1
|
Elapavalore A, Ross DH, Grouès V, Aurich D, Krinsky AM, Kim S, Thiessen PA, Zhang J, Dodds JN, Baker ES, Bolton EE, Xu L, Schymanski EL. PubChemLite Plus Collision Cross Section (CCS) Values for Enhanced Interpretation of Nontarget Environmental Data. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2025; 12:166-174. [PMID: 39957787 PMCID: PMC11823450 DOI: 10.1021/acs.estlett.4c01003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/31/2024] [Accepted: 01/02/2025] [Indexed: 02/18/2025]
Abstract
Finding relevant chemicals in the vast (known) chemical space is a major challenge for environmental and exposomics studies leveraging nontarget high resolution mass spectrometry (NT-HRMS) methods. Chemical databases now contain hundreds of millions of chemicals, yet many are not relevant. This article details an extensive collaborative, open science effort to provide a dynamic collection of chemicals for environmental, metabolomics, and exposomics research, along with supporting information about their relevance to assist researchers in the interpretation of candidate hits. The PubChemLite for Exposomics collection is compiled from ten annotation categories within PubChem, enhanced with patent, literature and annotation counts, predicted partition coefficient (logP) values, as well as predicted collision cross section (CCS) values using CCSbase. Monthly versions are archived on Zenodo under a CC-BY license, supporting reproducible research, and a new interface has been developed, including historical trends of patent and literature data, for researchers to browse the collection. This article details how PubChemLite can support researchers in environmental and exposomics studies, describes efforts to increase the availability of experimental CCS values, and explores known limitations and potential for future developments. The data and code behind these efforts are openly available. PubChemLite can be browsed at https://pubchemlite.lcsb.uni.lu.
Collapse
Affiliation(s)
- Anjana Elapavalore
- Luxembourg
Centre for Systems Biomedicine (LCSB), University
of Luxembourg, 6 Avenue du Swing, 4367 Belvaux, Luxembourg
| | - Dylan H. Ross
- Department
of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
- Current
Address: Biological Sciences Division, Pacific
Northwest National Laboratory, Richland, Washington 99352, United States
| | - Valentin Grouès
- Luxembourg
Centre for Systems Biomedicine (LCSB), University
of Luxembourg, 6 Avenue du Swing, 4367 Belvaux, Luxembourg
| | - Dagny Aurich
- Luxembourg
Centre for Systems Biomedicine (LCSB), University
of Luxembourg, 6 Avenue du Swing, 4367 Belvaux, Luxembourg
| | - Allison M. Krinsky
- Department
of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Sunghwan Kim
- National
Center for Biotechnology Information (NCBI), National Library of Medicine
(NLM), National Institutes of Health (NIH), Bethesda, Maryland 20894, United States
| | - Paul A. Thiessen
- National
Center for Biotechnology Information (NCBI), National Library of Medicine
(NLM), National Institutes of Health (NIH), Bethesda, Maryland 20894, United States
| | - Jian Zhang
- National
Center for Biotechnology Information (NCBI), National Library of Medicine
(NLM), National Institutes of Health (NIH), Bethesda, Maryland 20894, United States
| | - James N. Dodds
- Department
of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Erin S. Baker
- Department
of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Evan E. Bolton
- National
Center for Biotechnology Information (NCBI), National Library of Medicine
(NLM), National Institutes of Health (NIH), Bethesda, Maryland 20894, United States
| | - Libin Xu
- Department
of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Emma L. Schymanski
- Luxembourg
Centre for Systems Biomedicine (LCSB), University
of Luxembourg, 6 Avenue du Swing, 4367 Belvaux, Luxembourg
| |
Collapse
|
2
|
Alvarez-Mora I, Arturi K, Béen F, Buchinger S, El Mais AER, Gallampois C, Hahn M, Hollender J, Houtman C, Johann S, Krauss M, Lamoree M, Margalef M, Massei R, Brack W, Muz M. Progress, applications, and challenges in high-throughput effect-directed analysis for toxicity driver identification - is it time for HT-EDA? Anal Bioanal Chem 2025; 417:451-472. [PMID: 38992177 DOI: 10.1007/s00216-024-05424-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/13/2024]
Abstract
The rapid increase in the production and global use of chemicals and their mixtures has raised concerns about their potential impact on human and environmental health. With advances in analytical techniques, in particular, high-resolution mass spectrometry (HRMS), thousands of compounds and transformation products with potential adverse effects can now be detected in environmental samples. However, identifying and prioritizing the toxicity drivers among these compounds remain a significant challenge. Effect-directed analysis (EDA) emerged as an important tool to address this challenge, combining biotesting, sample fractionation, and chemical analysis to unravel toxicity drivers in complex mixtures. Traditional EDA workflows are labor-intensive and time-consuming, hindering large-scale applications. The concept of high-throughput (HT) EDA has recently gained traction as a means of accelerating these workflows. Key features of HT-EDA include the combination of microfractionation and downscaled bioassays, automation of sample preparation and biotesting, and efficient data processing workflows supported by novel computational tools. In addition to microplate-based fractionation, high-performance thin-layer chromatography (HPTLC) offers an interesting alternative to HPLC in HT-EDA. This review provides an updated perspective on the state-of-the-art in HT-EDA, and novel methods/tools that can be incorporated into HT-EDA workflows. It also discusses recent studies on HT-EDA, HT bioassays, and computational prioritization tools, along with considerations regarding HPTLC. By identifying current gaps in HT-EDA and proposing new approaches to overcome them, this review aims to bring HT-EDA a step closer to monitoring applications.
Collapse
Affiliation(s)
- Iker Alvarez-Mora
- Department of Exposure Science, Helmholtz Centre for Environmental Research, UFZ, Leipzig, Germany.
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain.
| | - Katarzyna Arturi
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Frederic Béen
- KWR Water Research Institute, Nieuwegein, the Netherlands
- Chemistry for Environment and Health, Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Sebastian Buchinger
- Department of Biochemistry and Ecotoxicology, Federal Institute of Hydrology (BfG), Koblenz, Germany
| | | | | | - Meike Hahn
- Department of Biochemistry and Ecotoxicology, Federal Institute of Hydrology (BfG), Koblenz, Germany
| | - Juliane Hollender
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zürich, Switzerland
| | - Corine Houtman
- Chemistry for Environment and Health, Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- The Water Laboratory, Haarlem, the Netherlands
| | - Sarah Johann
- Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Frankfurt Am Main, Germany
| | - Martin Krauss
- Department of Exposure Science, Helmholtz Centre for Environmental Research, UFZ, Leipzig, Germany
| | - Marja Lamoree
- Chemistry for Environment and Health, Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Maria Margalef
- Chemistry for Environment and Health, Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Riccardo Massei
- Department of Monitoring and Exploration Technologies, Research Data Management Team (RDM), Helmholtz Centre for Environmental Research, UFZ, Leipzig, Germany
- Department of Ecotoxicology, Group of Integrative Toxicology (iTox), Helmholtz Centre for Environmental Research, UFZ, Leipzig, Germany
| | - Werner Brack
- Department of Exposure Science, Helmholtz Centre for Environmental Research, UFZ, Leipzig, Germany
- Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Frankfurt Am Main, Germany
| | - Melis Muz
- Department of Exposure Science, Helmholtz Centre for Environmental Research, UFZ, Leipzig, Germany
| |
Collapse
|
3
|
Belova L, Caballero-Casero N, Ballesteros A, Poma G, van Nuijs ALN, Covaci A. Trapped and drift-tube ion-mobility spectrometry for the analysis of environmental contaminants: Comparability of collision cross-section values and resolving power. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9901. [PMID: 39198935 DOI: 10.1002/rcm.9901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024]
Abstract
RATIONALE Ion-mobility (IM)-derived collision cross-section (CCS) values can serve as a valuable additional identification parameter within suspect and non-target screening studies of environmental contaminants. However, these applications require to assess the reproducibility of CCS calculations between different IM set-ups. Especially for the comparison of trapped and drift-tube IM (TIMS/DTIM) derived CCS values, data for environmental applications is lacking. METHODS The presented study assessed the bias of TIMS derived CCSN2 (TIMSCCSN2) values of 48 environmental contaminants from three classes in comparison to a previously established DTIM database. Based on two sets of isomeric bisphenols, the resolving power of both systems was compared, addressing the instrumental settings which influence the resolution of TIMS measurements. RESULTS For 91% of the datapoints, bias between TIMSCCSN2 and DTCCSN2 values (latter set as reference) were < 2%, indicating a good inter-platform reproducibility. TIMS resolving power was dependent on the selected mobility window and ramping times whereby a resolution of up to 116 was achieved. Similar resolving power was observed for multiplexed DTIMS data if a high-resolution post-processing step was implemented. CONCLUSIONS These results provide valuable insights in CCSN2 reproducibility facilitating database transfer in future TIMS based studies. Knowledge on the influence of acquisition settings on robustness of TIMSCCSN2 calculations and resolving power can ease method development supporting efficient development and reliable identifications of emerging environmental contaminants.
Collapse
Affiliation(s)
- Lidia Belova
- Toxicological Centre, University of Antwerp, Antwerp, Belgium
| | - Noelia Caballero-Casero
- Department of Analytical Chemistry, Institute of Chemistry for Energy and the Environment, University of Córdoba, Córdoba, Spain
| | - Ana Ballesteros
- Department of Analytical Chemistry, Institute of Chemistry for Energy and the Environment, University of Córdoba, Córdoba, Spain
| | - Giulia Poma
- Toxicological Centre, University of Antwerp, Antwerp, Belgium
| | | | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
4
|
Baetz N, Cunha JR, Itzel F, Schmidt TC, Tuerk J. Effect-directed analysis of endocrine and neurotoxic effects in stormwater depending discharges. WATER RESEARCH 2024; 265:122169. [PMID: 39128332 DOI: 10.1016/j.watres.2024.122169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 07/06/2024] [Accepted: 07/27/2024] [Indexed: 08/13/2024]
Abstract
The investigation of pollutant inputs via stormwater runoff and subsequent effects in receiving waters is becoming increasingly urgent in view of climate change with accompanying extreme weather situations such as heavy rainfall events. In this study, two sampling areas, one urban and one rural but dominated by a highway, were investigated using effect-directed analysis to identify endocrine and neurotoxic effects and potentially responsible substances in stormwater structures and receiving waters. For this purpose, a transgenic yeast cell assay for the simultaneous detection of estrogenic, androgenic, and progestogenic effects (YMEES) was performed directly on high-performance thin-layer chromatography (HPTLC) plates. Concomitantly, estrogens were analyzed by GC-MS/MS and other micropollutants typical for wastewater and stormwater by LC-MS/MS. Discharges from the combined sewer overflow (CSO) contribute a large portion of the endocrine load to the studied water body, even surpassing the load from a nearby wastewater treatment plant (WWTP). An effect pattern similar to the CSO sample was shown in the receiving water after the CSO with lower intensities, consisting of an estrogenic, androgenic, and progestogenic effect. In contrast, after the WWTP, only one estrogenic effect with a lower intensity was detected. Concentrations of E1, 17α-E2, 17β-E2, EE2, and E3 in the CSO sample were 2000, 410, 1100, 560, and 2700 pg/L, respectively. HPTLC-YMEES and GC-MS/MS complement each other very well and help to elucidate endocrine stresses. An Acetylcholinesterase (AChE) inhibitory effect could not be assigned to a causative compound by suspect and non-target analysis using LC-HRMS. However, the workflow showed how information from HPTLC separation, effect-based methods, and other meta-information on the sampling area and substance properties can contribute to an identification of effect-responsible substances. Overall, the study demonstrated that effect-based methods in combination with HPTLC and instrumental analysis can be implemented to investigate pollution by stormwater run-off particularly regarding heavy rain events due to climate change.
Collapse
Affiliation(s)
- Nicolai Baetz
- Institut für Umwelt & Energie, Technik & Analytik e. V. (IUTA), Bliersheimer Str. 58 - 60, 47229 Duisburg, Germany; Instrumental Analytical Chemistry, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstr. 2, 45141 Essen, Germany
| | - Jorge Ricardo Cunha
- Institut für Umwelt & Energie, Technik & Analytik e. V. (IUTA), Bliersheimer Str. 58 - 60, 47229 Duisburg, Germany
| | - Fabian Itzel
- Institut für Umwelt & Energie, Technik & Analytik e. V. (IUTA), Bliersheimer Str. 58 - 60, 47229 Duisburg, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstr. 2, 45141 Essen, Germany; Linksniederrheinische Entwässerungs-Genossenschaft (LINEG), Körperschaft des öffentlichen Rechts, Friedrich-Heinrich-Allee 64, 47475 Kamp-Lintfort, Germany
| | - Torsten C Schmidt
- Instrumental Analytical Chemistry, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstr. 2, 45141 Essen, Germany
| | - Jochen Tuerk
- Institut für Umwelt & Energie, Technik & Analytik e. V. (IUTA), Bliersheimer Str. 58 - 60, 47229 Duisburg, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstr. 2, 45141 Essen, Germany.
| |
Collapse
|
5
|
Motteau S, Deborde M, Gombert B, Karpel Vel Leitner N. Non-target analysis for water characterization: wastewater treatment impact and selection of relevant features. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:4154-4173. [PMID: 38097837 DOI: 10.1007/s11356-023-30972-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 11/05/2023] [Indexed: 01/19/2024]
Abstract
Non-target analyses were conducted to characterize and compare the molecular profiles (UHPLC-HRMS fingerprint) of water samples from a wastewater treatment plant (WWTP). Inlet and outlet samples were collected from three campaigns spaced 6 months apart in order to highlight common trends. A significant impact of the treatment on the sample fingerprints was shown, with a 65-70% abatement of the number of features detected in the effluent, and more polar, smaller and less intense molecules found overall compared to those in WWTP influent waters. Multivariate analysis (PCA) associated with variations of the features between inlets and outlets showed that features appearing or increasing were correlated with effluents while those disappearing or decreasing were correlated with influents. Finally, effluent features considered as relevant to a potentially adverse effect on aqueous media (i.e. those which appeared or increased or slightly varied from the influent) were highlighted. Three hundred seventy-five features common with the 3 campaigns were thus selected and further characterized. For most of them, elementary composition was found to be C, H, N, O (42%) and C, H, N, O, P (18%). Considering the MS2 spectra and several reference MS2 databases, annotations were proposed for 35 of these relevant features. They include synthetic products, pharmaceuticals and metabolites.
Collapse
Affiliation(s)
- Solène Motteau
- University of Poitiers, Institut de Chimie Des Milieux Et Des Matériaux de Poitiers (IC2MP UMR CNRS 7285), Equipe Eaux Biomarqueurs Contaminants Organiques Milieux (E.BICOM), 1 Rue Marcel Doré, Bâtiment B1, TSA 41105 86073, Cedex, Poitiers, France
| | - Marie Deborde
- University of Poitiers, Institut de Chimie Des Milieux Et Des Matériaux de Poitiers (IC2MP UMR CNRS 7285), Equipe Eaux Biomarqueurs Contaminants Organiques Milieux (E.BICOM), 1 Rue Marcel Doré, Bâtiment B1, TSA 41105 86073, Cedex, Poitiers, France.
- University of Poitiers, UFR Médecine Et de Pharmacie, 6 Rue de La Milétrie, Bâtiment D1, TSA 51115, 86073, Cedex 9, Poitiers, France.
| | - Bertrand Gombert
- University of Poitiers, Institut de Chimie Des Milieux Et Des Matériaux de Poitiers (IC2MP UMR CNRS 7285), Equipe Eaux Biomarqueurs Contaminants Organiques Milieux (E.BICOM), 1 Rue Marcel Doré, Bâtiment B1, TSA 41105 86073, Cedex, Poitiers, France
| | - Nathalie Karpel Vel Leitner
- University of Poitiers, Institut de Chimie Des Milieux Et Des Matériaux de Poitiers (IC2MP UMR CNRS 7285), Equipe Eaux Biomarqueurs Contaminants Organiques Milieux (E.BICOM), 1 Rue Marcel Doré, Bâtiment B1, TSA 41105 86073, Cedex, Poitiers, France
| |
Collapse
|
6
|
Akhlaqi M, Wang WC, Möckel C, Kruve A. Complementary methods for structural assignment of isomeric candidate structures in non-target liquid chromatography ion mobility high-resolution mass spectrometric analysis. Anal Bioanal Chem 2023; 415:5247-5259. [PMID: 37452839 PMCID: PMC10404200 DOI: 10.1007/s00216-023-04852-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
Non-target screening with LC/IMS/HRMS is increasingly employed for detecting and identifying the structure of potentially hazardous chemicals in the environment and food. Structural assignment relies on a combination of multidimensional instrumental methods and computational methods. The candidate structures are often isomeric, and unfortunately, assigning the correct structure among a number of isomeric candidate structures still is a key challenge both instrumentally and computationally. While practicing non-target screening, it is usually impossible to evaluate separately the limitations arising from (1) the inability of LC/IMS/HRMS to resolve the isomeric candidate structures and (2) the uncertainty of in silico methods in predicting the analytical information of isomeric candidate structures due to the lack of analytical standards for all candidate structures. Here we evaluate the feasibility of structural assignment of isomeric candidate structures based on in silico-predicted retention time and database collision cross-section (CCS) values as well as based on matching the empirical analytical properties of the detected feature with those of the analytical standards. For this, we investigated 14 candidate structures corresponding to five features detected with LC/HRMS in a spiked surface water sample. Considering the predicted retention times and database CCS values with the accompanying uncertainty, only one of the isomeric candidate structures could be deemed as unlikely; therefore, the annotation of the LC/IMS/HRMS features remained ambiguous. To further investigate if unequivocal annotation is possible via analytical standards, the reversed-phase LC retention times and low- and high-resolution ion mobility spectrometry separation, as well as high-resolution MS2 spectra of analytical standards were studied. Reversed-phase LC separated the highest number of candidate structures while low-resolution ion mobility and high-resolution MS2 spectra provided little means for pinpointing the correct structure among the isomeric candidate structures even if analytical standards were available for comparison. Furthermore, the question arises which prediction accuracy is required from the in silico methods to par the analytical separation. Based on the experimental data of the isomeric candidate structures studied here and previously published in the literature (516 retention time and 569 CCS values), we estimate that to reduce the candidate list by 95% of the structures, the confidence interval of the predicted retention times would need to decrease to below 0.05 min for a 15-min gradient while that of CCS values would need to decrease to 0.15%. Hereby, we set a clear goal to the in silico methods for retention time and CCS prediction.
Collapse
Affiliation(s)
- Masoumeh Akhlaqi
- Department of Materials and Environmental Chemistry, Svante Arrhenius väg 16C, 114 18, Stockholm, Sweden
| | - Wei-Chieh Wang
- Department of Materials and Environmental Chemistry, Svante Arrhenius väg 16C, 114 18, Stockholm, Sweden
| | - Claudia Möckel
- Department of Materials and Environmental Chemistry, Svante Arrhenius väg 16C, 114 18, Stockholm, Sweden
| | - Anneli Kruve
- Department of Materials and Environmental Chemistry, Svante Arrhenius väg 16C, 114 18, Stockholm, Sweden.
- Department of Environmental Science, Svante Arrhenius väg 8, 114 18, Stockholm, Sweden.
| |
Collapse
|
7
|
Belova L, Poma G, Roggeman M, Jeong Y, Kim DH, Berghmans P, Peters J, Salamova A, van Nuijs ALN, Covaci A. Identification and characterization of quaternary ammonium compounds in Flemish indoor dust by ion-mobility high-resolution mass spectrometry. ENVIRONMENT INTERNATIONAL 2023; 177:108021. [PMID: 37307605 DOI: 10.1016/j.envint.2023.108021] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/14/2023] [Accepted: 06/01/2023] [Indexed: 06/14/2023]
Abstract
Quaternary ammonium compounds (QACs) are a class of surfactants commonly used in disinfecting and cleaning products. Their use has substantially increased during the COVID-19 pandemic leading to increasing human exposure. QACs have been associated with hypersensitivity reactions and an increased risk of asthma. This study introduces the first identification, characterization and semi-quantification of QACs in European indoor dust using ion-mobility high-resolution mass spectrometry (IM-HRMS), including the acquisition of collision cross section values (DTCCSN2) for targeted and suspect QACs. A total of 46 indoor dust samples collected in Belgium were analyzed using target and suspect screening. Targeted QACs (n = 21) were detected with detection frequencies ranging between 4.2 and 100 %, while 15 QACs showed detection frequencies > 90 %. Semi-quantified concentrations of individual QACs showed a maximum of 32.23 µg/g with a median ∑QAC concentration of 13.05 µg/g and allowed the calculation of Estimated Daily Intakes for adults and toddlers. Most abundant QACs matched the patterns reported in indoor dust collected in the United States. Suspect screening allowed the identification of 17 additional QACs. A dialkyl dimethyl ammonium compound with mixed chain lengths (C16:C18) was characterized as a major QAC homologue with a maximum semi-quantified concentration of 24.90 µg/g. The high detection frequencies and structural variabilities observed call for more European studies on potential human exposure to these compounds. For all targeted QACs, drift tube IM-HRMS derived collision cross section values (DTCCSN2) are reported. Reference DTCCSN2 values allowed the characterization of CCS-m/z trendlines for each of the targeted QAC classes. Experimental CCS-m/z ratios of suspect QACs were compared with the CCS-m/z trendlines. The alignment between the two datasets served as an additional confirmation of the assigned suspect QACs. The use of the 4bit multiplexing acquisition mode with consecutive high-resolution demultiplexing confirmed the presence of isomers for two of the suspect QACs.
Collapse
Affiliation(s)
- Lidia Belova
- Toxicological Centre, University of Antwerp, Antwerp, Belgium.
| | - Giulia Poma
- Toxicological Centre, University of Antwerp, Antwerp, Belgium
| | | | - Yunsun Jeong
- Toxicological Centre, University of Antwerp, Antwerp, Belgium; Division for Environmental Health, Korea Environment Institute (KEI), Sicheong-daero 370, Sejong 30147, Republic of Korea
| | - Da-Hye Kim
- Toxicological Centre, University of Antwerp, Antwerp, Belgium
| | - Patrick Berghmans
- Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| | - Jan Peters
- Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| | - Amina Salamova
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | | | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|