1
|
Chen J, An H, Hao Y, Wang J, Mao X, Zhang L, Zhang Y, Yan L, Li Z, Liu X. Associations of copper with the risk of preterm birth and the potential mediating effect of serum lipid. J Environ Sci (China) 2025; 156:784-793. [PMID: 40412975 DOI: 10.1016/j.jes.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/29/2024] [Accepted: 11/02/2024] [Indexed: 05/27/2025]
Abstract
The association of copper (Cu) with preterm birth (PTB) and its subtypes, spontaneous preterm birth (SPB) and iatrogenic preterm birth (IPB), are still unclear. In addition, previous studies suggested that serum lipid was associated with both Cu and PTB. Therefore, we explored the association of blood Cu in the first trimester with the risk of PTB and its subtypes, as well as the potential mediating effect of serum lipid using a nested case-control study. The concentrations of Cu in the serum and blood cells, and serum lipids in the first trimester were measured. The concentration of Cu in whole blood was calculated based on hematocrit. Compared to the lowest tertile of Cu concentrations in the first trimester, the highest tertile of Cu significantly increased the risk of SPB with adjusted odds ratios (AORs) of 2.75 (95 % confidence interval (CI): 1.41-5.34) for serum and 3.75 (95 % CI: 1.21-11.60) for whole blood, and significantly increased the risk of IPB with AORs of 3.25 (95 % CI: 1.06-9.94) for blood cells. According to the mediation analysis, the indirect effect of triglyceride (β = 0.016, 95 % CI: 0.0002-0.042) was the only significant effect in the association between Cu and SPB, with the mediating proportion of 9.8 % (95 % CI: 0.2 %-33.4 %). It suggested that a high level of serum Cu may be associated with an increased risk of SPB with a possible mediator of serum triglyceride, and a high level of blood cell Cu may be associated with an increased risk of IPB.
Collapse
Affiliation(s)
- Junxi Chen
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Hang An
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Yongxiu Hao
- Department of Child, Adolescent Health and Maternal Care, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Jiamei Wang
- Department of Gynaecology and Obstetrics, Beijing Haidian Maternal and Child Health Hospital, Beijing 100080, China
| | - Xuequn Mao
- Department of Gynaecology and Obstetrics, Beijing Haidian Maternal and Child Health Hospital, Beijing 100080, China
| | - Le Zhang
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Yali Zhang
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Lailai Yan
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing 100191, China
| | - Zhiwen Li
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China.
| | - Xiaohong Liu
- Department of Gynaecology and Obstetrics, Beijing Haidian Maternal and Child Health Hospital, Beijing 100080, China.
| |
Collapse
|
2
|
Eaves LA, Lodge EK, Rohin WR, Roell KR, Manuck TA, Fry RC. Prenatal metal(loid) exposure and preterm birth: a systematic review of the epidemiologic evidence. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2025:10.1038/s41370-025-00744-8. [PMID: 39863768 DOI: 10.1038/s41370-025-00744-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND Preterm birth (PTB) is a common pregnancy complication associated with significant neonatal morbidity. Prenatal exposure to environmental chemicals, including toxic and/or essential metal(loid)s, may contribute to PTB risk. OBJECTIVE We aimed to summarize the epidemiologic evidence of the associations among levels of arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), manganese (Mn), lead (Pb), and zinc (Zn) assessed during the prenatal period and PTB or gestational age at delivery; to assess the quality of the literature and strength of evidence for an effect for each metal; and to provide recommendations for future research. METHODS We adapted the Navigation Guide methodology and followed PRISMA guidelines. We searched the MEDLINE/PubMed database for epidemiologic studies from 1995 to 2023. We used a customized risk of bias protocol and evaluated the sufficiency of evidence for an effect of each metal(loid) on PTB risk. RESULTS A total of 1206 studies were identified and screened. Of these, 139 were assessed for eligibility by reading the full-text, and 92 studies were ultimately included (arsenic: 40, cadmium: 30, chromium: 11, copper: 21, mercury: 27, manganese: 17, lead: 41, zinc: 18, metal(loid) mixtures: 12). We found sufficient evidence that lead increases the risk of PTB and, while the evidence was limited, suggestive evidence that cadmium and chromium increase the risk of PTB. The evidence was deemed inadequate to determine an effect for the other metal(loid)s. SIGNIFICANCE Future research would benefit from more precise PTB clinical phenotyping, measuring exposure early and longitudinally throughout pregnancy, using an appropriate media for metal(loid)s under study, and evaluating metal mixtures. Given the strength of evidence linking lead exposure and PTB, active and comprehensive prenatal screening for lead exposure among pregnant individuals is warranted. IMPACT By summarizing 92 epidemiologic studies that investigated the associations between metal exposure and preterm birth using the rigorous Navigation Guide methodology, our review provides compelling evidence for a strong link between prenatal lead exposure and preterm birth. Additionally, it suggests potential associations between cadmium and chromium exposure and preterm birth. Given the robust nature of this evidence, there is an urgent need for prenatal screening for lead exposure during pregnancy, along with targeted interventions to reduce exposure. These actions are critical for advancing maternal and child health.
Collapse
Affiliation(s)
- Lauren A Eaves
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Evans K Lodge
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Wendy R Rohin
- Department of Maternal and Child Health, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kyle R Roell
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tracy A Manuck
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rebecca C Fry
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
3
|
Pan K, Xu J, Li F, Yu H, Yu J. The association between mercury exposure during pregnancy and adverse birth outcomes: A systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2025; 264:120357. [PMID: 39551369 DOI: 10.1016/j.envres.2024.120357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/11/2024] [Accepted: 11/11/2024] [Indexed: 11/19/2024]
Abstract
Studies have shown that mercury (Hg) exposure during pregnancy is associated with adverse birth outcomes (ABO) in infants, but the association between the two has not been systematically summarized. Therefore, we conducted a systematic review and meta-analysis of existing observational studies on the association between maternal Hg exposure (MHE) during pregnancy and ABO in infants to evaluate the association between them. We comprehensively searched all relevant literature published in three electronic databases (Web of Science, PubMed, Embase) from 2004 to June 2024. According to the heterogeneity, fixed effect model (I2 ≤ 50 %) or random effect model (I2 > 50 %) was used to pool the associated effect values. The results showed a positive association between MHE and low birth weight (LBW) (OR = 1.079, 95 % CI: 1.032-1.128) and no statistically significant association between and preterm birth (PTB) (OR = 1.044, 95 % CI: 0.956-1.140) and small-for-gestational-age (SGA) (OR = 1.006, 95 % CI: 0.983-1.030). In addition, each 10-fold increase in MHE during pregnancy was associated with abnormal Birth Anthropometrics. These findings suggest that MHE is a risk factor for LBW and is associated with abnormal anthropometric measurements at birth. However, there is insufficient evidence for Hg exposure and SGA, PTB. Further population-based studies are warranted to investigate these associations.
Collapse
Affiliation(s)
- Kai Pan
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Jie Xu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Feng Li
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Huawen Yu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Jie Yu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China.
| |
Collapse
|
4
|
Xu R, Zhang Y, Gao Y, Jia S, Choi S, Xu Y, Gong J. Development of a targeted method for DNA adductome and its application as sensitive biomarkers of ambient air pollution exposure. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135018. [PMID: 38959829 DOI: 10.1016/j.jhazmat.2024.135018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/11/2024] [Accepted: 06/22/2024] [Indexed: 07/05/2024]
Abstract
DNA adducts are widely recognized as biomarkers of exposure to environmental carcinogens and associated health effects in toxicological and epidemiological studies. This study presents a targeted and sensitive method for comprehensive DNA adductome analysis using ultra-high-performance liquid chromatography coupled with triple-quadrupole tandem mass spectrometry (UHPLC-QqQ-MS/MS). The method was developed using calf thymus DNA, with careful optimization of mass spectrometric parameters, chromatographic separation conditions, and pretreatment methods. Ultimately, a targeted method was established for 41 DNA adducts, which showed good linearity (R2 ≥0.992), recovery (80.1-119.4 %), accuracy (81.3-117.8 %), and precision (relative standard deviation <14.2 %). The established method was employed to analyze DNA adducts in peripheral blood cells from pregnant women in Shanxi and Beijing. Up to 23 DNA adducts were successfully detected in samples of varying sizes. From 2 μg of maternal DNA samples, seven specific adducts were identified: 5-methyl-2'-deoxycytidine (5-MedC), 5-hydroxymethyl-2'-deoxycytidine (5-HmdC), N6-methyl-2'-deoxyadenosine (N6-MedA), 8-hydroxy-2'-deoxyguanosine (8-OHdG), 5-hydroxy-2'-deoxycytidine (5-OHdC), 1,N6-etheno-2'-deoxyadenosine (1,N6-εdA), and N2-methyl-2'-deoxyguanosine (N2-MedG). This study reveals that exposure to higher concentrations of ambient air pollutants may elevate the levels of DNA methylation and oxidative damage at different base sites, highlighting the application potential of DNA adducts as sensitive biomarkers of air pollution exposure.
Collapse
Affiliation(s)
- Ruiwei Xu
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Yi Zhang
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Yingfeng Gao
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Shuyu Jia
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Seokho Choi
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Yifan Xu
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Jicheng Gong
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, China.
| |
Collapse
|
5
|
Zhong J, Yang T, Wang Z, Zhang Y, Shen Y, Hu Y, Hong F. Associations between individual and mixed urinary metal exposure and dyslipidemia among Chinese adults: Data from the China Multi-Ethnic Cohort Study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116696. [PMID: 38986334 DOI: 10.1016/j.ecoenv.2024.116696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
The prevalence of dyslipidemia is increasing, and it has become a significant global public health concern. Some studies have demonstrated contradictory relationships between urinary metals and dyslipidemia, and the combined effects of mixed urinary metal exposure on dyslipidemia remain ambiguous. In this study, we examined how individual and combined urinary metal exposure are associated with the occurrence of dyslipidemia. According to the data from the 2018-2019 baseline survey database of the China Multi-Ethnic Cohort (CMEC) Study, a population of 9348 individuals was studied. Inductively coupled plasmamass spectrometry (ICP-MS) was used to measure 21 urinary metal concentrations in the collected adult urinary samples. The associations between urinary metals and dyslipidemia were analyzed by logistic regression, weighted quantile sum regression (WQS), and quantile-based g-computation (qgcomp), controlled for potential confounders to examine single and combined effects. Dyslipidemia was detected in 3231 individuals, which represented approximately 34.6 % of the total population. According to the single-exposure model, Al and Na were inversely associated with the risk of dyslipidemia (OR = 0.95, 95 % CI: 0.93, 0.98; OR = 0.89, 95 % CI: 0.83, 0.95, respectively), whereas Zn, Ca, and P were positively associated (OR = 1.69, 95 % CI: 1.42, 2.01; OR = 1.12, 95 % CI: 1.06, 1.18; OR = 1.21, 95 % CI: 1.09, 1.34, respectively). Moreover, Zn and P were significantly positively associated even after adjusting for these metals, whereas Al and Cr were negatively associated with the risk of dyslipidemia. The results of the WQS and qgcomp analyses showed that urinary metal mixtures were positively associated with the risk of dyslipidemia (OR = 1.26, 95 % CI: 1.15, 1.38; OR = 1.09, 95 % CI: 1.01, 1.19). This positive association was primarily driven by Zn, P, and Ca. In the sensitivity analyses with collinearity diagnosis, interaction, and stratified analysis, the results remained, confirming the reliability of the study findings. In this study, the individual and combined effects of urinary Zn, P, and Ca on dyslipidemia were determined, which provided novel insights into the link between exposure to metals and dyslipidemia.
Collapse
Affiliation(s)
- Jianqin Zhong
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou 561113, China
| | - Tingting Yang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou 561113, China
| | - Ziyun Wang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou 561113, China
| | - Yuxin Zhang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou 561113, China
| | - Yili Shen
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou 561113, China
| | - Yuxin Hu
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou 561113, China
| | - Feng Hong
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou 561113, China.
| |
Collapse
|
6
|
Margiana R, Hamoud Alshahrani S, Kayumova D, Hussien Radie Alawadi A, Hjazi A, Alsalamy A, Qasim QA, Juyal A, Garousi N. Association between maternal exposure to arsenic by drinking water during pregnancy and risk of preterm birth: a systematic review and meta-analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:2947-2956. [PMID: 37967266 DOI: 10.1080/09603123.2023.2280155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 11/02/2023] [Indexed: 11/17/2023]
Abstract
The relation of exposure to arsenic in drinking water during pregnancy to the risk of preterm birth (PTB) was contradictory. This meta-analysis aimed to examine the association between drinking water arsenic and PTB. A systematic search in PubMed and Scopus was performed to achieve all relevant studies. Odds ratios (OR) and 95% confidence intervals (CI) were used to pool data using the random-effect models. Overall, 11 studies with a total sample size of 3,404,189 participants were included in the meta-analysis. Arsenic exposure through drinking water during pregnancy was related to an increased risk of PTB (OR = 1.06; 95%CI = 1.01-1.10 for highest versus lowest category of arsenic), with significant heterogeneity across the studies (I2 = 84.8%, P = 0.001). This finding was supported by cohort studies (OR = 1.05; 95%CI = 1.01-1.10). This meta-analysis proposes that higher arsenic exposure in drinking water may be a risk factor for PTB.
Collapse
Affiliation(s)
- Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | | | - Dilrabo Kayumova
- Department of Obstetrics and Gynecology, Tashkent Medical Academy, Tashkent, Uzbekistan
| | - Ahmed Hussien Radie Alawadi
- College of technical engineering, the Islamic University, Najaf, Iraq
- College of technical engineering, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ali Alsalamy
- College of technical engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna, Iraq
| | | | - Ashima Juyal
- Electronics & Communication engineering, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun, India
| | - Nazila Garousi
- Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
7
|
Zhang C, Yan Y, Zhang C. Evaluation of imprecision in the different detection methods of Zn based on 5 years of data from an external quality assessment program in China. J Trace Elem Med Biol 2024; 84:127451. [PMID: 38636293 DOI: 10.1016/j.jtemb.2024.127451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND This study examines the imprecision of zinc (Zn) measurements across various clinical detection methods by analyzing the external quality assessment (EQA) data from 2018 to 2022. The findings of this study aim to offer recommendations for enhancing Zn measurements. METHODS Participating laboratories were grouped into peer categories based on the detection methods. The robust mean and coefficient of variation (CV) of the samples were calculated following ISO 13528 guidelines. The evaluation criteria for optimal, desirable, and minimum allowable imprecision in Zn estimation are 2.50%, 5.05%, and 7.55%, respectively, based on biological variation. Furthermore, the study examined inter-lab CVs, inter-method bias, and the passing rate. The impact of sample concentration on CVs and the pass rate was also investigated. RESULTS Over the past five years, 4283 laboratories participated in the EQA program, showing a high pass rate that improved as sample concentration increased. Differential pulse polarography (DPP) demonstrated stable and low CVs (0.61-1.86%). Although differential pulse stripping (DPS) was less stable than DPP, it still exhibited a low CV (0.71-3.10%). Graphite furnace atomic absorption spectrometry (GFAAS) and flame atomic absorption spectrometry (FAAS) performed similarly and displayed stable CVs (2.39-4.42%) within the acceptable range of desirable imprecision (5.05%). However, the CVs for ICP-MS were unacceptable in three out of the five years (5.28-6.20%). In 2022, the number of participating laboratories for DDP, DPS, GFAAS, FAAS and ICP-MS is 131, 35, 35, 820 and 72, respectively. CONCLUSION This study provides reliable insights into the imprecision of Zn measurements in clinical laboratories. The findings indicate that additional efforts are required to reduce the imprecision of ICP-MS in Zn measurements.
Collapse
Affiliation(s)
- Chao Zhang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China; Peking Union Medical College, Beijing, PR China.
| | - Ying Yan
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China
| | - Chuanbao Zhang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China.
| |
Collapse
|
8
|
Li N, Yu P, Liu Z, Tao J, Li L, Wang M, Wei H, Zhu Y, Deng Y, Kang H, Li Y, Li X, Liang J, Wang Y, Zhu J. Inverse association between maternal serum concentrations of trace elements and risk of spontaneous preterm birth: a nested case-control study in China. Br J Nutr 2024; 131:1425-1435. [PMID: 38185814 DOI: 10.1017/s0007114523003070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Few studies have evaluated the joint effect of trace elements on spontaneous preterm birth (SPTB). This study aimed to examine the relationships between the individual or mixed maternal serum concentrations of Fe, Cu, Zn, Se, Sr and Mo during pregnancy, and risk of SPTB. Inductively coupled plasma MS was employed to determine maternal serum concentrations of the six trace elements in 192 cases with SPTB and 282 controls with full-term delivery. Multivariate logistic regression, weighted quantile sum regression (WQSR) and Bayesian kernel machine regression (BKMR) were used to evaluate the individual and joint effects of trace elements on SPTB. The median concentrations of Sr and Mo were significantly higher in controls than in SPTB group (P < 0·05). In multivariate logistic regression analysis, compared with the lowest quartile levels of individual trace elements, the third- and fourth-quartile Sr or Mo concentrations were significantly associated with reduced risk of SPTB with adjusted OR (aOR) of 0·432 (95 CI < 0·05). In multivariate logistic regression analysis, compared with the lowest quartile levels of individual trace elements, the third- and fourth-quartile Sr or Mo concentrations were significantly associated with reduced risk of SPTB with adjusted aOR of 0·432 (95 % CI 0·247, 0·756), 0·386 (95 % CI 0·213, 0·701), 0·512 (95 % CI 0·297, 0·883) and 0·559 (95 % CI 0·321, 0·972), respectively. WQSR revealed the inverse combined effect of the trace elements mixture on SPTB (aOR = 0·368, 95 % CI 0·228, 0·593). BKMR analysis confirmed the overall mixture of the trace elements was inversely associated with the risk of SPTB, and the independent effect of Sr and Mo was significant. Our findings suggest that the risk of SPTB decreased with concentrations of the six trace elements, with Sr and Mo being the major contributors.
Collapse
Affiliation(s)
- Nana Li
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu610041, Sichuan, People's Republic of China
| | - Ping Yu
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu610041, Sichuan, People's Republic of China
| | - Zhen Liu
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu610041, Sichuan, People's Republic of China
| | - Jing Tao
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu610041, Sichuan, People's Republic of China
| | - Lu Li
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu610041, Sichuan, People's Republic of China
| | - Meixian Wang
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu610041, Sichuan, People's Republic of China
| | - Hongwei Wei
- Maternal and Child Healthcare Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, People's Republic of China
| | - Yibing Zhu
- Fujian Provincial Maternal and Child Healthcare Hospital, Fuzhou, Fujian, People's Republic of China
| | - Ying Deng
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu610041, Sichuan, People's Republic of China
| | - Hong Kang
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu610041, Sichuan, People's Republic of China
| | - Yuting Li
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu610041, Sichuan, People's Republic of China
| | - Xiaohong Li
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu610041, Sichuan, People's Republic of China
| | - Juan Liang
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu610041, Sichuan, People's Republic of China
| | - Yanping Wang
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu610041, Sichuan, People's Republic of China
| | - Jun Zhu
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu610041, Sichuan, People's Republic of China
| |
Collapse
|
9
|
Ren M, Wu T, Yang S, Gao N, Lan C, Zhang H, Lin W, Su S, Yan L, Zhuang L, Lu Q, Xu J, Han B, Bai Z, Meng F, Chen Y, Pan B, Wang B, Lu X, Fang M. Ascertaining sensitive exposure biomarkers of various metal(loid)s to embryo implantation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123679. [PMID: 38462199 DOI: 10.1016/j.envpol.2024.123679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/08/2024] [Accepted: 02/27/2024] [Indexed: 03/12/2024]
Abstract
Close relationships exist between metal(loid)s exposure and embryo implantation failure (EIF) from animal and epidemiological studies. However, there are still inconsistent results and lacking of sensitive metal(loid) exposure biomarkers associated with EIF risk. We aimed to ascertain sensitive metal(loid) biomarkers to EIF and provide potential biological explanations. Candidate metal(loid) biomarkers were measured in the female hair (FH), female serum (FS), and follicular fluid (FF) with various exposure time periods. An analytical framework was established by integrating epidemiological association results, comprehensive literature searching, and knowledge-based adverse outcome pathway (AOP) networks. The sensitive biomarkers of metal(loid)s along with potential biological pathways to EIF were identified in this framework. Among the concerned 272 candidates, 45 metal(loid)s biomarkers across six time periods and three biomatrix were initially identified by single-metal(loid) analyses. Two biomarkers with counterfactual results according to literature summary results were excluded, and a total of five biomarkers were further determined from 43 remained candidates in mixture models. Finally, four sensitive metal(loid) biomarkers were eventually assessed by overlapping AOP networks information, including Se and Co in FH, and Fe and Zn in FS. AOP networks also identified key GO pathways and proteins involved in regulation of oxygen species biosynthetic, cell proliferation, and inflammatory response. Partial dependence results revealed Fe in FS and Co in FH at their low levels might be potential sensitive exposure levels for EIF. Our study provided a typical framework to screen the crucial metal(loid) biomarkers and ascertain that Se and Co in FH, and Fe and Zn in FS played an important role in embryo implantation.
Collapse
Affiliation(s)
- Mengyuan Ren
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China; Institute of Reproductive and Child Health, School of Public Health Peking University Beijing 100191, P.R. China/ Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing, 100191, China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, 100191, China
| | - Tianxiang Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China; Institute of Reproductive and Child Health, School of Public Health Peking University Beijing 100191, P.R. China/ Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing, 100191, China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, 100191, China
| | - Shuo Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China; Institute of Reproductive and Child Health, School of Public Health Peking University Beijing 100191, P.R. China/ Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing, 100191, China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, 100191, China
| | - Ning Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China; Institute of Reproductive and Child Health, School of Public Health Peking University Beijing 100191, P.R. China/ Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing, 100191, China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, 100191, China
| | - Changxin Lan
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China; Institute of Reproductive and Child Health, School of Public Health Peking University Beijing 100191, P.R. China/ Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing, 100191, China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, 100191, China
| | - Han Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China; Institute of Reproductive and Child Health, School of Public Health Peking University Beijing 100191, P.R. China/ Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing, 100191, China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, 100191, China
| | - Weinan Lin
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China; Institute of Reproductive and Child Health, School of Public Health Peking University Beijing 100191, P.R. China/ Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing, 100191, China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, 100191, China
| | - Shu Su
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China; Institute of Reproductive and Child Health, School of Public Health Peking University Beijing 100191, P.R. China/ Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing, 100191, China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, 100191, China
| | - Lailai Yan
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, 100191, China
| | - Lili Zhuang
- Reproductive Medicine Center, Yuhuangding Hospital of Yantai, Affiliated Hospital of Qingdao University, Yantai, 264000, China
| | - Qun Lu
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China; Center of Reproductive Medicine, Peking University People's Hospital, Beijing, 100044, China
| | - Jia Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Bin Han
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zhipeng Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, 353770, USA
| | - Fangang Meng
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yuanchen Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Bo Pan
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Bin Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China; Institute of Reproductive and Child Health, School of Public Health Peking University Beijing 100191, P.R. China/ Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing, 100191, China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, 100191, China; Laboratory for Earth Surface Processes, College of Urban and Environmental Science, Peking University, Beijing, 100871, China.
| | - Xiaoxia Lu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Science, Peking University, Beijing, 100871, China
| | - Mingliang Fang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| |
Collapse
|
10
|
Huang J, Zheng W, Wang A, Han W, Chen J, An H, Yan L, Li Z, Li G. Maternal cobalt concentration and risk of spontaneous preterm birth: the role of fasting blood glucose and lipid profiles. Front Nutr 2024; 11:1336361. [PMID: 38362103 PMCID: PMC10867207 DOI: 10.3389/fnut.2024.1336361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/05/2024] [Indexed: 02/17/2024] Open
Abstract
Introduction Spontaneous preterm birth (SPB) is a significant cause of neonatal mortality, yet its etiology remains unclear. Cobalt, an essential trace element, might be a risk factor for SPB. This study aims to investigate the relationship between maternal serum cobalt concentration and SPB, and to clarify the role of blood lipids and fasting blood glucose (FBG) in this relationship. Methods We conducted a nested case-control study within the Beijing Birth Cohort Study. Serum samples were obtained from 222 pregnant women with SPB and 224 controls during the first (7-13 weeks of pregnancy) and third trimesters (32-42 weeks of pregnancy). Serum cobalt concentration was determined using inductively coupled plasma mass spectrometry (ICP-MS). Fasting blood glucose and lipids levels were detected using a fully automated biochemical immunoassay instrument. Logistic regression models and linear regression models were established to explore the association between serum cobalt concentration and the risk of SPB in pregnant women, and to test the mediating effect of fasting blood glucose (FBG) and lipids. Results We found that the serum cobalt concentration in mothers with SPB and controls was similar in the first trimester, with values of 0.79 (0.58-1.10) ng/mL and 0.75 (0.51-1.07) ng/mL, respectively. However, in the third trimester, the cobalt concentration increased to 0.88 (0.59-1.14) ng/mL and 0.84 (0.52-1.19) ng/mL, respectively. In the logistic regression model, when considering the third trimester of pregnancy, after adjusting for ethnicity, pre-pregnancy body mass index (BMI), maternal age, education, income, and parity, it was observed that the medium level of cobalt concentration (0.63-1.07 ng/ml) had a negative correlation with the risk of SPB. The odds ratio (OR) was 0.56, with a 95% confidence interval of 0.34-0.90 ng/mL and a p-value of 0.02. This suggests that cobalt in this concentration range played a protective role against SPB. Additionally, it was found that FBG in the third trimester of pregnancy had a partial intermediary role, accounting for 9.12% of the association. However, no relationship between cobalt and SPB risk was found in the first trimester. Conclusion During the third trimester, intermediate levels of maternal cobalt appear to offer protection against SPB, with FBG playing a partial mediating role. To further clarify the optimal cobalt concentrations during pregnancy for different populations, a multi-center study with a larger sample size is necessary. Additionally, exploring the specific mechanism of FBG's mediating role could provide valuable insights for improving the prevention of SPB.
Collapse
Affiliation(s)
- Junhua Huang
- Division of Endocrinology and Metabolism, Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Wei Zheng
- Division of Endocrinology and Metabolism, Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Aili Wang
- Division of Endocrinology and Metabolism, Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, China
- Department of Obstetrics and Gynecology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Weiling Han
- Division of Endocrinology and Metabolism, Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Junxi Chen
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Hang An
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Lailai Yan
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, China
| | - Zhiwen Li
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Guanghui Li
- Division of Endocrinology and Metabolism, Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, China
| |
Collapse
|
11
|
Issah I, Duah MS, Arko-Mensah J, Bawua SA, Agyekum TP, Fobil JN. Exposure to metal mixtures and adverse pregnancy and birth outcomes: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168380. [PMID: 37963536 DOI: 10.1016/j.scitotenv.2023.168380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/04/2023] [Accepted: 11/04/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND Prenatal exposure to metal mixtures is associated with adverse pregnancy and birth outcomes like low birth weight, preterm birth, and small for gestational age. However, prior studies have used individual metal analysis, lacking real-life exposure scenarios. OBJECTIVES This systematic review aims to evaluate the strength and consistency of the association between metal mixtures and pregnancy and birth outcomes, identify research gaps, and inform future studies and policies in this area. METHODS The review adhered to the updated Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA) checklist, along with the guidelines for conducting systematic reviews and meta-analyses of observational studies of etiology (COSMOS-E). Our data collection involved searching the PubMed, MEDLINE, and SCOPUS databases. We utilized inclusion criteria to identify relevant studies. These chosen studies underwent thorough screening and data extraction procedures. Methodological quality evaluations were conducted using the NOS framework for cohort and case-control studies, and the AXIS tool for cross-sectional studies. RESULTS The review included 34 epidemiological studies, half of which focused on birth weight, and the others investigated neonate size, preterm birth, small for gestational age, miscarriage, and placental characteristics. The findings revealed significant associations between metal mixtures (including mercury (Hg), nickel (Ni), arsenic (As), cadmium (Cd), manganese (Mn), cobalt (Co), lead (Pb), zinc (Zn), barium (Ba), cesium (Cs), copper (Cu), selenium (Se), and chromium (Cr)) and adverse pregnancy and birth outcomes, demonstrating diverse effects and potential interactions. CONCLUSION In conclusion, this review consistently establishes connections between metal exposure during pregnancy and adverse consequences for birth weight, gestational age, and other vital birth-related metrics. This review further demonstrates the need to apply mixture methods with caution but also shows that they can be superior to traditional approaches. Further research is warranted to deeper understand the underlying mechanisms and to develop effective strategies for mitigating the potential risks associated with metal mixture exposure during pregnancy.
Collapse
Affiliation(s)
- Ibrahim Issah
- West Africa Center for Global Environmental & Occupational Health, College of Health Sciences, University of Ghana, Legon, Accra, Ghana; Department of Surgery, Tamale Teaching Hospital, Tamale, Ghana.
| | - Mabel S Duah
- West Africa Center for Global Environmental & Occupational Health, College of Health Sciences, University of Ghana, Legon, Accra, Ghana; Department of Biological, Environmental and Occupational Health, School of Public Health, College of Health Sciences, University of Ghana, Legon, Accra, Ghana; West African Center for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - John Arko-Mensah
- West Africa Center for Global Environmental & Occupational Health, College of Health Sciences, University of Ghana, Legon, Accra, Ghana; Department of Biological, Environmental and Occupational Health, School of Public Health, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Serwaa A Bawua
- West Africa Center for Global Environmental & Occupational Health, College of Health Sciences, University of Ghana, Legon, Accra, Ghana; Department of Biological, Environmental and Occupational Health, School of Public Health, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Thomas P Agyekum
- Department of Occupational and Environmental Health and Safety, School of Public Health, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi 00233, Ghana
| | - Julius N Fobil
- West Africa Center for Global Environmental & Occupational Health, College of Health Sciences, University of Ghana, Legon, Accra, Ghana; Department of Biological, Environmental and Occupational Health, School of Public Health, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
12
|
Chen B, Yu P, Chan WN, Xie F, Zhang Y, Liang L, Leung KT, Lo KW, Yu J, Tse GMK, Kang W, To KF. Cellular zinc metabolism and zinc signaling: from biological functions to diseases and therapeutic targets. Signal Transduct Target Ther 2024; 9:6. [PMID: 38169461 PMCID: PMC10761908 DOI: 10.1038/s41392-023-01679-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/15/2023] [Accepted: 10/10/2023] [Indexed: 01/05/2024] Open
Abstract
Zinc metabolism at the cellular level is critical for many biological processes in the body. A key observation is the disruption of cellular homeostasis, often coinciding with disease progression. As an essential factor in maintaining cellular equilibrium, cellular zinc has been increasingly spotlighted in the context of disease development. Extensive research suggests zinc's involvement in promoting malignancy and invasion in cancer cells, despite its low tissue concentration. This has led to a growing body of literature investigating zinc's cellular metabolism, particularly the functions of zinc transporters and storage mechanisms during cancer progression. Zinc transportation is under the control of two major transporter families: SLC30 (ZnT) for the excretion of zinc and SLC39 (ZIP) for the zinc intake. Additionally, the storage of this essential element is predominantly mediated by metallothioneins (MTs). This review consolidates knowledge on the critical functions of cellular zinc signaling and underscores potential molecular pathways linking zinc metabolism to disease progression, with a special focus on cancer. We also compile a summary of clinical trials involving zinc ions. Given the main localization of zinc transporters at the cell membrane, the potential for targeted therapies, including small molecules and monoclonal antibodies, offers promising avenues for future exploration.
Collapse
Affiliation(s)
- Bonan Chen
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Peiyao Yu
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Wai Nok Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Fuda Xie
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Yigan Zhang
- Institute of Biomedical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Li Liang
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Kam Tong Leung
- Department of Pediatrics, The Chinese University of Hong Kong, Hong Kong, China
| | - Kwok Wai Lo
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun Yu
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Gary M K Tse
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
13
|
Lis N, Lamnisos D, Bograkou-Tzanetakou A, Hadjimbei E, Tzanetakou IP. Preterm Birth and Its Association with Maternal Diet, and Placental and Neonatal Telomere Length. Nutrients 2023; 15:4975. [PMID: 38068836 PMCID: PMC10708229 DOI: 10.3390/nu15234975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Preterm birth (PTB), a multi-causal syndrome, is one of the global epidemics. Maternal nutrition, but also neonatal and placental telomere length (TL), are among the factors affecting PTB risk. However, the exact relationship between these factors and the PTB outcome, remains obscure. The aim of this review was to investigate the association between PTB, maternal nutrition, and placental-infant TL. Observational studies were sought with the keywords: maternal nutrition, placental TL, newborn, TL, and PTB. No studies were found that included all of the keywords simultaneously, and thus, the keywords were searched in dyads, to reach assumptive conclusions. The findings show that maternal nutrition affects PTB risk, through its influence on maternal TL. On the other hand, maternal TL independently affects PTB risk, and at the same time PTB is a major determinant of offspring TL regulation. The strength of the associations, and the extent of the influence from covariates, remains to be elucidated in future research. Furthermore, the question of whether maternal TL is simply a biomarker of maternal nutritional status and PTB risk, or a causative factor of PTB, to date, remains to be answered.
Collapse
Affiliation(s)
- Nikoletta Lis
- Department of Health Sciences, European University Cyprus, Nicosia 2404, Cyprus; (N.L.); (D.L.)
- Maternity Clinic, Cork University Maternity Hospital, T12 YE02 Cork, Ireland
| | - Demetris Lamnisos
- Department of Health Sciences, European University Cyprus, Nicosia 2404, Cyprus; (N.L.); (D.L.)
| | | | - Elena Hadjimbei
- Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus;
| | - Irene P. Tzanetakou
- Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus;
| |
Collapse
|
14
|
Liu Y, Wang T, Ge Y, Shen H, Li J, Qiao C. Individual and combined association between nutritional trace metals and the risk of preterm birth in a recurrent pregnancy loss cohort. Front Nutr 2023; 10:1205748. [PMID: 38099181 PMCID: PMC10720726 DOI: 10.3389/fnut.2023.1205748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 10/30/2023] [Indexed: 12/17/2023] Open
Abstract
Background Recurrent pregnancy loss (RPL) was associated with an elevated risk of pregnancy complications, particularly preterm birth (PTB). However, the risk factors associated with PTB in RPL remained unclear. Emerging evidence indicated that maternal exposure to metals played a crucial role in the development of PTB. The objective of our study was to investigate the individual and combined associations of nutritional trace metals (NTMs) during pregnancy with PTB in RPL. Methods Using data from a recurrent pregnancy loss cohort (n = 459), propensity score matching (1:3) was performed to control for covariates. Multiple logistic regression and multiple linear regression were employed to identify the individual effects, while elastic-net regularization (ENET) and Bayesian kernel machine regression (BKMR) were used to examine the combined effects on PTB in RPL. Results The logistic regression model found that maternal exposure to copper (Cu) (quantile 4 [Q4] vs. quantile 1 [Q1], odds ratio [OR]: 0.21, 95% confidence interval [CI]: 0.05, 0.74) and zinc (Zn) (Q4 vs. Q1, OR: 0.19, 95%CI: 0.04, 0.77) was inversely associated with total PTB risk. We further constructed environmental risk scores (ERSs) using principal components and interaction terms derived from the ENET model to predict PTB accurately (p < 0.001). In the BKMR model, we confirmed that Cu was the most significant component (PIP = 0.85). When other metals were fixed at the 25th and 50th percentiles, Cu was inversely associated with PTB. In addition, we demonstrated the non-linear relationships of Zn with PTB and the potential interaction between Cu and other metals, including Zn, Ca, and Fe. Conclusion In conclusion, our study highlighted the significance of maternal exposure to NTMs in RPL and its association with PTB risk. Cu and Zn were inversely associated with PTB risk, with Cu identified as a crucial factor. Potential interactions between Cu and other metals (Zn, Ca, and Fe) further contributed to the understanding of PTB etiology in RPL. These findings suggest opportunities for personalized care and preventive interventions to optimize maternal and infant health outcomes.
Collapse
Affiliation(s)
- Yilin Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Reproductive and Genetic Medicine, National Health Commission, Shenyang, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Shenyang, China
- Research Center of China Medical University Birth Cohort, China Medical University, Shenyang, China
| | - Tingting Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Reproductive and Genetic Medicine, National Health Commission, Shenyang, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Shenyang, China
- Research Center of China Medical University Birth Cohort, China Medical University, Shenyang, China
| | - Yunpeng Ge
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Reproductive and Genetic Medicine, National Health Commission, Shenyang, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Shenyang, China
- Research Center of China Medical University Birth Cohort, China Medical University, Shenyang, China
| | - Hongfei Shen
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Reproductive and Genetic Medicine, National Health Commission, Shenyang, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Shenyang, China
- Research Center of China Medical University Birth Cohort, China Medical University, Shenyang, China
| | - Jiapo Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Reproductive and Genetic Medicine, National Health Commission, Shenyang, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Shenyang, China
- Research Center of China Medical University Birth Cohort, China Medical University, Shenyang, China
| | - Chong Qiao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Reproductive and Genetic Medicine, National Health Commission, Shenyang, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Shenyang, China
- Research Center of China Medical University Birth Cohort, China Medical University, Shenyang, China
| |
Collapse
|
15
|
Chen J, Wang A, An H, Han W, Huang J, Zheng W, Yan L, Li Z, Li G. Association between light rare earth elements in maternal plasma and the risk of spontaneous preterm birth: a nested case-control study from the Beijing birth cohort study. Environ Health 2023; 22:73. [PMID: 37872585 PMCID: PMC10591387 DOI: 10.1186/s12940-023-01027-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/14/2023] [Indexed: 10/25/2023]
Abstract
BACKGROUND Parental exposure to rare earth elements (REEs) could increase the risk of premature rupture of membranes, a major cause of spontaneous preterm birth (SPB). In addition, different subtypes of SPB, such as spontaneous preterm labor (SPL) and preterm premature rupture of membranes (PPROM), may have different susceptibility to environmental exposure. Therefore, we investigated the potential associations between REE exposure in different trimesters and SPB and its subtypes. METHODS A nested case-control study was performed. We included 244 women with SPB as cases and 244 women with full-term delivery as controls. The plasma concentrations of light REEs were measured in the first and third trimesters. Logistic regression was used to analyze the associations between single REE levels and SPB, and Bayesian kernel machine regression (BKMR) was used to analyze the mixed-exposure effect. RESULTS Exposure to light REEs was associated with SPB and its subtypes only in the third trimester. Specifically, the intermediate- and highest-tertile concentration groups of La and the highest-tertile concentration group of Sm were associated with an increased risk of SPL, with adjusted odds ratios (AORs) of 2.00 (95% CIs: 1.07-3.75), 1.87 (95% CIs: 1.01-3.44), and 1.82 (95% CIs: 1.00-3.30), respectively. The highest-tertile concentration group of Pr was associated with an increased risk of PPROM, with an AOR of 1.69 (95% CIs: 1.00-2.85). Similar results were also found in BKMR models. CONCLUSIONS La and Sm levels in plasma may be associated with the risk of SPL, and Pr levels in plasma may be associated with the risk of PPROM.
Collapse
Affiliation(s)
- Junxi Chen
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, 100191, PR China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, PR China
| | - Aili Wang
- Division of Endocrinology and Metabolism, Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100026, PR China
- Beijing Luhe Hospital, Capital Medical University, Beijing, 101100, PR China
| | - Hang An
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, 100191, PR China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, PR China
| | - Weiling Han
- Division of Endocrinology and Metabolism, Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100026, PR China
| | - Junhua Huang
- Division of Endocrinology and Metabolism, Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100026, PR China
| | - Wei Zheng
- Division of Endocrinology and Metabolism, Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100026, PR China
| | - Lailai Yan
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, 100191, PR China
| | - Zhiwen Li
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, 100191, PR China.
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, PR China.
| | - Guanghui Li
- Division of Endocrinology and Metabolism, Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100026, PR China.
| |
Collapse
|
16
|
Liu B, Cai F, Tang B, Li J, Yan X, Du D, Zheng J, Ren M, Yu Y. Maternal hair segments reveal metal(loid) levels over the course of pregnancy: a preliminary study in Southern China. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:1684-1693. [PMID: 37705410 DOI: 10.1039/d3em00279a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Characterization of metal(loid) variation during pregnancy and identification of the affecting factors are important for assessing pregnancy exposures in epidemiological studies. In this study, maternal hair was collected in three segments (each 3 cm) from pregnant women in Guangzhou, China. Ten metal(loid)s, including six essential trace metal(loid)s and four toxic trace metal(loid)s, were analyzed to investigate the levels of various metal(loid)s during pregnancy and the factors that influence them. Strong pairwise correlations were observed between manganese (Mn), cobalt (Co), and vanadium (V), between selenium (Se), arsenic (As), and antimony (Sb), and between cadmium (Cd) and lead (Pb). All metal(loid)s except for Se, Mn, and Co showed strong correlations among the three hair segments, and most of the metal(loid)s had good reproducibility, with intraclass correlation coefficients (ICCs) ranging from 0.510 to 0.931, except for As (ICC = 0.334), Mn (ICC = 0.231), and Co (ICC = 0.235). Zn levels decreased, while Sb increased, in maternal hair during pregnancy. Maternal sociodemographic characteristics and dietary intake affected metal(loid) levels in maternal hair. These results provide foundational data for using maternal hair segmental analysis to evaluate exposure variation to metal(loid)s during pregnancy and the potential factors associated with them.
Collapse
Affiliation(s)
- Bingqing Liu
- The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, P. R. China
| | - Fengshan Cai
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, P. R. China.
| | - Bin Tang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, P. R. China.
| | - Jialu Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, P. R. China.
- School of Public Health, Key Laboratory of Environmental Pollution and Disease Monitoring of Ministry of Education, Guizhou Medical University, Guiyang 550000, P. R. China
| | - Xiao Yan
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, P. R. China.
- School of Public Health, Key Laboratory of Environmental Pollution and Disease Monitoring of Ministry of Education, Guizhou Medical University, Guiyang 550000, P. R. China
| | - Dongwei Du
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, P. R. China.
| | - Jing Zheng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, P. R. China.
- School of Public Health, Key Laboratory of Environmental Pollution and Disease Monitoring of Ministry of Education, Guizhou Medical University, Guiyang 550000, P. R. China
| | - Mingzhong Ren
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, P. R. China.
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, P. R. China.
| |
Collapse
|
17
|
Li M, Ma Y, Du D, Yan X, Luo W, Xu R, Ren M, Zheng J, Yu Y. Spatial distribution, impact factors, and potential health implications of trace elements in human hair from capital residents in China. CHEMOSPHERE 2023; 328:138355. [PMID: 36907493 DOI: 10.1016/j.chemosphere.2023.138355] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
We analyzed the levels, spatial distribution, impact factors, source apportionment, and potential health implications of trace elements (V, Zn, Cu, Mn, Ni, Mo, and Co) in 1202 human hair samples of urban residents aged 4-55 from 29 cities in China. The median values of seven trace elements in hair were found in the following increasing order: Co (0.02 μg/g) < V (0.04 μg/g) < Mo (0.05 μg/g) < Ni (0.32 μg/g) < Mn (0.74 μg/g) < Cu (9.63 μg/g) < Zn (157 μg/g). The spatial distribution of these trace elements in the hair from the six geographical subdivisions varied depending on the exposure sources and impact factors. Principal component analysis (PCA) revealed that Cu, Zn, and Co in the hair samples of urban residents were primarily derived from food, whereas V, Ni, and Mn were attributed to industrial activities and food. Majority of the hair samples (up to 81%) from North China (NC) exceeded the recommended value for V content, whereas up to 59.2%, 51.3%, and 31.6% samples from Northeast China (NE) exceeded the recommended values for Co, Mn, and Ni contents, respectively. The levels of Mn, Co, Ni, Cu, and Zn were significantly higher in female hair than those in male hair, whereas the levels of Mo were higher in male than in female hair (p < 0.01). Furthermore, significantly higher Cu/Zn ratios were observed in the hair of male residents than those in the female residents (p < 0.001), indicating a higher health risk for male residents.
Collapse
Affiliation(s)
- Min Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Group of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, PR China
| | - Yan Ma
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Group of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, PR China
| | - Dongwei Du
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Group of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, PR China
| | - Xiao Yan
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Group of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, PR China.
| | - Weikeng Luo
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Group of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, PR China
| | - Rongfa Xu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Group of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, PR China.
| | - Mingzhong Ren
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Group of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, PR China
| | - Jing Zheng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Group of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, PR China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Group of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, PR China
| |
Collapse
|
18
|
Li D, Jiang T, Wang X, Yin T, Shen L, Zhang Z, Zou W, Liu Y, Zong K, Liang D, Cao Y, Xu X, Liang C, Ji D. Serum Essential Trace Element Status in Women and the Risk of Endometrial Diseases: a Case-Control Study : Serum Essential Trace Element Status in Women and the Risk of Endometrial Diseases: a Case-Control Study. Biol Trace Elem Res 2023; 201:2151-2161. [PMID: 35725996 DOI: 10.1007/s12011-022-03328-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 06/11/2022] [Indexed: 11/02/2022]
Abstract
Endometrial diseases, including uterine fibroids, polyps, intrauterine adhesion, endometritis, etc., are the major causes of infertility among women. However, the association between essential trace element status in women and the risk of endometrial disease is limited and unclear. This study aimed to investigate this association using a case-control study design; a total of 302 women patients with endometrial diseases and 302 healthy women were included. Compared to women in the control group, serum selenium (Se) (p = 0.024) and zinc (Zn) (p = 0.017) levels were significantly lower, while copper (Cu) (p = 0.004) and molybdenum (Mo) (p = 0.005) levels were significantly higher among women with endometrial diseases. In addition, compared to women in the first quartile of the copper/zinc (Cu/Zn) ratio value group, the adjusted ORs (95% CIs) of endometrial diseases were 1.50 (1.05, 2.14), 1.68 (1.18, 2.39), and 1.47 (1.02, 2.10), respectively, in the second, third, and fourth quartile of the Cu/Zn ratio value group (p trend = 0.047). In addition, the results from restricted cubic splines showed that the dose-response relationships of serum levels of these essential elements with the risk of endometrial diseases were nonlinear for Se, Cu, and Zn and relatively linear for Mo and Cu/Zn ratio. The present study showed serum levels of Zn and Se among women with endometrial diseases were significantly lower compared to that among healthy women, while serum levels of Cu and Mo were significantly higher, in addition, the serum Cu/Zn ratio value was also significantly and positively associated with the risk of endometrial diseases.
Collapse
Affiliation(s)
- Danyang Li
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Tingting Jiang
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xin Wang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Tao Yin
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Lingchao Shen
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Zhikang Zhang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Weiwei Zou
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yajing Liu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Kai Zong
- Technical Center of Hefei Customs District, No. 329 Tunxi Road, Hefei, 230022, Anhui, China
| | - Dan Liang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xiaofeng Xu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China.
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Chunmei Liang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China.
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Dongmei Ji
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China.
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
19
|
Tian X, Shan X, Ma L, Zhang C, Wang M, Zheng J, Lei R, He L, Yan J, Li X, Bai Y, Hu K, Li S, Niu J, Luo B. Mixed heavy metals exposure affects the renal function mediated by 8-OHG: A cross-sectional study in rural residents of China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120727. [PMID: 36427825 DOI: 10.1016/j.envpol.2022.120727] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/07/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
Heavy metals are important risk factors for kidney, but their co-exposure effect on kidney and related mechanism remain unclear. This study evaluated the relationship between heavy metals and renal function, and the feasible mediation effect of oxidative stress. Based on the Dongdagou-Xinglong cohort, participants were recruited and their information were collected through questionnaires and physical examinations. The urine concentration of heavy metals like Cobalt, Nickel, Molybdenum, Cadmium, Antimony, Copper, Zinc, Mercury, Lead, Manganese, and renal injury biomarkers like β2-microglobulin, β-N-Acetylglucosaminidase, retinol-binding protein, 8-hydroxyguanine (8-OHG) were measured and corrected by creatinine. Linear regression was conducted to analyze the relationship between metals and renal biomarkers. Bayesian kernel machine regression, weighted quantile sum and quantile-based g-computation were applied to analyze the association between metal mixtures and renal biomarkers. Finally, the mediating effect of 8-OHG was analyzed through the mediation model. We found that these metals were positively related with renal biomarkers, where copper showed the strongest relationship. The co-exposure models showed that renal biomarkers increased with the concentration of mixtures, particularly for cadmium, copper, mercury, manganese. In addition, the proportion of 8-OHG in mediating effect of metals on renal function ranged from 2.6% to 86.9%. Accordingly, the renal function damage is positively associated with metals, and 8-OHG may play an important mediating role.
Collapse
Affiliation(s)
- Xiaoyu Tian
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Xiaobing Shan
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Li Ma
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Chenyang Zhang
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Mei Wang
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Jie Zheng
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Ruoyi Lei
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Li He
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Jun Yan
- The First School of Clinical Medical, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Xun Li
- The First School of Clinical Medical, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Yanjun Bai
- Silong Township Health Center in Baiyin City, Baiyin, Gansu, 730910, China
| | - Keqin Hu
- Mapo Township Health Center in Lanzhou City, Lanzhou, Gansu, 730115, China
| | - Sheng Li
- Public Health Department, The First People's Hospital of Lanzhou City, Lanzhou, Gansu, 730050, China
| | - Jingping Niu
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Bin Luo
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
20
|
Wang Z, Huang S, Zhang W, Zeng X, Chu C, Li Q, Cui X, Wu Q, Dong G, Huang J, Liu L, Tan W, Shang X, Kong M, Deng F. Chemical element concentrations in cord whole blood and the risk of preterm birth for pregnant women in Guangdong, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114228. [PMID: 36306619 DOI: 10.1016/j.ecoenv.2022.114228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Maternal exposure to chemical elements, including essential and non-essential elements, have been found to be associated with preterm births (PTB). However, few studies have measured element concentrations in cord whole blood, which reflects activity at the maternal-fetal interface and may be biologically associated with PTBs. In this study, we determined concentrations of 21 elements in cord whole blood and explored the associations between element concentrations and PTB in a nested case-control study within a birth cohort in Guangdong, China. Finally, 515 preterm infants and 595 full-term infants were included. We performed single-element and multi-element logistic regressions to evaluate linear relationships between element concentrations and PTB. According to the results of single-element models, most essential elements (including K, Ca, Si, Zn, Se, Sr and Fe) were negatively associated with PTB, while Cu, V, Co and Sn were positively associated with PTB. Of the non-essential elements, Sb, Tl, and U were positively associated with PTB, while Pb was negatively associated with PTB. The multi-element model results for most elements were similar, except that the association between Mg and PTB was shown to be significantly positive, and the association for Cu became much larger. A possible explanation is that the effects of Mg and Cu may be influenced by other elements. We performed restricted cubic spline (RCS) regressions and found significantly non-linear exposure-response relationships for Mg, Se, Sr, K and Sb, indicating that the effects of these elements on PTB are not simply detrimental or beneficial. We also examined the joint effect using a Bayesian kernel machine regression (BKMR) model and found the risk of PTB decreased significantly with element mixture concentration when lnC was larger than the median. Bivariate interaction analysis suggested antagonistic effects of Sb on Zn and Sr, which may be attributed to Sb negating the antioxidant capacity of Zn and Sr. This study provides additional evidence for the effect of element exposures on PTB, and will have implications for the prevention of excessive exposures or inappropriate element supplementation during pregnancy.
Collapse
Affiliation(s)
- Zhaokun Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Shaodan Huang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Wenlou Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Xiaowen Zeng
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Chu Chu
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qingqing Li
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xinxin Cui
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qizhen Wu
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Guanghui Dong
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jinbo Huang
- Department of Gynaecology and Obstetrics, Maternal and Child Health Hospital of Maoming City, Maoming 525000, China
| | - Liling Liu
- Department of Reproductive Medicine and Genetics Center. The People's Hospital of Guangxi Zhuang Autonomous Region, 6 Taoyuan Road, Nanning, 530016, Guangxi, China
| | - Weihong Tan
- Department of Reproductive Medicine and Genetics Center. The People's Hospital of Guangxi Zhuang Autonomous Region, 6 Taoyuan Road, Nanning, 530016, Guangxi, China
| | - Xuejun Shang
- Department of Andrology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, 210002, China
| | - Minli Kong
- Department of Gynaecology and Obstetrics, Maternal and Child Health Hospital of Maoming City, Maoming 525000, China.
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China.
| |
Collapse
|
21
|
Wang R, Long T, He J, Xu Y, Wei Y, Zhang Y, He X, He M. Associations of multiple plasma metals with chronic kidney disease in patients with diabetes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114048. [PMID: 36063616 DOI: 10.1016/j.ecoenv.2022.114048] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/14/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
As common contaminants, metals are non-negligible risk factors for diabetes and chronic kidney disease. However, whether there is an association between multiple metals exposure and incident chronic kidney disease (CKD) risk in patients with diabetes is unclear. We conducted a prospective study to evaluate these associations. In total, 3071 diabetics with baseline estimated glomerular filtration rate (eGFR) ≥ 60 mL/min/1.73 m2 from the Dongfeng-Tongji cohort were included. We measured baseline plasma concentrations of 23 metals and investigated the associations between plasma metal concentrations and CKD in diabetics using logistic regression, the least absolute shrinkage and selection operator (LASSO), and the Bayesian Kernel Machine Regression (BKMR) models. During average 4.6 years of follow-up, 457 diabetics developed CKD (14.9 %). The three models consistently found plasma levels of zinc, arsenic, and rubidium had a positive association with incident CKD risk in patients with diabetes, while titanium, cadmium, and lead had an inverse correlation. The results of BKMR showed a significant and positive overall effect of 23 metals on the risk of CKD, when all of the metals were above the 50th percentile as compared to the median value. In addition, potential interactions of zinc and arsenic, zinc and cadmium, zinc and lead, titanium and arsenic, and cadmium and lead on CKD risk were observed. In summary, we found significant associations of plasma titanium, zinc, arsenic, rubidium, cadmium, and lead with CKD in diabetes and interactions between these metals except for rubidium. Co-exposure to multiple metals was associated with increased CKD risk in diabetics.
Collapse
Affiliation(s)
- Ruixin Wang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Tengfei Long
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Jia He
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; Department of Public Health, Shihezi University School of Medicine, Shihezi 832000, Xinjiang, China
| | - Yali Xu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Yue Wei
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Ying Zhang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xiangjing He
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Meian He
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| |
Collapse
|
22
|
Jin S, Hu C, Zheng Y. Maternal serum zinc level is associated with risk of preeclampsia: A systematic review and meta-analysis. Front Public Health 2022; 10:968045. [PMID: 35979462 PMCID: PMC9376590 DOI: 10.3389/fpubh.2022.968045] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/12/2022] [Indexed: 11/26/2022] Open
Abstract
Background Preeclampsia (PE) is a multi-organ syndrome that onsets in the second half of pregnancy. It is the second leading cause of maternal death globally. The homeostasis of zinc (Zn) levels is important for feto-maternal health. Objective We aimed to collect all studies available to synthesize the evidence regarding the association between maternal Zn levels and the risk of preeclampsia. Methods A systematic review and meta-analysis was conducted via searching seven electronic databases [PubMed, Web of Science, Embase, African Journals Online (AJOL), ClinicalTrial.gov, and two Chinese databases: Wanfang and Chinese National Knowledge Infrastructure, CNKI]. Studies reporting maternal serum Zn levels in pregnant women with or without preeclampsia were included. Eligible studies were assessed through Newcastle-Ottawa Scale (NOS) and the meta-analysis was performed via RevMan and Stata. The random-effects method (REM) was used for the meta-analysis with 95% confidence interval (CI). The pooled result was assessed using standard mean difference (SMD). The heterogeneity test was carried out using I 2 statistics, and the publication bias was evaluated using Begg's and Egger's test. Meta-regression and sensitivity analysis was performed via Stata software. Results A total of 51 studies were included in the final analysis. 6,947 participants from 23 countries were involved in our study. All studies went through the quality assessment. The pooled results showed that maternal serum Zn levels were lower in preeclamptic women than in healthy pregnant women (SMD: -1.00, 95% CI: -1.29, -0.70). Sub-group analysis revealed that geographical, economic context, and disease severity may further influence serum Zn levels and preeclampsia. Limitations There are significant between-study heterogeneity and publication bias among included studies. Conclusions A lower level of maternal Zn was associated with increased risks of preeclampsia. The associations were not entirely consistent across countries and regions worldwide. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=337069, Identifier: CRD42022337069.
Collapse
Affiliation(s)
- Senjun Jin
- Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Chaozhou Hu
- Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yanmei Zheng
- Center for Reproductive Medicine, Department of Obstetrics, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| |
Collapse
|
23
|
Zhong Z, Yang Q, Sun T, Wang Q. A Global Perspective of Correlation Between Maternal Copper Levels and Preeclampsia in the 21st Century: A Systematic Review and Meta-Analysis. Front Public Health 2022; 10:924103. [PMID: 35832281 PMCID: PMC9271744 DOI: 10.3389/fpubh.2022.924103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/26/2022] [Indexed: 12/04/2022] Open
Abstract
Background: Preeclampsia (PE) is a common multi-system disorder in pregnancy and a major cause of maternal and perinatal morbidity and mortality globally. Copper is a crucial micronutrient for human health. Methods A systematic review was performed according to Preferred Reporting Item for Systematic Reviews and Meta-analysis (PRISMA) guidelines to synthesize the best available evidence regarding the correlation between maternal copper levels and PE from women with different geographical and economic backgrounds. Results A total of 34 studies containing 2,471 women with PE and 2,888 healthy pregnant controls across 16 countries were included for research. All studies were systematically reviewed and assessed with the Newcastle-Ottawa Scale (NOS), The Agency of Healthcare for Research and Quality (AHRQ) assessment tools according to the study types. Globally, there was no significant difference in maternal serum copper levels between women with PE and control (Mean difference 5.46, 95% CI −9.63, 20.54). Sub-group analysis from geographical and economic perspectives revealed contrasting results. In conclusion, copper is associated with PE, but the levels of copper leading to increased risk of PE varied across regions and economic development. Conclusions The deranged maternal copper levels are correlated with risks of PE, but it presents variously across different geographical and economic contexts. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=306536. Identifier: CRD42022306536.
Collapse
Affiliation(s)
- Zixing Zhong
- Department of Obstetrics, Center for Reproductive Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Qingmei Yang
- Bengbu Medical College, Bengbu, China
- Department of Reproductive Endocrinology, Center for Reproductive Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Tao Sun
- Department of Obstetrics, Anji Maternity and Child Healthcare Hospital, Huzhou, China
| | - Qianqian Wang
- Department of Obstetrics, Center for Reproductive Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
- *Correspondence: Qianqian Wang
| |
Collapse
|
24
|
Ning Y, Hu M, Chen S, Zhang F, Yang X, Zhang Q, Gong Y, Huang R, Liu Y, Chen F, Pei L, Guo X, Kang L, Wang X, Zhang Y, Wang X. Investigation of selenium nutritional status and dietary pattern among children in Kashin-Beck disease endemic areas in Shaanxi Province, China using duplicate portion sampling method. ENVIRONMENT INTERNATIONAL 2022; 164:107255. [PMID: 35561595 DOI: 10.1016/j.envint.2022.107255] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/12/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVES Selenium deficiency is a primary risk factor of Kashin-Beck disease (KBD). This study aimed to investigate whether children in endemic areas could maintain sufficient selenium intake after termination of selenium supplement administration, and evaluate their comprehensive nutritional status and dietary structure. METHODS Duplicate portion sampling combined with a questionnaire was adopted to collect data on categories and quantity of all food ingested in three consecutive days. Occipital hair was also collected to detect selenium content by hydride generation atomic fluorescence spectrometry (HGAFS). CDGSS3.0 software and factor analysis were integrated to assess the children's comprehensive nutritional status and dietary structure. RESULTS This study included 240 sex-matched (1:1) children aged 7-12 years from KBD endemic (n = 120) and non-endemic (n = 120) areas. Overall, 720 solid food, 720 liquid, and 240 hair samples were collected for selenium determination. The mean selenium level in hair of children in endemic areas (0.38 ± 0.16 mg/kg) was significantly lower than that in children in non-endemic areas (0.56 ± 0.28 mg/kg, Z = -5.249, p < 0.001). The dietary selenium intake of children in endemic areas was 40.0% lower than that in children in non-endemic areas (Z = -9.374, p < 0.001). Children in endemic areas consumed significantly less diverse dietary items leading to significantly less intake of multiple nutrients compared to children in non-endemic areas. CONCLUSIONS The dietary selenium intake of most children in endemic areas was less than the recommended amount. The dietary structure of children was undiversified, which limited the intake of multiple nutrients. Therefore, comprehensive nutrition rather than sole selenium intake should be the primary concern in the future.
Collapse
Affiliation(s)
- Yujie Ning
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, 710061, PR China
| | - Minhan Hu
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, 710061, PR China
| | - Sijie Chen
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, 710061, PR China
| | - Feiyu Zhang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, 710061, PR China
| | - Xiaodong Yang
- Shaanxi Provincial Institute for Endemic Disease Prevention and Control, Xi'an 710003, PR China.
| | - Qingping Zhang
- Shaanxi Provincial Institute for Endemic Disease Prevention and Control, Xi'an 710003, PR China
| | - Yi Gong
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China
| | - Ruitian Huang
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China
| | - Yanli Liu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China
| | - Feihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China
| | - Leilei Pei
- Department of Epidemiology and Health Statistics, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China
| | - Xiong Guo
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, 710061, PR China.
| | - Lianke Kang
- Center for Disease Control and Prevention of Qishan, Baoji 722400, PR China
| | - Xinyi Wang
- Center for Disease Control and Prevention of Hantai, Hanzhong 723000, PR China
| | - Yan Zhang
- Center for Disease Control and Prevention of Ningshan, Ankang 711699, PR China
| | - Xi Wang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, 710061, PR China; Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China.
| |
Collapse
|
25
|
Lu Y, Zhang Y, Guan Q, Xu L, Zhao S, Duan J, Wang Y, Xia Y, Xu Q. Exposure to multiple trace elements and miscarriage during early pregnancy: A mixtures approach. ENVIRONMENT INTERNATIONAL 2022; 162:107161. [PMID: 35219936 DOI: 10.1016/j.envint.2022.107161] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Exposure to some conventional trace elements has been found to be associated with miscarriage; however, evidence for combined exposure is inconclusive. Therefore, it is important to explore the joint associations between toxic and essential trace elements and miscarriage. METHODS This cross-sectional study measured a wide range of element levels in the whole blood of pregnant women by using inductively coupled plasma mass spectrometry. The associations between individual elements and miscarriage were appraised using logistic regression model. Multi-exposure models, including Bayesian kernel machine regression (BKMR) and weighted quantile sum regression (WQS), were used to explore the mixed exposure to elements. Furthermore, grouped weighted quantile sum (GWQS) considered multiple elements with different magnitudes and directions of associations. RESULTS In logistic regression, the odds ratios (ORs) with a 95% confidence interval (CI) in the highest quartiles were 5.45 (2.00, 15.91) for barium, 0.28 (0.09, 0.76) for copper, and 0.32 (0.12, 0.83) for rubidium. These exposure-outcome associations were confirmed and supplemented by BKMR, which indicated a positive association for barium and negative associations for copper and rubidium. In WQS, a positive association was found between mixed elements and miscarriage (OR: 1.71; 95% CI: 1.07, 2.78), in which barium (75.7%) was the highest weighted element. The results of GWQS showed that the toxic trace element group dominated by barium was significantly associated with increased ORs (OR: 2.71; 95% CI: 1.74, 4.38). Additionally, a negative association was observed between the essential trace element group and miscarriage (OR: 0.32; 95% CI: 0.18, 0.54), with rubidium contributing the most to the result. CONCLUSIONS As a toxic trace element, barium was positively associated with miscarriage both by individual and multiple evaluations, while essential trace elements, particularly rubidium and copper, exhibited negative associations. Our findings provide significant evidence for exploring the effects of trace elements on miscarriage.
Collapse
Affiliation(s)
- Yingying Lu
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Yuqing Zhang
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Quanquan Guan
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Lu Xu
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Shuangshuang Zhao
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Jiawei Duan
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yan Wang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Qing Xu
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China; State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|