3 and limited collision frequency between pollutants and O3 will inevitably reduce the ozonation efficiency. To promote the chemical reactions between O3 and target pollutants, here we developed a novel gas-solid-liquid reaction interface dominated triphase ozonation system using a functional hydrophobic membrane with an adsorption layer as the O3 distributor and place where chemical reactions occurred. In the triphase system, the functional hydrophobic membrane simultaneously improved the interface adsorption performance of emerging pollutants and the access pathway of O3, leading to a marked enhancement of interfacial pollutant concentration and O3 levels. These synergistic qualities result in high ciprofloxacin (CIP) removal efficiency (94.39%) and fast apparent reaction rate constant (kapp, 2.75 × 10-2 min-1) versus a traditional O3 process (41.82% and 0.48 × 10-2 min-1, respectively). In addition, this triphase system was an advanced oxidation process involving radical participation and showed excellent degradation performance of multiple emerging pollutants. Our findings highlight the importance of gas-solid-liquid triphase reaction interface design and provide new insight into the efficient removal of emerging pollutants by the ozonation process.
Collapse
Affiliation(s)
- Zhiyong Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing100085, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing100085, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing100049, China
| | - Kuiling Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing100085, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing100085, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing100049, China
| | - Jingjing Guo
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing100085, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing100085, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing100049, China
| | - Hongxin Liu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing100085, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing100085, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing100049, China
| | - Yong Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing100085, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing100085, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing100049, China
| | - Ping Dang
- Inner Mongolia Jiuke Kangrui Environmental Protection Technology Co., LTD.North Boerdong Avenue, Equipment Manufacturing Base, Dongsheng District, Ordos, Inner Mongolia017000, China
| | - Jun Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing100085, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing100085, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing100049, China
| |
Collapse
|
8
|
Farissi S, Abubakar GA, Akhilghosh KA, Muthukumar A, Muthuchamy M. Sustainable application of electrocatalytic and photo-electrocatalytic oxidation systems for water and wastewater treatment: a review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1447. [PMID: 37945768 DOI: 10.1007/s10661-023-12083-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
Wastewater treatment and reuse have risen as a solution to the water crisis plaguing the world. Global warming-induced climate change, population explosion and fast depletion of groundwater resources are going to exacerbate the present global water problems for the forthcoming future. In this scenario, advanced electrochemical oxidation process (EAOP) utilising electrocatalytic (EC) and photoelectrocatalytic (PEC) technologies have caught hold of the interest of the scientific community. The interest stems from the global water management plans to scale down centralised water and wastewater treatment systems to decentralised and semicentralised treatment systems for better usage efficiency and less resource wastage. In an age of rising water pollution caused by contaminants of emerging concern (CECs), EC and PEC systems were found to be capable of optimal mineralisation of these pollutants rendering them environmentally benign. The present review treads into the conventional electrochemical treatment systems to identify their drawbacks and analyses the scope of the EC and PEC to mitigate them. Probable electrode materials, potential catalysts and optimal operational conditions for such applications were also examined. The review also discusses the possible retrospective application of EC and PEC as point-of-use and point-of-entry treatment systems during the transition from conventional centralised systems to decentralised and semi-centralised water and wastewater treatment systems.
Collapse
Affiliation(s)
- Salman Farissi
- Department of Environmental Science, Central University of Kerala, Thejaswini Hills, Periye, Kasaragod-671320, Kerala, India
| | - Gado Abubakar Abubakar
- Department of Physics, Kebbi State University of Science and Technology, Aleiro, Kebbi State, Nigeria
| | | | - Anbazhagi Muthukumar
- Department of Environmental Science, Central University of Kerala, Thejaswini Hills, Periye, Kasaragod-671320, Kerala, India
| | - Muthukumar Muthuchamy
- Department of Environmental Science, Central University of Kerala, Thejaswini Hills, Periye, Kasaragod-671320, Kerala, India.
| |
Collapse
|
9
|
Yang C, Lin L, Shang S, Ma S, Sun F, Shih K, Li XY. Packed O V-SnO 2-Sb bead-electrodes for enhanced electrocatalytic oxidation of micropollutants in water. WATER RESEARCH 2023; 245:120628. [PMID: 37716294 DOI: 10.1016/j.watres.2023.120628] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/20/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Electrocatalytic oxidation is an appealing treatment option for emerging micropollutants in wastewater, however, the limited reactive surface area and short service lifetime of planar electrodes hinder their industrial applications. This study introduces an innovative electrochemical wastewater treatment technology that employs packed bead-electrodes (PBE) as a dynamic electrocatalytic filter on a dimensionally stable anode (DSA) acting as a current collector. By using PBE, the electroactive volume is expanded beyond the vicinity of the common planar anode to the thick porous media of PBE with a vast electrocatalytic surface area. This greatly enhances the efficiency of electrochemical degradation of micropollutants. The OV-SnO2-Sb PBE filter achieved a nearly 100 % degradation of moxifloxacin (MOX) in under 2 min of single-pass filtration, with a degradation rate over an order of magnitude higher than the conventional electrochemical oxidation processes. The generation of abundant radical species (•OH) and non-radical species (1O2 and O3), along with the enhanced direct oxidation, led to the outstanding performance of the charged PBE system in MOX degradation. The OV-SnO2-Sb PBE was remarkably stable, and the separation between the electroactive PBE layer and the base Ti anode allows for easy renewal of the bead-electrode materials and scaling up of the system for practical applications. Overall, our study presents a dynamic electroactive PBE that advances the electrocatalytic oxidation technology for effective control of emerging pollutants in the water environment. This technology has the potential to revolutionize electrochemical wastewater treatment and contribute to a more sustainable future environment.
Collapse
Affiliation(s)
- Chao Yang
- Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong China
| | - Lin Lin
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.
| | - Shanshan Shang
- Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong China; School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Shengshou Ma
- Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong China
| | - Feiyun Sun
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, China
| | - Kaimin Shih
- Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong China
| | - Xiao-Yan Li
- Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong China; Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.
| |
Collapse
|
10
|
Orimolade BO, Oladipo AO, Idris AO, Usisipho F, Azizi S, Maaza M, Lebelo SL, Mamba BB. Advancements in electrochemical technologies for the removal of fluoroquinolone antibiotics in wastewater: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163522. [PMID: 37068672 DOI: 10.1016/j.scitotenv.2023.163522] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/24/2023] [Accepted: 04/11/2023] [Indexed: 06/01/2023]
Abstract
In recent times, the need to make water safer and cleaner through the elimination of recalcitrant pharmaceutical residues has been the aim of many studies. Fluoroquinolone antibiotics such as ciprofloxacin, norfloxacin, enrofloxacin, and levofloxacin are among the commonly detected pharmaceuticals in wastewater. Since the presence of these pharmaceuticals in water bodies poses serious risks to living organisms, it is vital to adopt effective wastewater treatment techniques for their complete removal. Electrochemical technologies such as photoelectrocatalysis, electro-Fenton, electrocoagulation, and electrochemical oxidation have been established as techniques capable of the complete removal of organics including pharmaceuticals from wastewater. Hence, this review presents discussions on the recent progress (literature within 2018-2022) in the applications of common electrochemical processes for the degradation of fluoroquinolone antibiotics from wastewater. The fundamentals of these processes are highlighted while the results obtained using the processes are critically discussed. Furthermore, the inherent advantages and limitations of these processes in the mineralization of fluoroquinolone antibiotics are clearly emphasized. Additionally, appropriate recommendations are made toward improving electrochemical technologies for the complete removal of these pharmaceuticals with minimal energy consumption. Therefore, this review will serve as a bedrock for future researchers concerned with wastewater treatments to make informed decisions in the selection of suitable electrochemical techniques for the removal of pharmaceuticals from wastewater.
Collapse
Affiliation(s)
- Benjamin O Orimolade
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Private Bag X6, Florida Science Campus, 1709 Johannesburg, South Africa.
| | - Adewale O Oladipo
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X06, Florida 1710, South Africa
| | - Azeez O Idris
- UNESCO-UNISA Africa Chair in Nanoscience and Nanotechnology College of Graduates Studies, University of South Africa, Pretoria 392, South Africa; Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, Somerset West 7129, Western Cape, South Africa
| | - Feleni Usisipho
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Private Bag X6, Florida Science Campus, 1709 Johannesburg, South Africa
| | - Shohreh Azizi
- UNESCO-UNISA Africa Chair in Nanoscience and Nanotechnology College of Graduates Studies, University of South Africa, Pretoria 392, South Africa; Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, Somerset West 7129, Western Cape, South Africa
| | - Malik Maaza
- UNESCO-UNISA Africa Chair in Nanoscience and Nanotechnology College of Graduates Studies, University of South Africa, Pretoria 392, South Africa; Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, Somerset West 7129, Western Cape, South Africa
| | - Sogolo L Lebelo
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X06, Florida 1710, South Africa
| | - Bhekie B Mamba
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Private Bag X6, Florida Science Campus, 1709 Johannesburg, South Africa
| |
Collapse
|
11
|
Zeng W, Zhang H, Wu R, Liu L, Li G, Liang H. Environment-friendly and efficient electrochemical degradation of sulfamethoxazole using reduced TiO 2 nanotube arrays-based Ti membrane coated with Sb-SnO 2. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130642. [PMID: 36580775 DOI: 10.1016/j.jhazmat.2022.130642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/23/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
This study focused on the preparation, characterization, and sulfamethoxazole (SMX) removal performance of the SnO2-coated reactive electrochemical membrane (REM). This REM was fabricated by loading SnO2 on the reduced TiO2 nanotube arrays (RTNA)-based Ti membrane (TM). Regarding the dopant for SnO2, Sb was more effective in boosting the electrocatalytic activity than Bi, and the energy consumption for Sb-SnO2-coated REM (TM/RTNA/ATO) was lower than Bi-SnO2-coated REM (TM/RTNA/BTO). As for the internal layer, RTNA provided TM/RTNA/ATO with more electroactive surface areas and prolonged the service lifetime. Compared with batch mode, the SMX removal efficiency in flow-through mode was increased up to 8.4-fold. The SMX degradation performances were also affected by fluid velocity, current density, initial SMX concentration, and electrolyte concentration. The synergistic effects of •OH oxidation and direct electron transfer were responsible for the effective removal of SMX. TM/RTNA/ATO was proved to be stable and durable by multi-cycle and accelerated lifetime tests. Its extensive applicability was verified with high removal efficiencies of SMX in the surface water and wastewater effluent. These results demonstrate the promise of TM/RTNA/ATO for water treatment applications.
Collapse
Affiliation(s)
- Weichen Zeng
- National Engineering Research Centre for Bioenergy, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Han Zhang
- National Engineering Research Centre for Bioenergy, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Rui Wu
- Harbin Institute of Technology National Engineering Research Center of Water Resources Co., Ltd, Harbin 150090, China; Guangdong Yuehai Water Investment Co., Ltd, Shenzhen 518021, China
| | - Luming Liu
- Harbin Institute of Technology National Engineering Research Center of Water Resources Co., Ltd, Harbin 150090, China; Guangdong Yuehai Water Investment Co., Ltd, Shenzhen 518021, China
| | - Guibai Li
- National Engineering Research Centre for Bioenergy, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Heng Liang
- National Engineering Research Centre for Bioenergy, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
12
|
Man S, Yin Z, Zhou S, Pameté E, Xu L, Bao H, Yang W, Mo Z, Presser V, Li X. Novel Sb-SnO 2 Electrode with Ti 3+ Self-Doped Urchin-Like Rutile TiO 2 Nanoclusters as the Interlayer for the Effective Degradation of Dye Pollutants. CHEMSUSCHEM 2023; 16:e202201901. [PMID: 36524753 DOI: 10.1002/cssc.202201901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Stable and efficient SnO2 electrodes are very promising for effectively degrading refractory organic pollutants in wastewater treatment. In this regard, we firstly prepared Ti3+ self-doped urchin-like rutile TiO2 nanoclusters (TiO2-x NCs) on a Ti mesh substrate by hydrothermal and electroreduction to serve as an interlayer for the deposition of Sb-SnO2 . The TiO2-x NCs/Sb-SnO2 anode exhibited a high oxygen evolution potential (2.63 V vs. SCE) and strong ⋅OH generation ability for the enhanced amount of absorbed oxygen species. Thus, the degradation results demonstrated its good rhodamine B (RhB), methylene blue (MB), alizarin yellow R (AYR), and methyl orange (MO) removal performance, with the rate constant increased 5.0, 1.9, 1.9, and 4.7 times, respectively, compared to the control Sb-SnO2 electrode. RhB and AYR degradation mechanisms are also proposed based on the results of high-performance liquid chromatography coupled with mass spectrometry and quenching experiments. More importantly, this unique rutile interlayer prolonged the anode lifetime sixfold, given its good lattice match with SnO2 and the three-dimensional concave-convex structure. Consequently, this work paves a new way for designing the crystal form and structure of the interlayers to obtain efficient and stable SnO2 electrodes for addressing dye wastewater problems.
Collapse
Affiliation(s)
- Shuaishuai Man
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
- INM - Leibniz Institute for New Materials, 66123, Saarbrücken, Germany
| | - Zehao Yin
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Shanbin Zhou
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Emmanuel Pameté
- INM - Leibniz Institute for New Materials, 66123, Saarbrücken, Germany
| | - Lei Xu
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Hebin Bao
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Wenjing Yang
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Zhihong Mo
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Volker Presser
- INM - Leibniz Institute for New Materials, 66123, Saarbrücken, Germany
- Department of Materials Science and Engineering, Saarland University, 66123, Saarbrücken, Germany
- Saarene - Saarland Center for Energy Materials and Sustainability, Saarland University, Campus D4 2, 66123, Saarbrücken, Germany
| | - Xueming Li
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| |
Collapse
|
13
|
Li X, Lu S, Zhang G. Three-dimensional structured electrode for electrocatalytic organic wastewater purification: Design, mechanism and role. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130524. [PMID: 36502722 DOI: 10.1016/j.jhazmat.2022.130524] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Considering the growing need in decentralized water treatment, the application of electrocatalytic processes (EP) to achieve organic wastewater purification will be dominant in the near future due to high efficiency, small reactor assembly as well as the flexibility of operation and management. The catalytic performance of electrode materials determines the development of this technology. Among them, the unique three-dimensional (3D) structure electrode shows better performance than two-dimensional (2D) electrode in increasing mass transfer, enhancing adsorption and exposing more active sites. Hence, this review starts with the introduction of definition, classification, advantages and disadvantages of 3D electrode materials. Then a critical discussion on the design and construction of 3D electrode materials for organic wastewater purification application is provided. Next, the removal mechanism of organic pollutants on the surface of 3D electrode, the role of 3D structure, the design of reactor with 3D electrode, the conversion and toxicity of degradation products, electrode energy efficiency, stability and cost, are comprehensively reviewed. At last, current challenges and future perspectives for the development of 3D electrode materials are addressed. We deem that this review will provide a valuable insight into the design and application of 3D electrodes in environmental water purification.
Collapse
Affiliation(s)
- Xuechuan Li
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen (HITSZ), Shenzhen 518055, PR China
| | - Sen Lu
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen (HITSZ), Shenzhen 518055, PR China
| | - Guan Zhang
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen (HITSZ), Shenzhen 518055, PR China.
| |
Collapse
|
14
|
Elimination of pesticide from high salinity wastewater by electrochlorination process: Active chlorine species and scale-up performance. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Fabrication of a novel Ti3C2-modified Sb-SnO2 porous electrode for electrochemical oxidation of organic pollutants. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
16
|
Yang C, Shang S, Li XY. Oxygen-vacancy-enriched substrate-less SnO x/La-Sb anode for high-performance electrocatalytic oxidation of antibiotics in wastewater. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129212. [PMID: 35739734 DOI: 10.1016/j.jhazmat.2022.129212] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Electrocatalytic oxidation is a promising technology for treating toxic organic pollutants in water and wastewater, but conventional Ti-based anodes often exhibit a short service life and low efficiency in application. Oxygen vacancy (OV)-based defect engineering is an effective activation method for enhancing the electrocatalytic activity of electrodes. Herein, the controllable formation of OV on the surface of a freestanding SnO2-Sb anode was achieved by the quantitative doping of La3+ into the SnO2 crystal structure of the anode for high-performance electrochemical wastewater treatment. The resultant SnOx/La-Sb anode degraded nearly 100% moxifloxacin (MOX, 10 mg L-1) in 30 min, with a low energy consumption of 0.09 kWh m-3. The SnOx/La-Sb anode with an OV density of 1.09% had the highest degradation rate constant (0.226 min-1), 8 times higher than that of the SnO2-Sb anode and 16 times higher than that of the state-of-the-art boron-doped diamond anode. La3+ doping-induced OV activated the anode surface for electrochemical reactions by boosting the interfacial electron transfer and •OH generation (103% increase). The novel 3D permeable SnOx/La-Sb anode also exhibited remarkable stability (predicted service life of 59 years) and high-rate performance (>98%) in a continuous flow-through treatment system (<1 min through the anode).
Collapse
Affiliation(s)
- Chao Yang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Shanshan Shang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Xiao-Yan Li
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China; Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.
| |
Collapse
|
17
|
fEffective degradation of amoxicillin by multi-stage flow-through electrochemical system using porous electrodes. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Nabgan W, Saeed M, Jalil AA, Nabgan B, Gambo Y, Ali MW, Ikram M, Fauzi AA, Owgi AHK, Hussain I, Thahe AA, Hu X, Hassan NS, Sherryna A, Kadier A, Mohamud MY. A state of the art review on electrochemical technique for the remediation of pharmaceuticals containing wastewater. ENVIRONMENTAL RESEARCH 2022; 210:112975. [PMID: 35196501 DOI: 10.1016/j.envres.2022.112975] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/29/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Pharmaceutical wastewater is a frequent kind of wastewater with high quantities of organic pollutants, although little research has been done in the area. Pharmaceutical wastewaters containing antibiotics and high salinity may impair traditional biological treatment, resulting in the propagation of antibiotic resistance genes. The potential for advanced oxidation processes (AOPs) to break down hazardous substances instead of present techniques that essentially transfer contaminants from wastewater to sludge, a membrane filter, or an adsorbent has attracted interest. Among a variety of AOPs, electrochemical systems are a feasible choice for treating pharmaceutical wastewater. Many electrochemical approaches exist now to remediate rivers polluted by refractory organic contaminants, like pharmaceutical micro-pollutants, which have become a severe environmental problem. The first part of this investigation provides the bibliometric analysis of the title search from 1970 to 2021 for keywords such as wastewater and electrochemical. We have provided information on relations between keywords, countries, and journals based on three fields plot, inter-country co-authorship network analysis, and co-occurrence network visualization. The second part introduces electrochemical water treatment approaches customized to these very distinct discarded flows, containing how processes, electrode materials, and operating conditions influence the results (with selective highlighting cathode reduction and anodic oxidation). This section looks at how electrochemistry may be utilized with typical treatment approaches to improve the integrated system's overall efficiency. We discuss how electrochemical cells might be beneficial and what compromises to consider when putting them into practice. We wrap up our analysis with a discussion of known technical obstacles and suggestions for further research.
Collapse
Affiliation(s)
- Walid Nabgan
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| | - M Saeed
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - A A Jalil
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| | - B Nabgan
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Y Gambo
- Chemical Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - M W Ali
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - M Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, 54000, Punjab, Pakistan.
| | - A A Fauzi
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - A H K Owgi
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - I Hussain
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Asad A Thahe
- Department of X- Ray and Sonar, Faculty Of Medical Technology, AL-Kitab University, Iraq
| | - Xun Hu
- School of Material Science and Engineering, University of Jinan, Jinan, 250022, PR China
| | - N S Hassan
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - A Sherryna
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Abudukeremu Kadier
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences (CAS), Urumqi, 830011, China.
| | - M Y Mohamud
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| |
Collapse
|
19
|
Li C, Zhu J, Zhao Z, Wang J, Yang Q, Sun H, Jiang B. An efficient and robust flow-through electrochemical Ti4O7 membrane system for simultaneous Cr(VI) reduction and Cr immobilization with membrane cleaning by a periodic polarity reversal strategy. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Wang Z, Zhang Y, Li K, Guo J, Yang C, Liu H, Wang J. In situ coupling of electrochemical oxidation and membrane filtration processes for simultaneous decontamination and membrane fouling mitigation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Maqbool T, Sun M, Chen L, Zhang Z. Exploring the fate of dissolved organic matter at the molecular level in the reactive electrochemical ceramic membrane system using fluorescence spectroscopy and FT-ICR MS. WATER RESEARCH 2022; 210:117979. [PMID: 34953213 DOI: 10.1016/j.watres.2021.117979] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
This research evaluated the performance of reactive electrochemical ceramic membrane (REM) in treating secondary effluent and investigated the fate of dissolved organic matter (DOM) at the molecular level. The role of adsorption, electrosorption, and oxidation in DOM removal was comprehensively elucidated based on fluorescence spectroscopy and high-resolution mass spectrometry (FT-ICR MS). Among the fluorescence components (C1-C3) in secondary effluent, microbial humic-like C2 showed fewer adsorption on the REM surface without applying an electrical potential. The electrosorption helped an enhanced uptake of all DOM components and transformed them onto the electrode surface. The fluorescence components and all three fractions (hydrophilic, transphilic, and hydrophobic) were rapidly degraded, and finished water with stable DOM was obtained. The leading degradation phenomena were the change of the unsaturated compounds to the aliphatic and transformation of large-sized molecules to medium and small-sized ones. Above 70% of the compounds in the secondary effluent acted as precursors, which were mineralized/degraded and transformed products were found on the REM surface and in the finished water. The compounds containing sulfur (CHOS) were easily and preferably degraded/mineralized, followed by the compounds containing nitrogen (CHON) and CHO. The oxidation of DOM led to the extensive formation of organo-chlorinated compounds, which contributed above 80% in products. Overall, the combination of fluorescence spectroscopy and FT-ICR MS provided unique behavior of DOM in the secondary effluent toward electro-oxidation in the REM system. These findings could help explore the potential of REM for different water matrices to project the possible composition of DOM in the finished water.
Collapse
Affiliation(s)
- Tahir Maqbool
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Mingming Sun
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Li Chen
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhenghua Zhang
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|