1
|
Qvarforth A, Svensson PA, Lundgren M, Rodushkin I, Engström E, Paulukat C, Hough RL, Moreno-Jiménez E, Beesley L, Trakal L, Augustsson A. Geochemical insights into plant uptake of Technology-critical elements: A case study on lettuce from European soils. CHEMOSPHERE 2025; 371:144073. [PMID: 39778662 DOI: 10.1016/j.chemosphere.2025.144073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/10/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025]
Abstract
While vegetable uptake of traditional metal contaminants is a well-studied pathway to human exposure and risk, a paucity of information exists on the uptake of emerging metal contaminants. This study evaluated the uptake of the Technology-critical elements (TCEs) gallium (Ga), germanium (Ge), niobium (Nb), tantalum (Ta), thallium (Tl), and rare earth elements (REEs) into lettuce cultivated in 21 European urban soils. For comparison, the uptake of cadmium (Cd) was also analysed. First, the uptake was predicted by multiplying soil concentrations with previously established bioconcentration factors (BCFs). Subsequently, multiple regression models incorporating geochemical variables as predictors were used to determine whether prediction accuracy could be improved. A "3-predictor model" incorporated soil TCE concentration, pH, and organic matter (OM), and a "7-predictor model" added data on clay content and the soil concentrations of Fe, Al, and Mn as well. With the exception of Cd, Ge, and Tl, the BCF approach provided unsatisfactory predictions (R2 < 0.5), while the 7-predictor models yielded the best predictions, even when accounting for the greater number of predictors. While the most important predictors of uptake varied somewhat between the TCEs, the concentrations of TCEs in the soil generally explained the largest proportion of the variation. The least influential predictors in our dataset were [Mnsoil], [Fesoil], and soil OM. Incorporating geochemical data generally improved the predictions of uptake by lettuce, and these findings underscore the need for more detailed characterisations of the uptake potential of TCEs by food plants and subsequent consequences for human health.
Collapse
Affiliation(s)
- A Qvarforth
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden.
| | - P A Svensson
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - M Lundgren
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - I Rodushkin
- Division of Geosciences and Environmental Engineering, Luleå University of Technology, Luleå, Sweden; ALS Laboratory Group, ALS Scandinavia AB, Luleå, Sweden
| | - E Engström
- Division of Geosciences and Environmental Engineering, Luleå University of Technology, Luleå, Sweden; ALS Laboratory Group, ALS Scandinavia AB, Luleå, Sweden
| | - C Paulukat
- ALS Laboratory Group, ALS Scandinavia AB, Luleå, Sweden
| | - R L Hough
- The James Hutton Institute, Craigiebuckler, Aberdeen, UK
| | - E Moreno-Jiménez
- Department of Agricultural and Food Chemistry, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain; Institute of Advanced Chemistry, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - L Beesley
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Czech Republic; School of Science, Engineering and Environment, Peel Building, University of Salford, Manchester, UK
| | - L Trakal
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Czech Republic
| | - A Augustsson
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
2
|
Gao Y, Sun X, Zhou Y, Pan S. Differences in the accumulation of pentachloronitrobenzene and cadmium in vegetables grown in contaminated soils. ENVIRONMENTAL RESEARCH 2024; 263:120119. [PMID: 39389200 DOI: 10.1016/j.envres.2024.120119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/16/2024] [Accepted: 10/06/2024] [Indexed: 10/12/2024]
Abstract
The capability of different vegetable species to accumulate Pentachloronitrobenzene (PCNB) and cadmium (Cd) in soils varies significantly. Investigating these characteristics can guide the rational use of farmland contaminated with PCNB and Cd. The growth of five common vegetables (three vegetable species and three varieties of one species) in PCNB and Cd co-contaminated soils in Southwest China was investigated through a 100-day simulated contamination pot experiment. Interspecific and intervariety differences in the uptake and accumulation of PCNB and Cd were also examined. These vegetables included leafy types such as Lactuca sativa (CL), Lactuca sativa var. longifolia (RL), and Brassica rapa subsp. chinensis (BC), and root types such as Red Raphanus sativus (RR) and Lactuca sativa var. angustata (AL). Results showed that light to medium PCNB contamination (0.44-6.74 mg kg-1) promoted the growth of leafy vegetables, while severe contamination (9.88-9.96 mg kg-1) inhibited their growth. Root vegetables were inhibited by PCNB. Soil Cd contamination reduced the biomass of all five vegetables. In co-contamination soil (PCNB: 0.47-9.88 mg kg-1; Cd: 0.46-1.63 mg kg-1), vegetable growth was affected by the interaction between PCNB and Cd. In severely PCNB-contaminated soil, PCNB contents of CL, RL, BC, and AL leaves exceeded food safety limits, while those in RR and AL stems did not. The five vegetables showed varying Cd contamination, with AL leaves being the most contaminated, exceeding the standard by 60 times. PCNB accumulation followed the order: AL leaves > BC > AL stems > RL > CL > RR. Cd accumulation was highest in AL leaves, followed by stems, RR, BC, CL, and lowest in RL, with significant differences (P < 0.05). Co-contaminated soil did not promote PCNB and Cd uptake in vegetables. CL and RL, with low PCNB and Cd accumulation capacities, could be considered low-accumulation varieties for lightly contaminated soils.
Collapse
Affiliation(s)
- Yang Gao
- Chengdu University, Chengdu, 610106, Sichuan, China.
| | - Xin Sun
- Chengdu University, Chengdu, 610106, Sichuan, China.
| | - Yuxiao Zhou
- Chengdu University, Chengdu, 610106, Sichuan, China.
| | - Shengwang Pan
- Chengdu University, Chengdu, 610106, Sichuan, China.
| |
Collapse
|
3
|
Lancaster ST, Sahlin E, Oelze M, Ostermann M, Vogl J, Laperche V, Touze S, Ghestem JP, Dalencourt C, Gendre R, Stammeier J, Klein O, Pröfrock D, Košarac G, Jotanovic A, Bergamaschi L, Di Luzio M, D'Agostino G, Jaćimović R, Eberhard M, Feiner L, Trimmel S, Rachetti A, Sara-Aho T, Roethke A, Michaliszyn L, Pramann A, Rienitz O, Irrgeher J. Evaluation of X-ray fluorescence for analysing critical elements in three electronic waste matrices: A comprehensive comparison of analytical techniques. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 190:496-505. [PMID: 39427594 DOI: 10.1016/j.wasman.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/23/2024] [Accepted: 10/13/2024] [Indexed: 10/22/2024]
Abstract
As the drive towards recycling electronic waste increases, demand for rapid and reliable analytical methodology to analyse the metal content of the waste is increasing, e.g. to assess the value of the waste and to decide the correct recycling routes. Here, we comprehensively assess the suitability of different x-ray fluorescence spectroscopy (XRF)-based techniques as rapid analytical tools for the determination of critical raw materials, such as Al, Ti, Mn, Fe, Co, Ni, Cu, Zn, Nb, Pd and Au, in three electronic waste matrices: printed circuit boards (PCB), light emitting diodes (LED), and lithium (Li)-ion batteries. As validated reference methods and materials to establish metrological traceability are lacking, several laboratories measured test samples of each matrix using XRF as well as other independent complementary techniques (instrumental neutron activation analysis (INAA), inductively coupled plasma mass spectrometry (ICP-MS) and ICP optical emission spectrometry (OES)) as an inter-laboratory comparison (ILC). Results highlighted key aspects of sample preparation, limits of detection, and spectral interferences that affect the reliability of XRF, while additionally highlighting that XRF can provide more reliable data for certain elements compared to digestion-based approaches followed by ICP-MS analysis (e.g. group 4 and 5 metals). A clear distinction was observed in data processing methodologies for wavelength dispersive XRF, highlighting that considering the metals present as elements (rather than oxides) induces overestimations of the mass fractions when compared to other techniques. Eventually, the effect of sample particle size was studied and indicated that smaller particle size (<200 µm) is essential for reliable determinations.
Collapse
Affiliation(s)
- Shaun T Lancaster
- Chair of General and Analytical Chemistry, Montanuniversität Leoben, Leoben, Austria.
| | - Eskil Sahlin
- Research Institutes of Sweden (RISE), Borås, Sweden.
| | - Marcus Oelze
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße 11, 12489 Berlin, Germany.
| | - Markus Ostermann
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße 11, 12489 Berlin, Germany.
| | - Jochen Vogl
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße 11, 12489 Berlin, Germany.
| | - Valérie Laperche
- Bureau de Recherches Géologiques et Minières (BRGM), Water, Environment, Processes and Analysis Department, 3 Avenue Claude Guillemin, 45000 Orleans, France.
| | - Solène Touze
- Bureau de Recherches Géologiques et Minières (BRGM), Water, Environment, Processes and Analysis Department, 3 Avenue Claude Guillemin, 45000 Orleans, France.
| | - Jean-Philippe Ghestem
- Bureau de Recherches Géologiques et Minières (BRGM), Water, Environment, Processes and Analysis Department, 3 Avenue Claude Guillemin, 45000 Orleans, France.
| | | | - Régine Gendre
- ERAMET Ideas, 1 Rue Albert Einstein, 78190 Trappes, France.
| | | | - Ole Klein
- Department for Inorganic Environmental Chemistry, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthacht, Germany.
| | - Daniel Pröfrock
- Department for Inorganic Environmental Chemistry, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthacht, Germany.
| | - Gala Košarac
- Institute of Metrology of Bosnia and Herzegovina, Branilaca Sarajeva 25, 71000 Sarajevo, Bosnia and Herzegovina.
| | - Aida Jotanovic
- Institute of Metrology of Bosnia and Herzegovina, Branilaca Sarajeva 25, 71000 Sarajevo, Bosnia and Herzegovina.
| | | | - Marco Di Luzio
- Istituto Nazionale di Ricerca Metrologica (INRIM), Pavia, Italy.
| | | | | | - Melissa Eberhard
- Chair of General and Analytical Chemistry, Montanuniversität Leoben, Leoben, Austria.
| | - Laura Feiner
- Chair of General and Analytical Chemistry, Montanuniversität Leoben, Leoben, Austria.
| | - Simone Trimmel
- Chair of General and Analytical Chemistry, Montanuniversität Leoben, Leoben, Austria.
| | - Alessandra Rachetti
- Chair of General and Analytical Chemistry, Montanuniversität Leoben, Leoben, Austria.
| | - Timo Sara-Aho
- Finnish Environment Institute (Syke), Research Infrastructure, Metrology, Mustialankatu 3, 00790 Helsinki, Finland.
| | - Anita Roethke
- Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany.
| | - Lena Michaliszyn
- Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany.
| | - Axel Pramann
- Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany.
| | - Olaf Rienitz
- Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany.
| | - Johanna Irrgeher
- Chair of General and Analytical Chemistry, Montanuniversität Leoben, Leoben, Austria.
| |
Collapse
|
4
|
Baumgart A, Haluza D, Prohaska T, Trimmel S, Pitha U, Irrgeher J, Wiedenhofer D. In-use dissipation of technology-critical elements from vehicles and renewable energy technologies in Vienna, Austria: A public health matter? JOURNAL OF INDUSTRIAL ECOLOGY 2024; 28:1857-1870. [PMID: 39722869 PMCID: PMC11667654 DOI: 10.1111/jiec.13571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
The rollout of electric vehicles and photovoltaic panels is essential to mitigate climate change. However, they depend on technology-critical elements (TCEs), which can be harmful to human health and whose use is rapidly expanding, while recycling is lacking. While mining has received substantial attention, in-use dissipation in urban areas has so far not been assessed, for example, corrosion and abrasion of vehicle components and weather-related effects affecting thin-film photovoltaic panels. Therefore, the question arises to which extent TCEs dissipate during use and which potential non-occupational human health impacts could occur. We assessed the available information on urban in-use dissipation and human health concerns and conducted exploratory modeling of in-use technology stocks, in- and outflows, and in-use dissipation of neodymium, dysprosium, lanthanum, praseodymium, cerium, gallium, germanium, and tellurium contained in 21 vehicle and renewable energy technologies, for Vienna, Austria. In prospective scenarios, TCE dynamics in a trend-continuation vis à vis official city policy plans and a more ambitious transition scenario were then assessed. We find that electrifying the vehicle fleet without demand-reduction is the main driver of TCE consumption, effectively doubling cumulative end-of-life outflows to 3,073 [2,452-3,966] t and cumulative in-use dissipation to 9.3 [5.2-15.7] t by the year 2060. Sufficiency-based measures could reduce demand and in-use dissipation well below levels with continued trends, thus highlighting the need to combine decarbonization with demand-reducing measures. These results help assess potential future in-use dissipation dynamics and inform discussions about potential public health hazards associated with exposure to TCEs accumulating in the urban environment.
Collapse
Affiliation(s)
- André Baumgart
- Institute of Social EcologyUniversity of Natural Resources and Life Sciences ViennaViennaAustria
| | - Daniela Haluza
- Department for Environmental Health, Center for Public HealthMedical University of ViennaViennaAustria
| | - Thomas Prohaska
- Chair of General and Analytical ChemistryMontanuniversität LeobenLeobenAustria
| | - Simone Trimmel
- Chair of General and Analytical ChemistryMontanuniversität LeobenLeobenAustria
| | - Ulrike Pitha
- Institute of Soil Bioengineering and Landscape ConstructionUniversity of Natural Resources and Life Sciences ViennaViennaAustria
| | - Johanna Irrgeher
- Chair of General and Analytical ChemistryMontanuniversität LeobenLeobenAustria
| | - Dominik Wiedenhofer
- Institute of Social EcologyUniversity of Natural Resources and Life Sciences ViennaViennaAustria
| |
Collapse
|
5
|
Kravtsova A, Zinicovscaia I, Peshkova A, Nekhoroshkov P, Cepoi L, Chiriac T, Rudi L. Impact of Metal-Containing Industrial Effluents on Leafy Vegetables and Associated Human Health Risk. Foods 2024; 13:3420. [PMID: 39517204 PMCID: PMC11545535 DOI: 10.3390/foods13213420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/03/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
One of the primary sources of trace elements in the environment is wastewater used for irrigation. However, the effects of untreated wastewater containing high concentrations of chromium and zinc on vegetables and the potential human health risks associated with their consumption are poorly understood. This pot experiment aimed to address this research gap. The accumulation of chromium and zinc and their effect on the biochemical parameters of lettuce (Lactuca sativa) and green onion (Allium fistulosum L.) irrigated with untreated industrial effluents were assessed. The average concentrations of chromium and zinc in the edible parts of the vegetables ranged between 7.36 and 7.58 mg/kg dry weight and 59.8 and 833 mg/kg dry weight, respectively. The irrigation of the lettuce with the effluent containing zinc at a concentration of 2.95 mg/L led to a significant increase in the content of phenols and the antioxidant activity. A significant reduction in the chlorophyll content of the lettuce leaves and the antioxidant activity of the onion leaves was observed when the plants were irrigated with the effluent containing zinc at a concentration of 78 mg/L. No non-carcinogenic health risk from the intake of chromium and zinc was identified through the consumption of lettuce and green onion, primarily due to the fact that a smaller proportion of the total metal content was transferred to their edible parts.
Collapse
Affiliation(s)
- Alexandra Kravtsova
- Joint Institute for Nuclear Research, 6 Joliot-Curie Str., 1419890 Dubna, Russia; (I.Z.); (A.P.); (P.N.)
| | - Inga Zinicovscaia
- Joint Institute for Nuclear Research, 6 Joliot-Curie Str., 1419890 Dubna, Russia; (I.Z.); (A.P.); (P.N.)
- Department of Nuclear Physics, Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, 30 Reactorului Str. MG-6, 077125 Magurele, Romania
| | - Alexandra Peshkova
- Joint Institute for Nuclear Research, 6 Joliot-Curie Str., 1419890 Dubna, Russia; (I.Z.); (A.P.); (P.N.)
- Doctoral School of Natural Sciences, Moldova State University, M. Kogalniceanu Str., 75A, MD-2009 Chisinau, Moldova
| | - Pavel Nekhoroshkov
- Joint Institute for Nuclear Research, 6 Joliot-Curie Str., 1419890 Dubna, Russia; (I.Z.); (A.P.); (P.N.)
| | - Liliana Cepoi
- Institute of Microbiology and Biotechnology, Technical University of Moldova, 1, Academiei Str., MD-2028 Chisinau, Moldova; (L.C.); (T.C.); (L.R.)
| | - Tatiana Chiriac
- Institute of Microbiology and Biotechnology, Technical University of Moldova, 1, Academiei Str., MD-2028 Chisinau, Moldova; (L.C.); (T.C.); (L.R.)
| | - Ludmila Rudi
- Institute of Microbiology and Biotechnology, Technical University of Moldova, 1, Academiei Str., MD-2028 Chisinau, Moldova; (L.C.); (T.C.); (L.R.)
| |
Collapse
|
6
|
Trimmel S, Spörl P, Haluza D, Lashin N, Meisel TC, Pitha U, Prohaska T, Puschenreiter M, Rückert E, Spangl B, Wiedenhofer D, Irrgeher J. Green and blue infrastructure as model system for emissions of technology-critical elements. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173364. [PMID: 38777068 DOI: 10.1016/j.scitotenv.2024.173364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Over the recent decades, technological advancements have led to a rise in the use of so-called technology-critical elements (TCEs). Environmental monitoring of TCEs forms the base to assess whether this leads to increased anthropogenic release and to public health implications. This study employs an exploratory approach to investigate the distribution of the TCEs Li, Be, V, Ga, Ge, Nb, Sb, Te, Ta, Tl, Bi and the REYs (rare-earth elements including yttrium) in urban aerosol in the city of Vienna, Austria. Leaf samples (n = 292) from 8 plant species and two green facades and water samples (n = 18) from the Wienfluss river were examined using inductively coupled plasma tandem mass spectrometry (ICP-MS/MS). Surface dust contributions were assessed by washing one replicate of each leaf sample and analysing the washing water (n = 146). The impacts of sampling month, plant species and storey level on elemental distribution were assessed by statistical tools and generative deep neural network modelling. Higher TCE levels, including Li, V, Ga, Ge, Tl, Bi, and the REYs, were found in the winter months, likely due to the use of de-icing materials and fossil fuel combustion. A. millefolium and S. heufleriana displayed the highest levels of Li and Ge, respectively. In addition, increased elemental accumulation at lower storeys was observed, including Be, Sb, Bi and the REYs, indicating greater atmospheric dust deposition and recirculation closer to ground level. The results suggest a broad association of TCE levels with urban dust. This study enhances the current understanding of TCE distribution in urban settings and underscores the importance of their inclusion in pollution monitoring. It highlights the complex interplay of human activities, urban infrastructure, and environmental factors, offering valuable insights for managing urban environmental health risks and underlining the need for comprehensive urban ecosystem studies.
Collapse
Affiliation(s)
- Simone Trimmel
- Montanuniversität Leoben, Department General, Analytical and Physical Chemistry, Austria
| | - Philipp Spörl
- University of Natural Resources and Life Sciences, Vienna, Department of Civil Engineering and Natural Hazards, Institute of Soil Bioengineering and Landscape Construction (IBLB), Vienna, Austria
| | - Daniela Haluza
- Medical University of Vienna, Center for Public Health, Department of Environmental Health, Austria
| | - Nagi Lashin
- Montanuniversität Leoben, Department General, Analytical and Physical Chemistry, Austria
| | - Thomas C Meisel
- Montanuniversität Leoben, Department General, Analytical and Physical Chemistry, Austria
| | - Ulrike Pitha
- University of Natural Resources and Life Sciences, Vienna, Department of Civil Engineering and Natural Hazards, Institute of Soil Bioengineering and Landscape Construction (IBLB), Vienna, Austria
| | - Thomas Prohaska
- Montanuniversität Leoben, Department General, Analytical and Physical Chemistry, Austria
| | - Markus Puschenreiter
- University of Natural Resources and Life Sciences, Vienna, Department of Forest- and Soil Sciences, Institute of Soil Research (IBF), Austria
| | - Elmar Rückert
- Montanuniversität Leoben, Department Product Engineering, Austria
| | - Bernhard Spangl
- University of Natural Resources and Life Sciences, Vienna, Department of Landscape, Spatial and Infrastructure Sciences, Institute of Statistics (STAT), Austria
| | - Dominik Wiedenhofer
- University of Natural Resources and Life Sciences, Vienna, Department of Economics and Social Sciences, Institute of Social Ecology (SEC), Vienna, Austria
| | - Johanna Irrgeher
- Montanuniversität Leoben, Department General, Analytical and Physical Chemistry, Austria.
| |
Collapse
|
7
|
Trimmel S, Wagner S, Feiner L, Feiner M, Haluza D, Hood-Nowotny R, Pitha U, Prohaska T, Puschenreiter M, Spörl P, Watzinger A, Ziss E, Irrgeher J. Compost amendment in urban gardens: elemental and isotopic analysis of soils and vegetable tissues. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:47022-47038. [PMID: 38985423 PMCID: PMC11512910 DOI: 10.1007/s11356-024-34240-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024]
Abstract
Urban horticulture poses a sustainable form of food production, fosters community engagement and mitigates the impacts of climate change on cities. Yet, it can also be tied to health challenges related to soil contamination. This work builds on a previous study conducted on eleven urban gardens in the city of Vienna, Austria. Following the findings of elevated Pb levels in some soil and plant samples within that project, the present study investigates the elemental composition of soil and plants from two affected gardens 1 year after compost amendment. Inductively coupled plasma mass spectrometry (ICP-MS) analysis of skin, pulp and seeds of tomato fruits revealed minor variations in elemental composition which are unlikely to have an impact on food safety. In turn, a tendency of contaminant accumulation in root tips and leaves of radishes was found. Washing of lettuce led to a significant reduction in the contents of potentially toxic elements such as Be, Al, V, Ni, Ga and Tl, underscoring the significance of washing garden products before consumption. Furthermore, compost amendments led to promising results, with reduced Zn, Cd and Pb levels in radish bulbs. Pb isotope ratios in soil and spinach leaf samples taken in the previous study were assessed by multi-collector (MC-) ICP-MS to trace Pb uptake from soils into food. A direct linkage between the Pb isotopic signatures in soil and those in spinach leaves was observed, underscoring their effectiveness as tracers of Pb sources in the environment.
Collapse
Affiliation(s)
- Simone Trimmel
- Department General, Analytical and Physical Chemistry, Montanuniversität Leoben, Leoben, Austria
| | - Stefan Wagner
- Department General, Analytical and Physical Chemistry, Montanuniversität Leoben, Leoben, Austria
| | - Laura Feiner
- Department General, Analytical and Physical Chemistry, Montanuniversität Leoben, Leoben, Austria
| | - Maria Feiner
- Department General, Analytical and Physical Chemistry, Montanuniversität Leoben, Leoben, Austria
| | - Daniela Haluza
- Department of Environmental Health, Center for Public Health, Medical University of Vienna, Vienna, Austria
| | - Rebecca Hood-Nowotny
- Department of Forest- and Soil Sciences, Institute of Soil Research (IBF), BOKU University, Vienna, Austria
| | - Ulrike Pitha
- Department of Civil Engineering and Natural Hazards, Institute of Soil Bioengineering and Landscape Construction (IBLB), BOKU University, Vienna, Austria
| | - Thomas Prohaska
- Department General, Analytical and Physical Chemistry, Montanuniversität Leoben, Leoben, Austria
| | - Markus Puschenreiter
- Department of Forest- and Soil Sciences, Institute of Soil Research (IBF), BOKU University, Vienna, Austria
| | - Philipp Spörl
- Department of Civil Engineering and Natural Hazards, Institute of Soil Bioengineering and Landscape Construction (IBLB), BOKU University, Vienna, Austria
| | - Andrea Watzinger
- Department of Forest- and Soil Sciences, Institute of Soil Research (IBF), BOKU University, Vienna, Austria
| | - Elisabeth Ziss
- Department of Forest- and Soil Sciences, Institute of Soil Research (IBF), BOKU University, Vienna, Austria
| | - Johanna Irrgeher
- Department General, Analytical and Physical Chemistry, Montanuniversität Leoben, Leoben, Austria.
| |
Collapse
|
8
|
Xu Z, Zhou W, Zhou Y, Cui H, Liu R, Shang G. Factors controlling accumulation and bioavailability of selenium in paddy soils: A case study in Luxi County, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123196. [PMID: 38145641 DOI: 10.1016/j.envpol.2023.123196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/05/2023] [Accepted: 12/18/2023] [Indexed: 12/27/2023]
Abstract
Selenium (Se) accumulation in rice (Oryza sativa L.) has become a major global concern. Se offers multiple health benefits in humans; however, its inadequate or excessive intake can be harmful. Therefore, determining the factors driving Se abundance and bioavailability in paddy soils is essential to ensure the safety of human Se intake. This study investigated the accumulation, bioavailability, and distribution of Se in 820 paddy soil and rice grain samples from Luxi County, China to assess how soil properties (soil organic matter [SOM], cation exchange capacity [CEC], and pH), geographical factors (parent materials, elevation, and mean annual precipitation [MAP] and temperature [MAT]), and essential micronutrients (copper [Cu], zinc [Zn], and manganese [Mn]) govern Se accumulation and bioavailability in paddy soils. Results showed that the average soil Se content was 0.36 mg kg-1, which was higher than that in China (0.29 mg kg-1). Alternatively, the average rice grain Se content was 0.032 mg kg-1, which was lower than the minimum allowable content in Se-rich rice grains (0.04 mg kg-1). Five studied parent materials all had a significant effect on soil Se content but had little effect on Se bioavailability (p < 0.05). CEC, elevation, and SOM, as well as the soil contents of Cu, Zn, and Mn were positively correlated with soil Se content, but pH, MAP, and MAT were negatively correlated. Correspondingly, Se bioavailability was negatively correlated with SOM and soil Zn content, but positively correlated with MAP and grain contents of Cu, Zn, and Mn. Furthermore, partial least squares path analysis revealed the interactive impacts of the influencing factors on Se accumulation and bioavailability in soils. On this basis, prediction models were established to predict Se accumulation and bioavailability in paddy soils, thereby providing theoretical support for developing efficient control measures to meet Se challenges in agriculture.
Collapse
Affiliation(s)
- Zhangqian Xu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources, Hunan Agricultural University, Hunan, 410128, China
| | - Weijun Zhou
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources, Hunan Agricultural University, Hunan, 410128, China.
| | - Yuzhou Zhou
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources, Hunan Agricultural University, Hunan, 410128, China
| | - Haojie Cui
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources, Hunan Agricultural University, Hunan, 410128, China
| | - Rui Liu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources, Hunan Agricultural University, Hunan, 410128, China
| | - Guiduo Shang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources, Hunan Agricultural University, Hunan, 410128, China
| |
Collapse
|
9
|
Falandysz J, Kilanowicz A, Fernandes AR, Zhang J. Rare earth contamination of edible vegetation: Ce, La, and summed REE in fungi. Appl Microbiol Biotechnol 2024; 108:268. [PMID: 38506962 PMCID: PMC10954923 DOI: 10.1007/s00253-024-13087-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/22/2024]
Abstract
The increasing and diversified use of rare earth elements (REE) is considered a potential source of pollution of environmental media including soils. This work documents critically overview data on the occurrence of REE in the fruiting bodies of wild and farmed species of edible and medicinal mushrooms, as this was identified as the largest published dataset of REE occurrence in foodstuff. Most of the literature reported occurrences of cerium (Ce) and lanthanum (La), but a number of studies lacked data on all lanthanides. The Ce, La, and summed REE occurrences were assessed through the criteria of environmental geochemistry, analytical chemistry, food toxicology, mushroom systematics, and ecology. Ce and La accumulate similarly in fruiting bodies and are not fractionated during uptake, maintaining the occurrence patterns of their growing substrates. Similarly, there is no credible evidence of variable REE uptake because the evaluated species data show natural, unfractionated patterns in accordance with the Oddo-Harkins' order of environmental lanthanide occurrence. Thus, lithosphere occurrence patterns of Ce and La as the first and the third most abundant lanthanides are reflected in wild and farmed mushrooms regardless of substrate and show that Ce is around twice more abundant than La. The current state of knowledge provides no evidence that mushroom consumption at these REE occurrence levels poses a health risk either by themselves or when included with other dietary exposure. Macromycetes appear to bio-exclude lanthanides because independently reported bioconcentration factors for different species and collection sites, typically range from < 1 to 0.001. This is reflected in fruiting body concentrations which are four to two orders of magnitude lower than growing substrates. KEY POINTS: •Original REE occurrence patterns in soils/substrates are reflected in mushrooms •No evidence for the fractionation of REE during uptake by fungi •Mushrooms bio-exclude REE in fruiting bodies.
Collapse
Affiliation(s)
- Jerzy Falandysz
- Faculty of Pharmacy, Department of Toxicology, Medical University of Lodz, 1 Muszyńskiego Street, 90-151, Łódź, Poland.
| | - Anna Kilanowicz
- Faculty of Pharmacy, Department of Toxicology, Medical University of Lodz, 1 Muszyńskiego Street, 90-151, Łódź, Poland
| | - Alwyn R Fernandes
- School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Ji Zhang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, 2238 Beijing Road, Panlong District, Kunming, 650200, China
| |
Collapse
|
10
|
Xiao X, Zhou W, Guo Z, Peng C, Xu R, Zhang Y, Yang Y. Thallium content in vegetables and derivation of threshold for safe food production in soil: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168845. [PMID: 38029999 DOI: 10.1016/j.scitotenv.2023.168845] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
Soil thallium (Tl) pollution is a serious environmental problem, and vegetables are the primary pathway for human exposure to Tl. Therefore, it is important to investigate the characteristics of soil Tl uptake by vegetables. In this study, the meta-analysis approach was first applied to explore the relationship between Tl content in vegetables and soil environment, as well as key factors influencing soil physical-chemical properties, and to derive soil thresholds for Tl. The results indicated that various types of vegetables have different capabilities for Tl accumulation. Vegetables from contaminated areas showed high Tl accumulation, and the geomean Tl content in different types of vegetables was in the following order: leafy > root-stalk > solanaceous vegetables. Taro and kale had significantly higher capability to accumulate soil Tl among the 35 species studied, with Tl bioconcentration factor values of 0.060 and 0.133, respectively. Pearson correlation analysis and meta-analysis revealed that the Tl content in vegetables was significantly correlated with soil pH and Tl content in soil. The linear predictive model for Tl accumulation in vegetables based on soil Tl content described the data well, and the fitting coefficient R2 increased with soil pH value. According to potential dietary toxicity, the derived soil Tl thresholds for all, leafy and root-stalk vegetables increased with an increase in soil pH, and were in the range of 1.46-6.72, 1.74-5.26 and 0.92-6.06 mg/kg, respectively. The soil Tl thresholds for kale, lettuce and carrot were in the range of 0.24-4.89, 2.94-3.32 and 3.77-14.43 mg/kg, respectively. Ingestion of kale, beet, sweet potato, potato, taro, pepper, turnip, Chinese cabbage, eggplant and carrot poses potential health risks. The study provides scientific guidance for vegetable production in Tl-contaminated areas and can help with the selection of vegetable species suitable for avoiding the absorption of Tl from contaminated soil.
Collapse
Affiliation(s)
- Xiyuan Xiao
- School of Metallurgy and Environment, Central South University, Changsha 410083, China.
| | - Wenqiang Zhou
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Zhaohui Guo
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Chi Peng
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Rui Xu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Yunxia Zhang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Yunyun Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| |
Collapse
|
11
|
Zong X, Liu Y, Lin X, He D, Dong Z, Guo T, Li J, Li H, Wang F. Foliar spraying of lanthanum activates endocytosis in lettuce (Lactuca sativa L.) root cells, increasing Cd and Pb accumulation and their bioaccessibility. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168374. [PMID: 37956851 DOI: 10.1016/j.scitotenv.2023.168374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/15/2023]
Abstract
Cadmium (Cd) and lead (Pb) accumulate easily in leafy vegetables and can harm human health. Lanthanum (La) have been used to improve agricultural yield and quality, but the effect of La application on Cd/Pb enrichment in leafy vegetables remains incomplete currently. A previous study reported that the endocytosis in lettuce leaf cells can be activated by La, leading to an increase in Pb accumulation in lettuce leaves. However, it has not been investigated whether foliar application of La enhances root cellular endocytosis and promotes its uptake of Cd and Pb. In this study, the influence of La on the uptake of Cd and Pb, Cd bioaccessibility, and the safety risks of cultivating lettuce under Cd and Pb stress were explored. It was found that La increased Cd (16-30 % in shoot, 16-34 % in root) and Pb (25-29 % in shoot, 17-23 % in root) accumulation in lettuce. The increased accumulation of Cd and Pb could be attributed to La-enhanced endocytosis. Meanwhile, La enhanced the toxicity of both Cd and Pb, inhibited lettuce growth, and aggravated the damage to the photosynthetic and antioxidant systems. Finally, gastrointestinal simulation experiments showed that La increased the Cd bioaccessibility in both gastric and intestinal phase by 7-108 % and 9-87 %, respectively. These results offer valuable insights into the safety of REEs for agricultural applications.
Collapse
Affiliation(s)
- Xinyan Zong
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing, Jiangsu 210023, China
| | - Yongqiang Liu
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing, Jiangsu 210023, China
| | - Xinying Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Ding He
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing, Jiangsu 210023, China
| | - Zhongtian Dong
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Ting Guo
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing, Jiangsu 210023, China
| | - Jining Li
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing, Jiangsu 210023, China
| | - Hongbo Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Fenghe Wang
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
12
|
da Costa RL, Souza IC, Morozesk M, de Carvalho LB, Carvalho CDS, Monferrán MV, Wunderlin DA, Fernandes MN, Monteiro DA. Toxic, genotoxic, mutagenic, and bioaccumulative effects of metal mixture from settleable particulate matter on American bullfrog tadpoles (Lithobates catesbeianus). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122846. [PMID: 37926415 DOI: 10.1016/j.envpol.2023.122846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Amphibians are more susceptible to environmental stressors than other vertebrates due to their semipermeable skin and physiological adaptations to living in very specific microhabitats. Therefore, the aim of the present study was to investigate the effects of a metal mixture from settleable particulate matter (SePM) released from metallurgical industries on Lithobates catesbeianus tadpoles. Endpoints analyzed included metal bioconcentration, morphological (biometrical indices), hematological parameters (hemoglobin and blood cell count), and erythrocyte DNA damage (genotoxicity and mutagenicity). American bullfrog tadpoles (Gosner's stage 25) were kept under control condition (no contaminant addition) or exposed to a sub-lethal and environmentally relevant concentration (1 g.L-1) of SePM for 96 h. Tadpoles exposed to SePM exhibited elevated whole blood levels of Fe56, AL, Sn, Pb, Zn, Cr, Cu, Ti, Rb, V, Ce, La, Ag, As. SePM-exposed tadpoles showed a significant decrease in condition factor (12%) and increases in hepatosomatic index (25%), hemoglobin concentration (17%), and total leukocytes (82%), thrombocytes (90%), and monocytes (78%) abundance. In addition, exposed tadpoles showed higher MN and ENAs (340 and 140%, respectively) frequencies, and erythrocyte DNA damage with approximately 1.2- to 1.8-fold increases in comet parameters. Taken together, these results suggest that the multimetal mixture found in SePM is potentially genotoxic and mutagenic to L. catesbeianus tadpoles, induces stress associated with hematological changes, and negatively affects growth. Although such contamination occurs at sublethal levels, regulatory standards are needed to control the emission of SePM and protect amphibian populations.
Collapse
Affiliation(s)
- Regiane Luiza da Costa
- Departamento de Ciências Fisiológicas (DCF), Centro de Ciências Biológicas e da Saúde (CCBS), Universidade Federal de São Carlos (UFSCar), 13565-905, São Carlos, São Paulo, Brazil; Programa de Pós-Graduação Em Ciências Ambientais (PPGCAm), Centro de Ciências Biológicas e da Saúde (CCBS), Universidade Federal de São Carlos (UFSCar), Brazil
| | - Iara Costa Souza
- Departamento de Ciências Fisiológicas (DCF), Centro de Ciências Biológicas e da Saúde (CCBS), Universidade Federal de São Carlos (UFSCar), 13565-905, São Carlos, São Paulo, Brazil
| | - Mariana Morozesk
- Departamento de Ciências Fisiológicas (DCF), Centro de Ciências Biológicas e da Saúde (CCBS), Universidade Federal de São Carlos (UFSCar), 13565-905, São Carlos, São Paulo, Brazil
| | - Luana Beserra de Carvalho
- Departamento de Ciências Fisiológicas (DCF), Centro de Ciências Biológicas e da Saúde (CCBS), Universidade Federal de São Carlos (UFSCar), 13565-905, São Carlos, São Paulo, Brazil; Programa de Pós-Graduação Em Ciências Ambientais (PPGCAm), Centro de Ciências Biológicas e da Saúde (CCBS), Universidade Federal de São Carlos (UFSCar), 13565-905, São Carlos, São Paulo, Brazil
| | - Cleoni Dos Santos Carvalho
- Departamento de Biologia (DBio), Centro de Ciências Humanas e Biológicas (CCHB), Universidade Federal de São Carlos (UFSCar), 18052-780, São Carlos, São Paulo, Brazil
| | - Magdalena Victoria Monferrán
- ICYTAC, Instituto de Ciencia y Tecnología de Alimentos Córdoba, CONICET and Dpto. Qca. Orgánica, Fac. Cs. Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Daniel Alberto Wunderlin
- ICYTAC, Instituto de Ciencia y Tecnología de Alimentos Córdoba, CONICET and Dpto. Qca. Orgánica, Fac. Cs. Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Marisa Narciso Fernandes
- Departamento de Ciências Fisiológicas (DCF), Centro de Ciências Biológicas e da Saúde (CCBS), Universidade Federal de São Carlos (UFSCar), 13565-905, São Carlos, São Paulo, Brazil
| | - Diana Amaral Monteiro
- Departamento de Ciências Fisiológicas (DCF), Centro de Ciências Biológicas e da Saúde (CCBS), Universidade Federal de São Carlos (UFSCar), 13565-905, São Carlos, São Paulo, Brazil.
| |
Collapse
|
13
|
Augustsson A, Lundgren M, Qvarforth A, Engström E, Paulukat C, Rodushkin I, Moreno-Jiménez E, Beesley L, Trakal L, Hough RL. Urban vegetable contamination - The role of adhering particles and their significance for human exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165633. [PMID: 37474053 DOI: 10.1016/j.scitotenv.2023.165633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 07/22/2023]
Abstract
While urban-grown vegetables could help combat future food insecurity, the elevated levels of toxic metals in urban soils need to be met with measures that minimise transfer to crops. This study firstly examines soil/dust particle inclusion in leafy vegetables and its contribution to vegetable metals (As, Ba, Cd, Co, Cr, Cu, Ni, Pb, Sb, and Zn), using vegetable, soil and dust data from an open-field urban farm in southeastern Sweden. Titanium concentrations were used to assess soil/dust adherence. Results showed that vegetables contained 0.05-1.3 wt% of adhering particles (AP) even after washing. With 0.5 % AP, an adult with an average intake of vegetables could ingest approximately 100 mg of particles per day, highlighting leafy vegetables as a major route for soil/dust ingestion. The presence of adhering particles also significantly contributed to the vegetable concentrations of As (9-20 %), Co (17-20 %), Pb (25-29 %), and Cr (33-34 %). Secondly, data from an indoor experiment was used to characterise root metal uptake from 20 urban soils from Sweden, Denmark, Spain, the UK, and the Czech Republic. Combining particle adherence and root uptake data, vegetable metal concentrations were calculated for the 20 urban soils to represent hypothetical field scenarios for these. Subsequently, average daily doses were assessed for vegetable consumers (adults and 3-6 year old children), distinguishing between doses from adhering particles and root uptake. Risks were evaluated from hazard quotients (HQs; average daily doses/tolerable intakes). Lead was found to pose the greatest risk, where particle ingestion often resulted in HQs > 1 across all assessed scenarios. In summary, since washing was shown to remove only a portion of adhering metal-laden soil/dust particles from leafy vegetation, farmers and urban planners need to consider that measures to limit particle deposition are equally important as cultivating in uncontaminated soil.
Collapse
Affiliation(s)
- A Augustsson
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden.
| | - M Lundgren
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - A Qvarforth
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - E Engström
- Division of Geosciences and Environmental Engineering, Luleå University of Technology, Luleå, Sweden; ALS Laboratory Group, ALS Scandinavia AB, Luleå, Sweden
| | - C Paulukat
- Division of Geosciences and Environmental Engineering, Luleå University of Technology, Luleå, Sweden
| | - I Rodushkin
- Division of Geosciences and Environmental Engineering, Luleå University of Technology, Luleå, Sweden; ALS Laboratory Group, ALS Scandinavia AB, Luleå, Sweden
| | - E Moreno-Jiménez
- Department of Agricultural and Food Chemistry, Universidad Autonoma de Madrid, Madrid, Spain
| | - L Beesley
- School of Science, Engineering and Environment, Peel Building, University of Salford, Manchester M5 4WT, UK; Department of Environmental Geosciences, Czech University of Life Sciences Prague, Czech Republic
| | - L Trakal
- Department of Environmental Geosciences, Czech University of Life Sciences Prague, Czech Republic
| | - R L Hough
- The James Hutton Institute, Craigiebuckler, Aberdeen, UK
| |
Collapse
|
14
|
Ran C, Liu Y, Li K, Wang C, Pu J, Sun H, Wang L. Combined pollution effects of Cu and benzotriazole in rice (Oryza sativa L.) verified by split-root experiment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:91997-92006. [PMID: 37479939 DOI: 10.1007/s11356-023-28695-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 07/05/2023] [Indexed: 07/23/2023]
Abstract
Although the combined effect of organic ligands and heavy metals in the environment on plants have been frequently reported, their complexed interaction in plants and the physiological effects remain to be revealed. Metal complexing agent benzotriazole (BTR) has extensive environmental pollution. In this study, root-splitting experiments were designed to identify the in vivo and in vitro effects of BTR on the accumulation and translocation of Cu in rice (Oryza sativa L.), and the concentrations and translocation factor (TF) of Cu and BTR in different parts of rice were measured. In the in vitro interaction treatments, low BTR concentrations enhanced Cu uptake and lateral transport in rice, while higher levels of BTR's exposure (i.e., ≥ 100 μM) resulted in opposite effects. Differently, significant increase in the lateral transport of Cu and vertical translocation of BTR in rice presented in the in vivo interaction treatments. TF of Cu from root A to root B (TFRA-RB) increased from 0.05 to 0.272 with the BTR concentration increasing from 0 to 100 μM, and higher TF of BTR from root to shoot (TFR-S), ranging from 1.00 to 1.75, compared with single BTR exposure treatments was observed. The phytotoxicity of BTR expressed by the catalase activity was significantly alleviated by the in vivo accumulated Cu in rice.
Collapse
Affiliation(s)
- Chunmei Ran
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Yubin Liu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Ke Li
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Chenye Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Jian Pu
- Institute for Future Initiatives, The University of Tokyo, Tokyo, 113-8654, Japan
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Lei Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
- , Tianjin, China.
| |
Collapse
|
15
|
Kollander B, Rodushkin I, Sundström B. Multi-Element Assessment of Potentially Toxic and Essential Elements in New and Traditional Food Varieties in Sweden. Foods 2023; 12:1831. [PMID: 37174369 PMCID: PMC10178162 DOI: 10.3390/foods12091831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
With the global movement toward the consumption of a more sustainable diet that includes a higher proportion of plant-based foods, it is important to determine how such a change could alter the intake of cadmium and other elements, both essential and toxic. In this study, we report on the levels of a wide range of elements in foodstuffs that are both traditional and "new" to the Swedish market. The data were obtained using analytical methods providing very low detection limits and include market basket data for different food groups to provide the general levels in foods consumed in Sweden and to facilitate comparisons among traditional and "new" food items. This dataset could be used to estimate changes in nutritional intake as well as exposure associated with a change in diet. The concentrations of known toxic and essential elements are provided for all the food matrices studied. Moreover, the concentrations of less routinely analyzed elements are available in some matrices. Depending on the food variety, the dataset includes the concentrations of inorganic arsenic and up to 74 elements (Ag, Al, As, Au, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cs, Cu, Fe, Ga, Ge, Hf, Hg, K, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, S, Sb, Sc, Se, Si, Sn, Sr, Ta, Te, Th, Ti, Tl, U, W, V, Y, Zn, Zr, rare Earth elements (REEs) (Ce, Dy, Er, Eu, Gd, Ho, La, Lu, Nd, Pr, Sm, Tb, Tm, and Yb), platinum group elements (PGEs) (Ir, Os, Pd, Pr, Pt, Re, Rh, Ru, and Pr), and halogens (Br, Cl, and I)). The main focus (and thus the most detailed information on variation within a given food group) is on foods that are currently the largest contributors to dietary cadmium exposure in Sweden, such as pasta, rice, potato products, and different sorts of bread. Additionally, elemental concentrations in selected food varieties regarded as relatively new or "novel" to the Swedish market are provided, including teff flour, chia seeds, algae products, and gluten-free products.
Collapse
Affiliation(s)
| | - Ilia Rodushkin
- Division of Geosciences, Luleå University of Technology, SE-971 87 Luleå, Sweden;
- ALS Scandinavia AB, SE-971 87 Luleå, Sweden
| | | |
Collapse
|
16
|
Augustsson A, Lundgren M, Qvarforth A, Hough R, Engström E, Paulukat C, Rodushkin I. Managing health risks in urban agriculture: The effect of vegetable washing for reducing exposure to metal contaminants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160996. [PMID: 36539086 DOI: 10.1016/j.scitotenv.2022.160996] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
A common, yet poorly evaluated, advice to remove contaminants from urban vegetables is to wash the produce before consumption. This study is based on 63 samples of chard, kale, lettuce and parsley that have grown near a heavily trafficked road in the third largest city in Sweden, with one portion of each sample being analysed without first being washed, and the other portion being subjected to common household washing. Concentrations of 71 elements were analysed by ICP-SFMS after a sample digestion that dissolves both the plant tissues and all potentially adhering particles. The results show that the washing effect, or the fraction removed upon washing, varies significantly between elements: from approximately 0 % for K to 68 % for the ∑REEs. Considering traditional metal contaminants, the efficiency decreased from Pb (on average 56 % lost) to Co (56 %) > Cr (55 %) > As (45 %) > Sb (35 %) > Ni (33 %) > Cu (13 %) > Zn (7 %) > Cd (7 %), and Ba (5 %). A clear negative correlation between the washing effect and the different elements' bioconcentration factors shows that the elements' accessibility for plant uptake is a key controlling factor for the degree to which they are removed upon washing. Based on the average washing efficiencies seen in this study, the average daily intake of Pb would increase by 130 % if vegetables are not washed prior to consumption. For the other contaminant metals this increase corresponds to 126 % (Co), 121 % (Cr), 82 % (As), 55 % (Sb), 50 % (Ni), 16 % (Cu), 8 % (Zn), 7 % (Cd) and 5 % (Ba). The advice to wash vegetables is therefore, for many elements, highly motivated for reducing exposure and health risks. For elements which are only slightly reduced when the vegetables are washed, however, advising should rather focus on reducing levels of contamination in the soil itself.
Collapse
Affiliation(s)
- Anna Augustsson
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden.
| | - Maria Lundgren
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Anna Qvarforth
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Rupert Hough
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK
| | - Emma Engström
- Division of Geosciences and Environmental Engineering, Luleå University of Technology, Luleå, Sweden; ALS Laboratory Group, ALS Scandinavia AB, Luleå, Sweden
| | - Cora Paulukat
- Division of Geosciences and Environmental Engineering, Luleå University of Technology, Luleå, Sweden
| | - Ilia Rodushkin
- Division of Geosciences and Environmental Engineering, Luleå University of Technology, Luleå, Sweden; ALS Laboratory Group, ALS Scandinavia AB, Luleå, Sweden
| |
Collapse
|
17
|
Xu S, Yu C, Wang Q, Liao J, Liu C, Huang L, Liu Q, Wen Z, Feng Y. Chromium Contamination and Health Risk Assessment of Soil and Agricultural Products in a Rural Area in Southern China. TOXICS 2022; 11:27. [PMID: 36668753 PMCID: PMC9866242 DOI: 10.3390/toxics11010027] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 05/14/2023]
Abstract
With the rapid development of industry, chromium (Cr) pollutants accumulate constantly in the soil, causing severe soil Cr pollution problems. Farmland Cr pollution hurts the safety of agricultural production and indirectly affects human health and safety. However, the current situation of Cr pollution in farmland soil and crops has not been detailed enough. In this study, the evaluation of Cr potential risk in soil-crop systems was conducted in a rural area that was affected by industry and historic sewage irrigation. Ten different crops and rhizosphere soils were sampled from four fields. The results showed that Cr contents in farmland soil exceeded the national standard threshold in China (>21.85%), and the Cr content in edible parts of some agricultural products exceeded that too. According to the PCA and relation analysis, the Cr accumulation in edible parts showed a significant correlation with soil Cr contents and available potassium contents. Except for water spinach, the target hazard quotient (THQ) of the other crops was lower than 1.0 but the carcinogenic health risks all exceeded the limits. The carcinogenic risks (CR) of different types of crops are food crops > legume crops > leafy vegetable crops and root-tuber crops. A comprehensive assessment revealed that planting water spinach in this area had the highest potential risk of Cr pollution. This study provided a scientific and reliable approach by integrating soil environmental quality and agricultural product security, which helps evaluate the potential risk of Cr in arable land more efficiently and lays technical guidelines for local agricultural production safety.
Collapse
Affiliation(s)
- Shun’an Xu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chao Yu
- Livestock Industrial Development Center of Shengzhou, Shaoxing 312400, China
| | - Qiong Wang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- College of Ecology, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jiaoyuan Liao
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chanjuan Liu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lukuan Huang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qizhen Liu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zheyu Wen
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ying Feng
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|