1
|
Fan W, Xia W, Lin LS, Liu H, Qu X, Xin W, Tang L, Chen Y. Heavy metal contamination in fish and human health risks from lakes of a mega inter-basin water diversion. CHEMOSPHERE 2025; 379:144407. [PMID: 40262230 DOI: 10.1016/j.chemosphere.2025.144407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/19/2025] [Accepted: 04/09/2025] [Indexed: 04/24/2025]
Abstract
Heavy metals in freshwater lakes under inter-basin water diversions may pose harms to lake ecosystems and human health but have rarely been studied. We studied fish heavy metals in water diversion lakes, Gao-Bao-Shaobo Lakes (GBSLs), along the South-to-North Water Diversion Project in China, and evaluated associated human health risks from fish consumption. A total of 322 muscle samples from 29 fish species were collected to characterize contamination patterns of copper (Cu), chromium (Cr), cadmium (Cd), lead (Pb), and arsenic (As). The studied heavy metals in fish were found within China's food safety standards. Among the studied metals, Cu, Cd, Pb, and As had higher concentrations temporally in autumn and spatially in Gaoyou Lake. Moreover, Cd, Pb, and As in carnivores were significantly higher than other feeding groups, and Cd and As in upper-middle and upper water layers were significantly higher than other layers. Consumption of GBSLs fish did not pose a non-carcinogenic risk to human health. However, consumption of fish species such as Protosalanx hyalocranius, Carassius auratus, Culter alburnus may pose potential carcinogenic risks to human health due to Cr and Cd. The current study had implications for assessing aquatic ecological conditions and reducing human dietary health risks related to heavy metals in water diversion lakes.
Collapse
Affiliation(s)
- Wenxia Fan
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Wentong Xia
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, China
| | - Lian-Shin Lin
- Wadsworth Department of Civil and Environmental Engineering, West Virginia University, Morgantown, WV, 26506-6103, USA
| | - Han Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China; Changjiang River Scientific Research Institute, Wuhan, Hubei, 430019, China
| | - Xiao Qu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, China
| | - Wei Xin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Lizhou Tang
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China.
| | - Yushun Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Huai' an Research Center & SNWDP-ER Lake Ecosystem Field Station, Institute of Hydrobiology, Chinese Academy of Sciences, Huai' an, Jiangsu, 223001, China; Institute of Freshwater and Marine Biology and Conservation, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, China.
| |
Collapse
|
2
|
Ma Y, Guo F, Zhu H, Wu Y, Guo B, Yang J, Wu F. Risk assessment and impact prediction of associated heavy metal pollution in selenium-rich farmland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175321. [PMID: 39111424 DOI: 10.1016/j.scitotenv.2024.175321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/03/2024] [Accepted: 08/04/2024] [Indexed: 08/28/2024]
Abstract
Selenium (Se)-rich farmland is a valuable and nonrenewable resource for addressing the global challenge of Se deficiency. However, frequent warnings of heavy metal pollution have threatened the safety and legitimacy of Se-rich functional agriculture, eventually damaged public health security. Definitive and judgmental quantitative studies on this hazardous phenomenon are still missing. Relevant reviews published in the past have summarized textual descriptions of the problem, lacking the support of the necessary statistical analysis of the data. Based on the collected publications, the present study evaluated and analyzed the sources, risks and impacts of heavy metal pollution in Se-rich farmland. Concentrations of cadmium (Cd), arsenic, lead and zinc in Se-rich farmland were significantly higher than those in non-Se-rich farmland, especially Cd. Pollution source analyses indicated that Se enrichment and heavy metal pollution occurred simultaneously in farmland, related to Se-heavy metal homology in rocks. According to environmental risk assessment, both serious Cd pollution and the narrow Se concentration range of safety utilization limited the availability of Se-rich farmland. Pollution impact predictions showed that the pollution in Se-rich farmland would result in serious human health risks to consumers and economic losses of 4000 yuan/hm2 on production side. Tackling Cd pollution was anticipated to recover economic losses (81 %) while lowering the carcinogenic (60 %) and non-carcinogenic (10 %) health risks. Our study also provided recommendations to address heavy metal pollution in Se-rich farmland. The two criteria should be followed by pollution control strategies applied to Se-rich functional agriculture including (i) not affecting the original Se enrichment in plant and (ii) not being interfered by Se in soil-plant systems. This will provide valuable information for Se-rich functional agriculture and public health security.
Collapse
Affiliation(s)
- Yuanzhe Ma
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Fuxing Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Haode Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yunmei Wu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Baocheng Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jing Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Fuyong Wu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
3
|
Sun J, Yan B, Chen H, Tu S, Zhang J, Chen T, Huang Q, Zhang Y, Xie L. Insight into the mechanisms of combined toxicity of cadmium and flotation agents in luminescent bacteria: Role of micro/nano particles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173588. [PMID: 38823693 DOI: 10.1016/j.scitotenv.2024.173588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/22/2024] [Accepted: 05/26/2024] [Indexed: 06/03/2024]
Abstract
Currently, risk assessment and pollution management in mines primarily focus on toxic metals, with the flotation agents being overlooked. However, the combined effects of metals and flotation agents in mines remain largely unknown. Therefore, this study aimed to evaluate the combined effects of Cd and two organic flotation agents (ethyl xanthate (EX) and diethyldithiocarbamate (DDTC)), and the associated mechanisms. The results showed that Cd + EX and Cd + DDTC exhibited synergistic toxicity. The EC50 values for luminescent bacteria were 1.6 mg/L and 1.0 mg/L at toxicity unit ratios of 0.3 and 1, respectively. The synergistic effects were closely related with the formation of Cd(EX)2 and Cd(DDTC)2 micro/nano particles, with nano-particles exhibiting higher toxicity. We observed severe cell membrane damage and cell shrinkage of the luminescent bacteria, which were probably caused by secondary harm to cells through the released CS2 during their decomposition inside cells. In addition, these particles induced toxicity by altering cellular levels of biochemical markers and the transcriptional levels of transport proteins and lipoproteins, leading to cell membrane impairment and DNA damage. This study has demonstrated that particulates formed by Cd and flotation agents contribute to the majority of the toxicity of the binary mixture. This study helps to better understand the complex ecological risk of inorganic metals and organic flotation agents in realistic mining environments.
Collapse
Affiliation(s)
- Jiacheng Sun
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Bo Yan
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China.
| | - Hongxing Chen
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China.
| | - Shuchen Tu
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Junhao Zhang
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Tao Chen
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Qinzi Huang
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Yuting Zhang
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Lingtian Xie
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
4
|
Zhu Z, Guo W, Cheng H, Zhao H, Wang J, Abdallah MF, Zhou X, Lei H, Tu W, Wang H, Yang J. Co-contamination and interactions of multiple mycotoxins and heavy metals in rice, maize, soybeans, and wheat flour marketed in Shanghai City. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134695. [PMID: 38815395 DOI: 10.1016/j.jhazmat.2024.134695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/02/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
Mycotoxins and heavy metals extensively contaminate grains and grain products, posing severe health risks. This work implements validated ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and inductively coupled plasma mass spectrometry (ICP-MS) methods to quantify the concentration of 12 mycotoxins and five heavy metals in rice, maize, soybeans, and wheat flour samples marketed in Shanghai. The mixed contamination characteristics were analyzed using correlation cluster analysis and co-contamination index, and the probabilities of all cross combinations of contaminations were analyzed using a self-designed JAVA language program. The results showed that grains and grain products were frequently contaminated with both mycotoxins and heavy metals, mostly with deoxynivalenol (DON), 3-acetyl-deoxynivalenol (3-ADON), 15-acetyl-deoxynivalenol (15-ADON), ochratoxin A (OTA), aflatoxins, fumonisin B1 (FB1), fumonisin B2 (FB2), fumonisin B3 (FB3), arsenic (As), chromium (Cr) and cadmium (Cd). All the samples (100 %) were contaminated with two or more contaminants, and 77.3 % of the samples were co-contaminated with more than four contaminants. In cereals and cereal products, the following combinations were closely associated: (FB3 +3-ADON), (FB1 +As), (FB1 +FB2), (DON+FB1), (DON+Cd), (As+Cd), (DON+Cd+As), (FB1 +FB2 +As), and (DON+3-ADON+15-ADON). The results indicated that mycotoxins and heavy metals frequently co-occurred in Shanghai grains and grain products, and they provided primary data for safety assessments, early warnings, and regulatory measures on these contaminants to protect public health.
Collapse
Affiliation(s)
- Zuoyin Zhu
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, PR China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Wenbo Guo
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, PR China
| | - Haisheng Cheng
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, PR China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Hanke Zhao
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, PR China
| | - Jie Wang
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, PR China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Mohamed F Abdallah
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Belgium; Laboratory of Human Biology and Toxicology, Faculty of Medicine and Pharmacy, University of Mons, Belgium
| | - Xinli Zhou
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Hulong Lei
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, PR China
| | - Weilong Tu
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, PR China
| | - Hongyang Wang
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, PR China
| | - Junhua Yang
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, PR China.
| |
Collapse
|
5
|
Guadalupe GA, Grandez-Yoplac DE, García L, Doménech E. A Comprehensive Bibliometric Study in the Context of Chemical Hazards in Coffee. TOXICS 2024; 12:526. [PMID: 39058178 PMCID: PMC11281111 DOI: 10.3390/toxics12070526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
The research aimed to carefully review the chemical hazards linked to the coffee production chain to analyse the risks and opportunities for consumers and the environment, as well as identify potential knowledge gaps. The Scopus database was consulted from 1949 to April 2024 to conduct a bibliometric analysis. As a result, 680 articles were analysed. Results indicated a significant increase in research activity since 2015. China, Brazil, and the USA were the leading countries in scientific production and collaborations. The most prolific journals in this field were Chemosphere, Science of the Total Environment, Food Chemistry, Journal of Agricultural and Food Chemistry, and Journal of Environmental Management, all of which are in the first quartile. The word analysis revealed two main themes: the first focuses on the chemical hazards of coffee and their impact on health, while the second explores the waste generated during coffee production and its potential for reuse. The topics covered in the research include the composition of coffee, associated chemical hazards, possible health risks, and ways to reuse waste for environmental protection. Future research should concentrate on optimising techniques and processes to ensure quality, safety, and sustainability.
Collapse
Affiliation(s)
- Grobert A. Guadalupe
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial de la Región Amazonas (IIDAA), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru;
- Instituto Universitario de Ingeniería de Alimentos Food-UPV, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Dorila E. Grandez-Yoplac
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial de la Región Amazonas (IIDAA), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru;
| | - Ligia García
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, 342 Higos Urco, Chachapoyas 01001, Peru;
| | - Eva Doménech
- Instituto Universitario de Ingeniería de Alimentos Food-UPV, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
6
|
Zhang H, Lv X, Yang Z, Li Q, Wang P, Zhang S, Xu Y, Wang X, Ali EF, Hooda PS, Lee SS, Li R, Shaheen SM, Zhang Z. A field trial for remediation of multi-metal contaminated soils using the combination of fly ash stabilization and Zanthoxylumbungeanum- Lolium perenne intercropping system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 361:121231. [PMID: 38810463 DOI: 10.1016/j.jenvman.2024.121231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024]
Abstract
Insitu stabilization and phytoextraction are considered as two convenient and effective technologies for the remediation of toxic elements (TEs) in soils. However, the effectiveness of these two remediation technologies together on the bioavailability and phytoextraction of TEs in field trials has not been explored yet. Specifically, the remediation potential of fly ash (FA; as stabilizing agent) and ryegrass (as a TE accumulator) intercropped with a target crop for soil polluted with multiple TEs has not been investigated yet, particularly in long-term field trials. Therefore, in this study, a six-month combined remediation field experiment of FA stabilization and/or ryegrass intercropping (IR) was carried out on the farmland soils contaminated with As, Cd, Cr, Cu, Hg, Ni, Pb and Zn where Zanthoxylumbungeanum (ZB) trees as native crops were grown for years. The treatments include soil cultivated alone with ZB untreated- (control) and treated-with FA (FA), produced by burning lignite in Shaanxi Datong power plant, China, soil cultivated with ZB and ryegrass untreated- (IR) and treated-with FA (FA + IR). This was underpinned by a large-scale survey in Daiziying (China), which showed that the topsoils were polluted by Cd, Cu, Hg and Pb, and that Hg and Pb contents in the Zanthoxylumbungeanum fruits exceeded their allowable limits. The TEs contents in the studied FA were lower than their total element contents in the soil. The DTPA-extractable TEs contents of the remediation modes were as follows: FA < FA + IR < IR < control. Notably, TEs contents in the ZB fruits were lowest under the FA + IR treatment, which were decreased by 27.6% for As, 42.3% for Cd, 16.7% for Cr, 30.5% for Cu, 23.1% for Hg, 15.5% for Ni, 33.2% for Pb and 38.1% for Zn compared with the control treatment. Whereas the FA + IR treatment enhanced TEs contents in ryegrass shoots and roots, and the TEs contents in ryegrass shoots were below their regulatory limits for fodder crops. The findings confirmed that the combined remediation strategy, i.e., FA (with low content of TEs) stabilization effect and intercropping of ZB (target crop) and ryegrass (accumulating plant) could provide a prospective approach to produce target plants within safe TEs thresholds with greater economic benefits, while remediating soils polluted with multiple TEs and mitigating the potential ecological and human health risk. Those results are of great applicable concern.
Collapse
Affiliation(s)
- Han Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| | - Xiaoyong Lv
- China Nonferrous Metal Industry Xi 'an Survey and Design Institute Co., LTD, Xian, Shaanxi Province, 710054, China.
| | - Zhaowen Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| | - Qian Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| | - Ping Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| | - Shuqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| | - Yaqiong Xu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| | - Xuejia Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| | - Esmat F Ali
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| | - Peter S Hooda
- Faculty of Engineering, Computing and the Environment, Kingston University, London, Kingston Upon Thames, KT1 2EE, London, UK.
| | - Sang Soo Lee
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, 26493, Republic of Korea.
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516, Kafr El-Sheikh, Egypt.
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| |
Collapse
|
7
|
Puri SB, Killur RRB. Health risks of metals in soils and staple foods of the subsistence food gardens in the floodplains of Watut River, Papua New Guinea. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:589. [PMID: 38819722 DOI: 10.1007/s10661-024-12765-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/25/2024] [Indexed: 06/01/2024]
Abstract
The health risks associated with the consumption of staples cultivated in the subsistence food gardens along the Watut River were investigated in Papua New Guinea. Twenty soil samples and twenty-nine samples of staple foods (including banana, taro, sweet potato, and Singapore taro) were collected from the food gardens following a three-day dietary recall survey. The concentration of metals (Cr, Cu, Pb, and Ni) was analyzed in the soil and food samples using Inductively Coupled Plasma Optical Emission Spectrophotometer. The descending order of mean metal concentration in the food garden soils is as follows: Cr > Cu > Ni > Pb. The concentration of Pb in all samples and Cr in 97% of staple foods exceeded the FAO/WHO permissible limits. Approximately 87% of adult consumers of bananas (Musa sp) were found to have estimated Cr and Pb ingestion levels exceeding the permissible daily tolerable intake of metals (0.2 and 0.21 mg day-1, respectively). Hazard index values from the staples analysis indicate that the consumption of bananas (9.40) poses the highest risk of non-carcinogenic effects on adults, followed by taro (7.32), sweet potato (6.13), and Singapore taro (4.30). The consumption of taro is dangerous due to cancer risk associated with the intake of excessive Ni (2.88E-02) and Cr (8.82E-03) in adults and children compared to banana, sweet potato, and Singapore taro. Non-carcinogenic hazards of metal ingestion were found to be pronounced in the younger population, while carcinogenic effects were more serious in adults. Urgent measures must be implemented to protect communities, especially children, from the dangerous effects of heavy metal ingestion through staples in the lower Watut region.
Collapse
Affiliation(s)
- Stella Bue Puri
- School of Agriculture, Faculty of Natural Resources, The Papua New Guinea University of Technology, PMB, Lae, 411, Papua New Guinea
| | - Rajashekhar Rao Bangady Killur
- School of Agriculture, Faculty of Natural Resources, The Papua New Guinea University of Technology, Private Mail Bag, Lae, 411, Papua New Guinea.
| |
Collapse
|
8
|
Dong J, Li J, Huang Y, Zhong J, Dun K, Wu M, Zhang L, Chen Q, Pan B. Understanding the release, migration, and risk of heavy metals in coal gangue: An approach by combining experimental and computational investigations. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132707. [PMID: 37813031 DOI: 10.1016/j.jhazmat.2023.132707] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/21/2023] [Accepted: 10/02/2023] [Indexed: 10/11/2023]
Abstract
The lack of understanding on the environmental fate and implications of heavy metals in coal gangue (CG) has restrained its utilization. Conventional extraction methods provide empirical measures of heavy metal speciation, lacking a detailed description of bound strength, which limits long-term risk assessment. In this study, the releasing and migrating behavior of six heavy metals (Cd, As, Pb, Ni, Cu, and Cr) were investigated through an approach by combining experimental and computational investigations. The corresponding mechanisms and risks were understood and discussed on a molecular level. The results suggested that CG is primarily a natural kaolinite α-quartz and anatase mineral. The sequence extraction results showed that heavy metals in CG are mainly distributed in stable silicate and iron manganese oxide-bound states. The toxicity characteristic leaching procedure test advised Cu, Cr, Ni, and Pb had a high toxic level and thus required long-term monitoring and controlling. A quantum chemical calculation demonstrated that the heavy metals were more likely to be embedded in silicate minerals with high binding energy than those binding on the anatase surface. The findings of this research provide a promising approach to comprehensively evaluate the stability mechanism and potential long-term risks of heavy metals in solid waste.
Collapse
Affiliation(s)
- Jihong Dong
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, Yunnan, China
| | - Jiabang Li
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, Yunnan, China
| | - Yu Huang
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, Yunnan, China.
| | - Jingyu Zhong
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, Yunnan, China
| | - Kai Dun
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, Yunnan, China
| | - Min Wu
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, Yunnan, China
| | - Lijuan Zhang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Quan Chen
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, Yunnan, China.
| | - Bo Pan
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, Yunnan, China
| |
Collapse
|
9
|
Liu X, Cheng C, Min Y, Xie X, Muzahid ANM, Lv H, Tian H, Zhang C, Ye C, Cao S, Chen P, Zhong C, Li D. Increased ascorbic acid synthesis by overexpression of AcGGP3 ameliorates copper toxicity in kiwifruit. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132393. [PMID: 37660623 DOI: 10.1016/j.jhazmat.2023.132393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/13/2023] [Accepted: 08/23/2023] [Indexed: 09/05/2023]
Abstract
The widespread application of copper (Cu) -based fertilizers and pesticides could increase the accumulation of Cu in kiwifruit. According to a global survey, red- and yellow-fleshed kiwifruit contained more elevated amounts of Cu than green-fleshed kiwifruit due to weaker disease resistance and higher use of Cu pesticides. Intriguingly, our research revealed that external and endogenous ascorbic acid (AsA) reduced the phenotypic and physiological injury of Cu toxicity in kiwifruit. Cu stress assays and transcriptional analysis have shown that Cu treatment for 12 h significantly increased the AsA content in kiwifruit leaves and up-regulated key genes involved in AsA biosynthesis, such as GDP-L-galactose phosphorylase3 (GGP3) and GDP-mannose-3',5'-epimerase (GME). Overexpressing GGP3 in transgenic kiwifruit significantly increased the endogenous AsA content of kiwifruit, which was beneficial in mitigating Cu toxicity by decreasing levels of reactive oxygen species, malondialdehyde, and electrolyte leakage, as well as reducing damage to the chloroplast structure and photosystem II. This study presented a novel strategy to ameliorate plant Cu stress by increasing the endogenous antioxidant (AsA) content through transgenesis.
Collapse
Affiliation(s)
- Xiaoying Liu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
| | - Chang Cheng
- College of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Yan Min
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaodong Xie
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
| | - Abu Naim Md Muzahid
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
| | - Haiyan Lv
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
| | - Hua Tian
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
| | - Congxiao Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
| | - Can Ye
- State Key Joint Laboratory of Environment Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Bejing 100871, China
| | - Shifeng Cao
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Peng Chen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China.
| | - Caihong Zhong
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China.
| | - Dawei Li
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
10
|
Hou Y, Liu X, Qin Y, Hou Y, Hou J, Wu Q, Xu W. Zebrafish as model organisms for toxicological evaluations in the field of food science. Compr Rev Food Sci Food Saf 2023; 22:3481-3505. [PMID: 37458294 DOI: 10.1111/1541-4337.13213] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 09/13/2023]
Abstract
Food safety has long been an area of concern. The selection of stable and efficient model organisms is particularly important for food toxicology studies. Zebrafish (Danio rerio) are small model vertebrates, and 70% of human genes have at least one zebrafish ortholog. Zebrafish have advantages as model organisms due to their short life cycle, strong reproductive ability, easy rearing, and low cost. Zebrafish embryos have the advantage of being sensitive to the breeding environment and thus have been used as biosensors. Zebrafish and their embryos have been widely used for food toxicology assessments. This review provides a systematic and comprehensive summary of food toxicology studies using zebrafish as model organisms. First, we briefly introduce the multidimensional mechanisms and structure-activity relationship studies of food toxicological assessment. Second, we categorize these studies according to eight types of hazards in foods, including mycotoxins, pesticides, antibiotics, heavy metals, endocrine disruptors, food additives, nanoparticles, and other food-related ingredients. Finally, we list the applications of zebrafish in food toxicology studies in line with future research prospects, aiming to provide a valuable reference for researchers in the field of food science.
Collapse
Affiliation(s)
- Yingyu Hou
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei, China
| | - Xixia Liu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei, China
| | - Yanlin Qin
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei, China
| | - Yaoyao Hou
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei, China
| | - Jianjun Hou
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei, China
| | - Qin Wu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei, China
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, China
| |
Collapse
|
11
|
Zhou R, Huang C, Bi N, Li L, Li C, Gu X, Song Y, Wang HL. Chronic Pb Exposure Induces Anxiety and Depression-like Behaviors in Mice via Excitatory Neuronal Hyperexcitability in Ventral Hippocampal Dentate Gyrus. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12222-12233. [PMID: 37559393 DOI: 10.1021/acs.est.3c03426] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Lead (Pb) is a widespread neurotoxic pollutant. Pb exposure is associated with mood disorders, with no well-established neural mechanisms elucidated. In the present study, we aimed to investigate whether excitatory neurons in the dentate gyrus subregion of the ventral hippocampus (vDG) played a key role in Pb-induced anxiety and depression-like behaviors. C57BL/6 mice were exposed to 100 ppm Pb starting on day 1 of pregnancy until experiments were performed using the offspring. Behavioral studies suggested that chronic Pb exposure triggered anxiety and depression-like behaviors. A combination of electrophysiological, optogenetic, and immunohistochemistry experiments was conducted. Results showed that Pb exposure resulted in excitatory neuronal hyperexcitability in vDG and that the behavioral deficits caused by Pb exposure could be rescued by inhibition of excitatory neuronal activity. Moreover, it was found that the action potential (AP) threshold of excitatory neurons was decreased by electrophysiological recordings. Our study demonstrates a significant role for excitatory neurons in vDG in Pb-induced anxiety and depression-like behaviors in mice, which is likely a result of decreased AP threshold. These outcomes can serve as an important basis for understanding mechanisms of anxiety and depression under environmental Pb exposure and help in the design of therapeutic strategies.
Collapse
Affiliation(s)
- Ruiqing Zhou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, Anhui, PR China
| | - Chengqing Huang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, Anhui, PR China
| | - Nanxi Bi
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, Anhui, PR China
| | - Ling Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, Anhui, PR China
| | - Changqing Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, Anhui, PR China
| | - Xiaozhen Gu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, Anhui, PR China
| | - Yang Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Hui-Li Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, Anhui, PR China
| |
Collapse
|
12
|
Soluble dietary fiber from Prunus persica dregs alleviates gut microbiota dysfunction through lead excretion. Food Chem Toxicol 2023; 175:113725. [PMID: 36925041 DOI: 10.1016/j.fct.2023.113725] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/28/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Lead (Pb) can pollute the environment and food through air, water and other means, resulting in human exposure to lead pollution, and there is no threshold level of lead toxicity, even small doses of lead will have a range of harmful effects in humans. This study demonstrates for the first time that dietary addition of soluble dietary fiber (SDF) from Prunus persica dregs reduces lead bioaccumulation in mice, and eliminates lead through feces. Compared with lead-exposed mice, SDF supplementation effectively prevented lead-induced changes in colon tissue, and increased expression of tight junction proteins (ZO-1 and occludin). We analyzed the effects of SDF on gut microbiota and metabolites by a combination of 16S rRNA high-throughput sequencing and untargeted metabolomics. The results showed that SDF altered lead-induced perturbations in the layout and structure of the gut microbiota, including increased Desulfovibrio and Alistipes abundance and decreased Bacteroidetes abundance. Meanwhile, we also provide evidence that SDF supplementation alters the levels of amino acids, bile acids, and lipids in the gut, and that these metabolites are closely associated with microbiota with good lead binding capacity. Therefore, we speculate that SDF has the potential to provide a protective effect against intestinal damage by promoting lead excretion.
Collapse
|