1
|
Han D, Guo Y, Wang J, Zhao B. Global disparities in indoor wildfire-PM 2.5 exposure and mitigation costs. SCIENCE ADVANCES 2025; 11:eads4360. [PMID: 40367153 PMCID: PMC12077487 DOI: 10.1126/sciadv.ads4360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 02/14/2025] [Indexed: 05/16/2025]
Abstract
Wildfires have become more frequent and severe, and evidence showed that exposure to wildfire-caused PM2.5 (fire-PM2.5) is associated with adverse health effects. Fire-PM2.5 exposure occurs mainly indoors, where people spend most of their time. As an effective and timely approach of mitigating indoor PM2.5 pollution, air purifiers incur notable associated costs. However, the long-term global population exposure to indoor fire-PM2.5 and the economic burden of using air purifiers remain unknown. Here, we estimated the indoor fire-PM2.5 concentration and the cost of reducing indoor PM2.5 exposure, along with the extra cost incurred because of fire-PM2.5, at a resolution of 0.5° by 0.5° globally during 2003 to 2022. Our findings revealed 1009 million individuals exposed to at least one substantial indoor wildfire-air pollution day per year. We identified pronounced socioeconomic disparities in the costs of mitigating indoor PM2.5 exposure, with low-income countries bearing a disproportionately higher economic burden, emphasizing the critical need for addressing these disparities.
Collapse
Affiliation(s)
- Dongjia Han
- Department of Building Science, School of Architecture, Tsinghua University, Beijing 100084, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Tsinghua University, Beijing 100084, China
| | - Yongxuan Guo
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianghao Wang
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Sustainable Urbanization Lab, Department of Urban Studies and Planning, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Bin Zhao
- Department of Building Science, School of Architecture, Tsinghua University, Beijing 100084, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Wu Y, Xu R, Li S, Wen B, Southey MC, Dugue PA, Hopper JL, Abramson MJ, Li S, Guo Y. Association between wildfire-related PM 2.5 and epigenetic aging: A twin and family study in Australia. JOURNAL OF HAZARDOUS MATERIALS 2025; 481:136486. [PMID: 39566450 DOI: 10.1016/j.jhazmat.2024.136486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/30/2024] [Accepted: 11/10/2024] [Indexed: 11/22/2024]
Abstract
Wildfire-related PM2.5 has been associated with various adverse health outcomes, but its association with epigenetic aging remains unclear. This study examined the association between wildfire-related PM2.5 exposure and epigenetic aging using DNA methylation data from a twin and family study. With a within-sibship analysis, we found that each 1 µg/m3 increase in annual wildfire-related PM2.5 was associated with a 0.25-year (95 % CI: 0.04, 0.47) increase in GrimAge1 acceleration and a 0.36-year (95 % CI: 0.12, 0.59) increase in GrimAge2 acceleration. Subgroup analyses found that participants aged ≥ 60 years, those with a history of current or former smoking and alcohol consumption, and those living in rural regions exhibited more pronounced epigenetic age acceleration. These findings suggest that wildfire smoke could accelerate biological aging, particularly in vulnerable populations, posing a significant challenge to healthy aging.
Collapse
Affiliation(s)
- Yao Wu
- Climate, Air Quality Research (CARE) Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne 3004, VIC, Australia
| | - Rongbin Xu
- Climate, Air Quality Research (CARE) Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne 3004, VIC, Australia
| | - Shanshan Li
- Climate, Air Quality Research (CARE) Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne 3004, VIC, Australia
| | - Bo Wen
- Climate, Air Quality Research (CARE) Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne 3004, VIC, Australia
| | - Melissa C Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton 3800, VIC, Australia; Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Melbourne 3010, VIC, Australia; Cancer Epidemiology Division, Cancer Council Victoria, 3004 VIC, Australia
| | - Pierre-Antoine Dugue
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton 3800, VIC, Australia; Cancer Epidemiology Division, Cancer Council Victoria, 3004 VIC, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne 3010, VIC, Australia
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne 3010, VIC, Australia
| | - Michael J Abramson
- School of Public Health and Preventive Medicine, Monash University, Melbourne 3004, VIC, Australia
| | - Shuai Li
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton 3800, VIC, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne 3010, VIC, Australia; Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, United Kingdom; Murdoch Children's Research Institute, Royal Children's Hospital, Parkville 3052, VIC, Australia.
| | - Yuming Guo
- Climate, Air Quality Research (CARE) Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne 3004, VIC, Australia.
| |
Collapse
|
3
|
Gao Y, Huang W, Yu P, Xu R, Gasevic D, Yue X, Coêlho MDSZS, Saldiva PHN, Guo Y, Li S. Wildfire-related PM 2.5 and cardiovascular mortality: A difference-in-differences analysis in Brazil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123810. [PMID: 38493867 DOI: 10.1016/j.envpol.2024.123810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/19/2024]
Abstract
Brazil has experienced unprecedented wildfires recently. We aimed to investigate the association of wildfire-related fine particulate matter (PM2.5) with cause-specific cardiovascular mortality, and to estimate the attributable mortality burden. Exposure to wildfire-related PM2.5 was defined as exposure to annual mean wildfire-related PM2.5 concentrations in the 1-year prior to death. The variant difference-in-differences method was employed to explore the wildfire-related PM2.5-cardiovascular mortality association. We found that, in Brazil, compared with the population in the first quartile (Q1: ≤1.82 μg/m3) of wildfire-related PM2.5 exposure, those in the fourth quartile (Q4: 4.22-17.12 μg/m3) of wildfire-related PM2.5 exposure had a 2.2% (RR: 1.022, 95% CI: 1.013-1.032) higher risk for total cardiovascular mortality, 3.1% (RR: 1.031, 95% CI: 1.014-1.048) for ischaemic heart disease mortality, and 2.0% (RR: 1.020, 95% CI: 1.002-1.038) for stroke mortality. From 2010 to 2018, an estimation of 35,847 (95% CI: 22,424-49,177) cardiovascular deaths, representing 17.77 (95% CI: 11.12-24.38) per 100,000 population, were attributable to wildfire-related PM2.5 exposure. Targeted health promotion strategies should be developed for local governments to protect the public from the risk of wildfire-related cardiovascular premature deaths.
Collapse
Affiliation(s)
- Yuan Gao
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Wenzhong Huang
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Pei Yu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Rongbin Xu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Danijela Gasevic
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia; Centre for Global Health, Usher Institute, The University of Edinburgh, Edinburgh, UK
| | - Xu Yue
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, China
| | | | | | - Yuming Guo
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Shanshan Li
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia.
| |
Collapse
|
4
|
Morejón-Jaramillo PE, Nassikas NJ, Rice MB. Clinical Medicine and Climate Change. Immunol Allergy Clin North Am 2024; 44:109-117. [PMID: 37973256 DOI: 10.1016/j.iac.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The health care system contributes substantially to global greenhouse gas emissions, a driver of climate change. At the same time, climate change has caused disruptions in health care delivery. In this article, the authors describe both how the health care industry contributes to climate change and how climate change affects patient care. The authors also provide clinical recommendations for health care practitioners to counsel patients on health effects of climate change and underscore the need for developing the workforce needed to respond to unique health care delivery challenges resulting from climate-related factors.
Collapse
Affiliation(s)
- Pablo E Morejón-Jaramillo
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215-5491, USA
| | - Nicholas J Nassikas
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215-5491, USA
| | - Mary B Rice
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215-5491, USA.
| |
Collapse
|
5
|
Barbosa JV, Nunes RAO, Alvim-Ferraz MCM, Martins FG, Sousa SIV. Health and economic burden of wildland fires PM 2.5-related pollution in Portugal - A longitudinal study. ENVIRONMENTAL RESEARCH 2024; 240:117490. [PMID: 37879391 DOI: 10.1016/j.envres.2023.117490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 10/27/2023]
Abstract
Portugal has been affected by wildland fires that destroy thousands of hectares of forest, causing damage to the environment and to the exposed populations. This study aims to assess the influence of wildland fire emissions on air quality, its effect on population health and the related costs, between 2015 and 2018 in Portugal. The cause-specific mortality due to PM2.5 was calculated considering the exposure for five endpoints in adults, twelve age groups for adults and considering children under five years old. The contribution of wildfire emissions to PM2.5 concentrations in Portugal was assessed through EMEP-MSC/W model. Results showed that the average annual fire emissions of PM2.5, CO, CH4, CO2 and NO2 a significant and continuous increase was observed during the first three years (2015, 2016 and 2017) for all pollutants, followed by a decrease in 2018, with values lower than those observed in 2015. Regarding the long-term exposure to PM2.5 emitted by fires a total of 32, 93, 189 and 31 deaths, corresponding to a cost of 59, 174, 360 and 60 million EUR in 2015, 2016, 2017 and 2018, respectively, were estimated. On the other hand, in the first three years an increase in years of life lost (YLL) values of 496, 1608 and 3092 was observed, corresponding to a cost of 16, 54 and 105 million EUR, respectively, followed by a decrease in 2018 with a YLL of 480, corresponding to a cost of 17 M€.
Collapse
Affiliation(s)
- Joana V Barbosa
- LEPABE-Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Rafael A O Nunes
- LEPABE-Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria C M Alvim-Ferraz
- LEPABE-Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Fernando G Martins
- LEPABE-Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Sofia I V Sousa
- LEPABE-Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|