1
|
Liu Y, Guo Y, Lv M, Wang Y, Xiang T, Sun J, Zhang Q, Liu R, Chen L, Shi C, Liang Y, Wang Y, Fu J, Qu G, Jiang G. Unraveling the Exposure Spectrum of PFAS in Fluorochemical Occupational Workers: Structural Diversity, Temporal Trends, and Risk Prioritization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:6247-6260. [PMID: 40101141 DOI: 10.1021/acs.est.4c13281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Despite extensive poly/perfluoroalkyl substance (PFAS) discovery studies in various samples, the exposure spectrum in fluorochemical occupational workers remains largely unexplored. Here, serum samples from 28 workers at a fluorochemical facility were analyzed using nontarget techniques, identifying 64 PFAS classes, including 15 novel ones such as pentafluorosulfur ether-substituted perfluoroalkyl sulfonic acids, hydrogen-substituted perfluoroalkylamines, and perfluoroalkylsulfonyl protocatechualdehyde esters. Temporal trend analyses (2008-2018) revealed stable levels for most PFAS but an increase in perfluorobutanoic acid (PFBA) and perfluorohexanesulfonic acid (PFHxS), suggesting industrial shifts from long-chain PFAS to short-chain homologues in China since the early 2010s. Commonly reported structurally modified PFAS (e.g., hydrogen/carbonyl/chlorine substitution, ether insertion, and unsaturation) were likely historical byproducts of legacy PFAS production rather than intentionally manufactured alternatives. A Toxicological Priority Index-based risk assessment, integrating mobility, persistence, and bioaccumulation indices, identified perfluoroalkylamines, di(perfluoroakyl sulfonyl)imides, structurally modified perfluoroalkyl sulfonic acids/carboxylic acids, and perfluoroalkylsulfonamidoacetic acids as high-risk PFAS chemicals. Overall, structurally modified PFAS exhibited higher mobility but lower persistence and bioaccumulation than legacy PFAS, except for chlorinated variants, which showed increased bioaccumulation potential. This study highlights critical gaps in the spectrum of historically emitted PFAS and emphasizes the need for large-scale monitoring and extensive risk assessments to manage emerging PFAS.
Collapse
Affiliation(s)
- Yanna Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yunhe Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Meilin Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Yi Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Tongtong Xiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Jiazheng Sun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Qing Zhang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Runzeng Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Liqun Chen
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Chunzhen Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- College of Sciences, Northeastern University, Shenyang 110004, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Cheng Y, Wang Y, Wang X, Lv Z, Zhou F, Huang B, Liu X, Chen D. 6:2 Fluorotelomer Ethoxylates in Human Serum and Residential Homes: A Growing Environmental Health Concern. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5182-5190. [PMID: 40035624 DOI: 10.1021/acs.est.4c10195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
As an emerging group of per- and polyfluoroalkyl substances (PFAS), fluorotelomer ethoxylates (FTEOs) are widely employed as a major ingredient in antifog products. However, knowledge about their environmental distribution and human exposure remains scarce. Herein, we reported the ubiquitous detection of 6:2 FTEO homologues in popular antifog products (n = 47), indoor dust from residential homes (n = 80), and serum of pregnant women (n = 90) living in South China, demonstrating broad use and widespread human exposure. The cumulative concentrations of 6:2 FTEOs ranged from below the limit of detection (
Collapse
Affiliation(s)
- Yao Cheng
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- College of Environment and Climate, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Yan Wang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xiaodong Wang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zhong Lv
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Fengli Zhou
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- College of Environment and Climate, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Baoqin Huang
- Department of Obstetrics, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Xiaotu Liu
- College of Environment and Climate, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Da Chen
- College of Environment and Climate, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| |
Collapse
|
3
|
Megson D, Bruce-Vanderpuije P, Idowu IG, Ekpe OD, Sandau CD. A systematic review for non-targeted analysis of per- and polyfluoroalkyl substances (PFAS). THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 960:178240. [PMID: 39765171 DOI: 10.1016/j.scitotenv.2024.178240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/18/2025]
Abstract
This review follows the PRISMA guidelines to provide a systematic review of 115 peer reviewed articles that used non-targeted analysis (NTA) methods to detect per- and polyfluoroalkylated substances (PFAS). This literature highlights the significant positive impact of NTA in understanding PFAS in the environment. Within the literature a geographical bias exists, with most NTA studies (∼60 %) conducted in the United States and China. Future studies in other regions (such as South America and Africa) are needed to gain a more global understanding. More research is required in marine environments and the atmosphere, as current studies focus mainly on freshwater, groundwater, soil, and sediments. The majority of studies focus on measuring PFAS in the environment, rather than in commercial products (with the exception of AFFF). Non-lethal blood sampling has been successful for NTA in humans and wildlife, but additional biomonitoring studies are required on exposed cohorts to understand health risks and PFAS biotransformation pathways. NTA methods mostly use liquid chromatography and negative ionisation, which biases the literature towards the detection of specific PFAS. Despite improvements in data reporting and quality assurance and control (QA/QC) procedures, factors such as false negative and false positive rates are often overlooked, and many NTA workflows remain highly subjective. Perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs) are the most detected PFAS classes, identified in over 80 % of NTA studies, and are common in routine monitoring. However, our review identified >1000 PFAS from a total of 382 different PFAS classes, with over 300 classes found in fewer than 5 % of studies. This highlights the variety of different PFAS present in the environment, and the limitations of relying solely on targeted methods. Future monitoring programs and regulations would benefit from considering NTA methods to provide more comprehensive information on PFAS present in the environment.
Collapse
Affiliation(s)
- David Megson
- Chemistry Matters, Calgary, Canada; Manchester Metropolitan University, Manchester, UK.
| | - Pennante Bruce-Vanderpuije
- Chemistry Matters, Calgary, Canada; Council for Scientific and Industrial Research, Water Research Institute, Accra, Ghana
| | | | - Okon Dominic Ekpe
- Chemistry Matters, Calgary, Canada; Pusan National University, Busan 46241, Republic of Korea
| | - Courtney D Sandau
- Chemistry Matters, Calgary, Canada; Mount Royal University, Calgary, Canada
| |
Collapse
|
4
|
Otim O. Comparing occurrence of per- and polyfluoroalkyl substances (PFAS) in municipal biosolids and industrial wastewater sludge: A City of Los Angeles study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176268. [PMID: 39278486 DOI: 10.1016/j.scitotenv.2024.176268] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Biosolids and sludge are what remain after the liquid fraction of wastewater is separated during wastewater treatment. These high organic content matrices are known to contain organic contaminants, a few of which are the hazardous and environmentally persistent per- and polyfluoroalkyl substances (PFAS). The current study investigates whether sludge from a treatment facility serving mostly industrial establishments and biosolids from a facility serving mostly domestic dwellings retain these 'forever chemicals' similarly. Using 31 markers covering different classes of PFAS, the sludge was found to contain higher levels of PFAS (869 ± 791 ng/g; 21 of 31) than biosolids (31 ± 7 ng/g, 11 of 31). The most abundant overall was perfluorooctane sulfonic acid (PFOS), mostly in sludge (range: 71-1300 ng/g versus 0-18 ng/g in biosolids). The large PFAS concentration variability in sludge was seasonal and sinusoidal. Sludge, additionally, contained all long chain PFAS, precursors (mostly surfactant ingredients and their transformation byproducts) and short chain PFAS (perhaps because of higher moisture content). By regression, the sludge is shown to consistently contain twice as much PFAS as biosolids when the same amounts are exposed to increasing levels of PFAS. Factors observed to cause differential PFAS retention between sludge and biosolids were moisture (98.6 % and 72.1 %, respectively), chain length, input quality (industrial versus residential) and functional group. Sulfonic acids for instance are one C atom shorter than carboxylates with similar occurrence in sludge and biosolids. More studies are needed to define the roles that organic carbon of sludge/biosolids, water chemistry, temperature and factors not considered here play in partitioning PFAS between the two matrices with respect to inputs. Existing Koc values could not help in explaining observed trends, but the ratio of biosolids-to-influent concentrations was found to correlate positively with PFAS size. Using influent in the ratio, and not effluent, is novel. SYNOPSIS: Sludge and biosolids are soil amendments; they contain hazardous and persistent PFAS. Methods of decoupling PFAS from these matrices start with understanding matrix-driven PFAS partitioning as shown here.
Collapse
Affiliation(s)
- Ochan Otim
- Department of Health Sciences and Sciences, University of California - Los Angeles, Los Angeles, CA 90024, USA.
| |
Collapse
|
5
|
Bérubé R, Murray B, Kocarek TA, Gurdziel K, Kassotis CD. Nonylphenol and Cetyl Alcohol Polyethoxylates Disrupt Thyroid Hormone Receptor Signaling to Disrupt Metabolic Health. Endocrinology 2024; 165:bqae149. [PMID: 39497475 PMCID: PMC11574291 DOI: 10.1210/endocr/bqae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
Surfactants are molecules with both hydrophobic and hydrophilic structural groups that adsorb at the air-water or oil-water interface and serve to decrease the surface tension. Surfactants combine to form micelles that surround and break down or remove oils, making them ideal for detergents and cleaners. Two of the most important classes of nonionic surfactants are alkylphenol ethoxylates (APEOs) and alcohol ethoxylates (AEOs). APEOs and AEOs are high production-volume chemicals that are used for many industrial and residential purposes, including laundry detergents, hard-surface cleaners, paints, and pesticide adjuvants. Commensurate with better appreciation of the toxicity of APEOs and the base alkylphenols, use of AEOs has increased, and both sets of compounds are now ubiquitous environmental contaminants. We recently demonstrated that diverse APEOs and AEOs induce triglyceride accumulation and/or preadipocyte proliferation in vitro. Both sets of contaminants have also been demonstrated as obesogenic and metabolism-disrupting in a developmental exposure zebrafish model. While these metabolic health effects are consistent across models and species, the mechanisms underlying these effects are less clear. This study sought to evaluate causal mechanisms through reporter gene assays, relative binding affinity assays, coexposure experiments, and use of both human cell and zebrafish models. We report that antagonism of thyroid hormone receptor signaling appears to mediate at least a portion of the polyethoxylate-induced metabolic health effects. These results suggest further evaluation is needed, given the ubiquitous environmental presence of these thyroid-disrupting contaminants and reproducible effects in human cell models and vertebrate animals.
Collapse
Affiliation(s)
- Roxanne Bérubé
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202, USA
| | - Brooklynn Murray
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202, USA
| | - Thomas A Kocarek
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202, USA
| | - Katherine Gurdziel
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202, USA
- Genome Sciences Core, Wayne State University, Detroit, MI 48202, USA
| | - Christopher D Kassotis
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
6
|
Jobst KJ, Penney C, Burgers PC. Why are nH-perfluoroalkanoate ions more mobile than expected? Implications for identifying an emerging environmental pollutant. Chem Commun (Camb) 2024; 60:7894-7897. [PMID: 38979952 DOI: 10.1039/d4cc02762k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
nH-Perfluoroalkyl carboxylic acids (nH-PFCAs) are emerging pollutants. Their identification by ion mobility is frustrated by the nH-PFCAs having unexpectedly small collision cross sections (CCS). Theory and experiment agree that this is because nH-PFCA ions undergo internal hydrogen bridging, and this insight will help guide the creation of more accurate methods for pollutant identification.
Collapse
Affiliation(s)
- Karl J Jobst
- Department of Chemistry, Memorial University of Newfoundland, 45 Arctic Ave., St. John's A1C 5S7, NL, Canada.
| | - Chloe Penney
- Department of Chemistry, Memorial University of Newfoundland, 45 Arctic Ave., St. John's A1C 5S7, NL, Canada.
| | - Peter C Burgers
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
7
|
Adams H, Hanrahan J, Kiefte S, O'Brien T, Mercer GV, Steeves KL, Schneider CM, Jobst KJ, Cahill LS. Differential impact of perfluorooctanoic acid and fluorotelomer ethoxylates on placental metabolism in mice. CHEMOSPHERE 2024; 356:141923. [PMID: 38599328 DOI: 10.1016/j.chemosphere.2024.141923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/17/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024]
Abstract
Poly- and perfluoroalkyl substances (PFAS) are a group of compounds with uses in industry and many consumer products. Concerns about the potential health effects of these compounds resulted in regulation by the Stockholm Convention on the use of three of the most common PFAS, including perfluorooctanoic acid (PFOA). Thousands of PFAS remain in production that are unregulated and for which their toxicity is unknown. Our group recently identified a new class of PFAS, fluorotelomer ethoxylates (FTEOs), in indoor dust and industrial wastewater. In this study, we investigated the effect of PFAS on placental metabolism by exposing healthy, pregnant CD-1 mice to PFOA or FTEOs at one of three concentrations (0 ng/L (controls), 5 ng/L, 100 ng/L) (n = 7-8/group). While PFOA is banned and PFOA concentrations in human blood are decreasing, we hypothesize that FTEOs will cause adverse pregnancy outcomes similar to PFOA, the compounds they were meant to replace. Placental tissue samples were collected at embryonic day 17.5 and 1H solid-state magic angle spinning nuclear magnetic resonance spectroscopy was used to determine the relative concentration of placental metabolites (n = 18-20/group). At the highest concentration, the relative concentrations of glucose and threonine were increased and the relative concentration of creatine was decreased in the PFOA-exposed placentas compared to controls (p < 0.05). In contrast, the relative concentrations of asparagine and lysine were decreased and the relative concentration of creatine was increased in the FTEOs-exposed placentas compared to controls (p < 0.05). Partial least squares - discriminant analysis showed the FTEOs-exposed and control groups were significantly separated (p < 0.005) and pathway analysis found four biochemical pathways were perturbed following PFOA exposure, while one pathway was altered following FTEOs exposure. Maternal exposure to PFOA and FTEOs had a significant impact on the placental metabolome, with the effect depending on the pollutant. This work motivates further studies to determine exposure levels and evaluate associations with adverse outcomes in human pregnancies.
Collapse
Affiliation(s)
- Haley Adams
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, A1C 5S7, Canada
| | - Jenna Hanrahan
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, A1C 5S7, Canada
| | - Sophie Kiefte
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, A1C 5S7, Canada
| | - Thomas O'Brien
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, A1C 5S7, Canada
| | - Grace V Mercer
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, A1C 5S7, Canada
| | - Katherine L Steeves
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, A1C 5S7, Canada
| | - Céline M Schneider
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, A1C 5S7, Canada
| | - Karl J Jobst
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, A1C 5S7, Canada
| | - Lindsay S Cahill
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, A1C 5S7, Canada; Discipline of Radiology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, A1C 5S7, Canada.
| |
Collapse
|
8
|
Hashemihedeshi M, Haywood E, Gatch DC, Jantunen L, Helm PA, Diamond ML, Dorman FL, Cahill LS, Jobst KJ. Size-Resolved Identification and Quantification of Micro/Nanoplastics in Indoor Air Using Pyrolysis Gas Chromatography-Ion Mobility Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:275-284. [PMID: 38239096 DOI: 10.1021/jasms.3c00362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Humans are exposed to differing levels of micro/nanoplastics (MNPs) through inhalation, but few studies have attempted to measure <1 μm MNPs in air, in part due to a paucity of analytical methods. We developed an approach to identify and quantify MNPs in indoor air using a novel pyrolysis gas chromatographic cyclic ion mobility mass spectrometer (pyr-GCxcIMS). Four common plastic types were targeted for identification, namely, (polystyrene (PS), polyethylene (PE), polypropylene (PP), and polymethyl methacrylate (PMMA). The method was applied to size-resolved particulate (56 nm to 18 μm) collected from two different indoor environments using a Micro-Orifice Uniform Deposit Impactors (MOUDI) model 110 cascade impactor. Comprehensive two-dimensional separation by GCxcIMS also enabled the retrospective analysis of other polymers and plastic additives. The mean concentrations of MNP particles with diameters of <10 μm and <2.5 μm in the laboratory were estimated to be 47 ± 5 and 27 ± 4 μg/m3, respectively. In the private residence, the estimated concentrations were 24 ± 3 and 16 ± 2 μg/m3. PS was the most abundant MNP type in both locations. Nontargeted screening revealed the presence of plastic additives, such as TDCPP (tris(1,3-dichloro-2-propyl)phosphate) whose abundance correlated with that of polyurethane (PU). This is consistent with their use as flame retardants in PU-based upholstered furniture and building insulation. This study provides evidence of indoor exposure to MNPs and underlines the need for further study of this route of exposure to MNPs and the plastic additives carried with them.
Collapse
Affiliation(s)
- Mahin Hashemihedeshi
- Department of Chemistry, Memorial University of Newfoundland, 45 Arctic Avenue, St. John's, NL A1C 5S7, Canada
| | - Ethan Haywood
- Department of Chemistry, Memorial University of Newfoundland, 45 Arctic Avenue, St. John's, NL A1C 5S7, Canada
| | - Daniel C Gatch
- Gerstel, 701 Digital Drive, Linthicum Heights, Maryland 21090, United States
| | - Liisa Jantunen
- Environment & Climate Change Canada, 6248 8th Line, Egbert, ON L0L 1N0, Canada
| | - Paul A Helm
- Ontario Ministry of the Environment, Conservation and Parks, 125 Resources Road, Etobicoke, ON M9P 3V6, Canada
| | - Miriam L Diamond
- Department of Earth Sciences and School of the Environment, University of Toronto, 22 Ursula Franklin Street, Toronto, Ontario M5S 3B1, Canada
| | - Frank L Dorman
- Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757, United States
- Department of Chemistry, Dartmouth College, Hannover, New Hampshire 03755, United States
| | - Lindsay S Cahill
- Department of Chemistry, Memorial University of Newfoundland, 45 Arctic Avenue, St. John's, NL A1C 5S7, Canada
| | - Karl J Jobst
- Department of Chemistry, Memorial University of Newfoundland, 45 Arctic Avenue, St. John's, NL A1C 5S7, Canada
| |
Collapse
|
9
|
Payne M, Kleywegt S, Ng CF. Industrial sources of per- and polyfluoroalkyl substances (PFAS) to a sewershed in Ontario, Canada. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16086-16091. [PMID: 38316740 DOI: 10.1007/s11356-024-32206-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 01/22/2024] [Indexed: 02/07/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are ubiquitous in the environment despite global regulatory action to restrict their use in industrial processes and products. The objective of this reconnaissance sampling was to understand current industrial use and ongoing sources of PFAS in Ontario. Fourteen PFAS were analyzed in effluents from four sectors: electroplaters, laundry and carpet cleaners, landfills, and circuit board manufacturers that discharge to sewersheds connected to wastewater treatment plants. Maximum concentrations were detected in carpet cleaning wastewater: 79,000 ng/L for perfluorohexane sulfonate (PFHxS), 26,000 ng/L perfluorooctane sulfate (PFOS), and 9400 ng/L perfluorooctanoic acid (PFOA). Total summed PFAS (∑PFAS14) concentrations were highest in laundry and carpet cleaners > electroplaters > landfill leachate > circuit boarders. These results indicate that PFAS continue to be used in select manufacturing and processing facilities and that the elevated levels are associated with past and current uses in commercial products.
Collapse
Affiliation(s)
- Mark Payne
- Public Works, The Regional Municipality of York, Newmarket, ON, Canada.
| | - Sonya Kleywegt
- Ontario Ministry of the Environment, Conservation and Parks, Toronto, ON, Canada
| | - Chi-Fai Ng
- Public Works, The Regional Municipality of York, Newmarket, ON, Canada
| |
Collapse
|